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• Cells can be grouped into groups known as cell-types that share similar 
features and lineages 

• > 2300 cell-types (Osumi-Sutherland et. al., 2021, Nature Cell Biology)

Haematopoiesis in Bone Marrow

Source: Kim et. al., 2019, Nature Reviews Genetics
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Classical approach 

- Dependence on clustering algorithm, Requires very good (and few) marker genes per cell type, 
not suitable for identifying rare cell types. 

+ Detailed control, expert-based

Clustering (PCA, UMAP, tSNE) Expression of marker genes Cell type labels

…

Cell type identification
Workflow



Idea: Use already available and annotated datasets 

+ Larger and larger reference datasets are being generated e.g. Human Cell 
Atlas (https://www.humancellatlas.org), Allen Brain Atlas (https://portal.brain-
map.org) etc. 

+ Machine Learning algorithms are getting better 

- No (human) expert 

- Many sources of error - Batch effects, data integration (batch correction), data 
quality issues, partial references, dynamic nature of cell states

Label transfer
Cell type identification

https://www.humancellatlas.org


Illustration of Batch Effect on two peripheral blood mononuclear cell (PBMC) datasets.

Post-batch correction using Harmony (Karunsky et. al., 2019, Nature Methods)
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Why use conformal prediction? 

• Model agnostic 

• Interpretable 

• Simple and general 

Goals: Explore conformal prediction, investigate how it could help in single-cell 
label transfer and how it could identify previously unseen cell types

Conformal prediction for label-transfer
Integration of conformal prediction in the workflows
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PBMCs

Pancreas
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Before batch correction After batch correction

SVM performance before and after batch correction with Harmony

Training set: PBMC 6k, Test set: PBMC 8k
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Peformance on PBMCs

ICP at significance: 0.025
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PBMC 8k

PBMC 6k

Rate of prediction sets on PBMC 8k
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PBMC 8k

PBMC 6k

Rate of prediction sets on PBMC 8k

Average credibility of each cell Average credibility of each cell type
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PBMC 6k

Desired error rate = 0.025 % per cell type

PBMC 8k
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Pancreas datasets after batch correction
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Pancreas datasets after batch correction

Desired error rates vs classification and accuracy
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Assignments of held-out (unknown) cell types
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Results
Impact of batch correction
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• Scgen (Lotfollahi et. al., 2019, Nature Methods)



Batch transfer may itself cause error rather than the model itself 

Evaluated two other algorithm on PBMCs: 

• Scanorama (Hie et. al., 2019, Nature Biotechnology) 
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Homogeneity scores for integrating PBMC datasets
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Test set error rates

Batch correction: Harmony

Test set error rates

Batch correction: Scanorama

Should we use Scanorama always? Perhaps not. Quality of batch correction methods is data-dependent.
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• Conformal-credibility setup provides an approach for accurate label transfer 

• Uncertainties drastically affected by the batch correction method in use 

• Progress to be made on three ends: 

• Technical:  

• Evaluating of a set of NCMs and further development of algorithms 

• Extensive benchmarking with multiple batch correction methods (Ongoing) 

• Conformal anomaly detection for discovering unknown cell types 

• Biological:  

• Going deeper into cellular subsets (Ongoing) 

• Discovering cell states 

• Datasets:  

• Use atlas-level datasets (Some exciting recent developments and ongoing global efforts) 

Lessons learned and outook



C. DOMÍNGUEZ CONDE et. al., 2022, Science

Classification without the use of batch correction (https://www.celltypist.org), thanks to curation of vast 
amounts of cell types and careful harmonization of multiple public datasets 

Recent developments


