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Walley’s imprecise probability models
Accepting gambles

Consider an exhaustive set Ω of mutually exclusive
alternatives ω, exactly one of which obtains.

Subject
is uncertain about which alternative obtains.

A gamble f : Ω→ R
is interpreted as an uncertain reward: if the alternative
that obtains is ω, then the reward for Subject is f (ω).

Let L (Ω) be the set of all gambles on Ω.
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Walley’s imprecise probability models
Accepting gambles

Subject accepts a gamble f
if he accepts to engage in the following transaction,
where

1 we determine which alternative ω obtains;
2 Subject receives f (ω).

We try to model Subject’s uncertainty by looking at
which gambles in L (Ω) he accepts.
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Walley’s imprecise probability models
Coherent sets of really desirable gambles

Subject specifies a set R of gambles he accepts, his set
of really desirable gambles. R is called coherent if it
satisfies the following rationality requirements:
D1. if f < 0 then f 6∈R [avoiding partial loss];
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f1 ∈R and f2 ∈R then f1 + f2 ∈R [combination];
D4. if f ∈R then λ f ∈R for all non-negative real

numbers λ [scaling].
Here ‘f < 0’ means ‘f ≤ 0 and not f = 0’. Walley has also
argued that sets of really desirable gambles should
satisfy an additional axiom:
D5. R is B-conglomerable for any partition B of Ω:

if IBf ∈R for all B ∈B, then also f ∈R [full
conglomerability].
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Walley’s imprecise probability models
Natural extension as a form of inference

Since D1–D4 are preserved under arbitrary non-empty
intersections:

Theorem
Let A be any set of gambles. Then there is a coherent
set of desirable gambles that includes A if and only if

f 6≤ 0 for all f ∈ posi(A )

In that case, the natural extension E (A ) of A is the
smallest such coherent set, and given by:

E (A ) := posi(A ∪L +(Ω)).
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Walley’s imprecise probability models
Lower and upper previsions

Given Subject’s coherent set R, we can define his upper
and lower previsions:

P(f ) := inf{α : α− f ∈R}
P(f ) := sup{α : f −α ∈R}

so P(f ) =−P(−f ).
P(f ) is the supremum price α for which Subject will
buy the gamble f , i.e., accept the gamble f −α.
the lower probability P(A) := P(IA) is Subject’s
supremum rate for betting on the event A.
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Walley’s imprecise probability models
Conditional lower and upper previsions

We can also define Subject’s conditional lower and
upper previsions: for any gamble f and any non-empty
subset B of Ω, with indicator IB:

P(f |B) := inf{α : IB(α− f ) ∈R}
P(f |B) := sup{α : IB(f −α) ∈R}

so P(f |B) =−P(−f |B) and P(f ) = P(f |Ω).
P(f |B) is the supremum price α for which Subject
will buy the gamble f , i.e., accept the gamble f −α,
contingent on the occurrence of B.
For any partition B, define the gamble P(f |B) as

P(f |B)(ω) := P(f |B), B ∈B,ω ∈ B
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Walley’s imprecise probability models
Coherence of conditional lower and upper previsions

Suppose you have a number of functionals

P(·|B1), . . . ,P(·|Bn)

These are called coherent if there is some coherent set
of desirable gambles R that is Bk-conglomerable, such
that

P(f |Bk)= sup
{

α ∈ R : IBk(f −α) ∈R
}

Bk ∈Bk,k= 1, . . . ,n
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Walley’s imprecise probability models
Properties of conditional lower and upper previsions

Theorem ([10])
Consider a coherent set of really desirable gambles, let
B be any non-empty subset of Ω, and let f , f1 and f2 be
gambles on Ω. Then:

1 infω∈B f (ω)≤ P(f |B)≤ P(f |B)≤ supω∈B f (ω)
[positivity];

2 P(f1 + f2|B)≥ P(f1|B)+P(f2|B) [super-additivity];
3 P(λ f |B) = λP(f |B) for all real λ ≥ 0 [non-negative

homogeneity];
4 if B is a partition of Ω that refines the partition
{B,Bc} and R is B-conglomerable, then
P(f |B)≥ P(P(f |B)|B) [conglomerative property].
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Walley’s imprecise probability models
Conditional previsions

If P(f |B) = P(f |B) =: P(f |B) then P(f |B) is Subject’s fair
price or prevision for f , conditional on B.

It is the fixed amount of utility that I am willing to
exchange the uncertain reward f for, conditional on
the occurrence of B.
Related to de Finetti’s fair prices [6], and to
Huygens’s [7]

,,dit is my so veel weerdt als”.

Corollary

1 infω∈B f (ω)≤ P(f |B);
2 P(λ f +µg|B) = λP(f |B)+µP(g|B);
3 if B is a partition of Ω that refines the partition
{B,Bc} and if there is B-conglomerability, then
P(f |B) = P(P(f |B)|B).
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Reality’s event tree and move spaces

Reality can make a number of moves, where the
possible next moves may depend only on the previous
moves he has made.

We can represent Reality’s moves by an event tree.
In each non-terminal situation t, Reality has a set of
possible next moves

Wt :=
{

w : tw ∈Ω
♦
}
,

called Reality’s move space in situation t.
Wt may be infinite, but has at least two elements.
We assume the event tree has finite horizon.
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An event tree and its situations
Situations are nodes in the event tree

t

ω

initial

terminal

non-terminal
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An event tree and its situations
Situations are nodes in the event tree

t

ω

initial

terminal

non-terminal
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An event tree and its situations
Situations are nodes in the event tree

t

ω

initial

terminal

non-terminal
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An event tree and its situations
The sample space Ω is the set of all terminal situations
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An event tree and its situations
The partial order v on the set Ω♦ of all situations

s

tsv t

s precedes t
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An event tree and its situations
The partial order v on the set Ω♦ of all situations

s

ts@ t

s strictly precedes t
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An event tree and its situations
An event A is a subset of the sample space Ω

s

E(s) = {ω ∈Ω : sv ω}
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An event tree and its situations
Cuts of the initial situation

u3

u2

u1

U
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Reality’s event tree and move spaces

Reality can make a number of moves, where the
possible next moves may depend only on the previous
moves he has made.

We can represent Reality’s moves by an event tree.
In each non-terminal situation t, Reality has a set of
possible next moves

Wt :=
{

w : tw ∈Ω
♦
}
,

called Reality’s move space in situation t.
Wt may be infinite, but has at least two elements.
We assume the event tree has finite horizon.
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Reality’s move space Wt in a non-terminal
situation t

s

sw2w2

sw1

w1

t

tw5
w5

tw4w4

tw3w3

Ws = {w1,w2}
Wt = {w3,w4,w5}
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Coherent immediate prediction
Immediate prediction models

In each non-terminal situation t, Forecaster has beliefs
about which move wt ∈Wt Reality will make immediately
afterwards.

Forecaster specifies those local predictive beliefs in
the form of a coherent set of really desirable
gambles Rt on L (Wt).
This leads to an immediate prediction model

Rt, t ∈Ω
♦ \Ω.

Coherence here means D1–D4.
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Coherent immediate prediction
Immediate prediction models

s

sw2w2

sw1

w1

t

tw5
w5

tw4w4

tw3w3

Rs ⊆L ({w1,w2})
Rt ⊆L ({w3,w4,w5})
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Coherent immediate prediction
From a local to a global model

How to combine the local pieces of information into a
global model, i.e., which gambles f on the entire sample
space Ω does Forecaster accept?

For each non-terminal situation t and each ht ∈Rt,
Forecaster accepts the gamble IE(t)ht on Ω, where

IE(t)ht(ω) :=

{
0 t 6v ω

ht(w) twv ω,w ∈Wt

IE(t)ht represents the gamble on Ω that is called off
unless Reality ends up in situation t, and then
depends only on Reality’s move immediately after t,
and gives the same value ht(w) to all paths ω that
go through tw.



Imprecise probabilities

De Cooman

Imprecise probabilities

Event trees

Immediate prediction

Predictive previsions

Time unbound

Imprecise Markov
chains

Independent natural
extension

Credal nets

CTIr

MePiCTIr

Literature

Coherent immediate prediction
From a local to a global model

So Forecaster accepts all gambles in the set

R :=
{

IE(t)ht : ht ∈Rt, t ∈Ω
♦ \Ω

}
.

Find the natural extension E (R) of R: the smallest
subset of L (Ω) that includes R and is coherent,
i.e., satisfies D1–D4 and cut conglomerability.
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Coherent immediate prediction
Cut conglomerability

We want predictive models, so we will condition on
the E(t), i.e., on the event that we get to situation t.
The E(t) are the only events that we can legitimately
condition on.
The events E(t) form a partition BU of the sample
space Ω iff the situations t belong to a cut U.

Definition
A set of really desirable gambles R on Ω is
cut-conglomerable (D5’) if it is BU-conglomerable for all
cuts U:

(∀u ∈ U)(IE(u)f ∈R)⇒ f ∈R.
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Coherent immediate prediction
Selections and gamble processes

A t-selection S is a process, defined on all
non-terminal situations s that follow t, and such that

S (s) ∈Rs.

It selects, in advance, a really desirable gamble
S (s) from the available really desirable gambles in
each non-terminal sw t.
With a t-selection S , we can associate a
real-valued t-gamble process I S , which is a
t-process such that for all sw t and w ∈Ws,

I S (sw) = I S (s)+S (s)(w), I S (t) = 0.
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Coherent immediate prediction
Selections and gamble processes

t

tw2w2

tw1

w1

Wt = {w1,w2}

I S (t) = 2

w S (t)(w)
w1 +3
w2 −4

I S (tw1) = 2+3 = 5

I S (tw2) = 2−4 =−2
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Coherent immediate prediction
Marginal Extension Theorem

Theorem (Marginal Extension Theorem)
There is a smallest set of gambles that satisfies D1–D4
and D5’ and includes R. This natural extension of R is
given by

E (R) :=
{

g ∈L (Ω) : g≥I S
Ω for some �-selection S

}
.

Moreover, for any non-terminal situation t and any
t-gamble g, it holds that IE(t)g ∈ E (R) if and only if there
is some t-selection St such that g≥I St

Ω
.
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Coherent immediate prediction
Predictive lower and upper previsions

Use the coherent set of really desirable gambles
E (R) to define special lower (and upper) previsions
P(·|t) := P(·|E(t)) conditional on an event E(t).
For any gamble f on Ω and for any non-terminal
situation t,

P(f |t) := sup
{

α : IE(t)(f −α) ∈ E (R)
}

= sup
{

α : f −α ≥I S
Ω for some t-selection S

}
.

We call such conditional lower previsions predictive
lower previsions for Forecaster.
For a cut U of t, define the U-measurable t-gamble
P(f |U) by P(f |U)(ω) := P(f |u), u ∈ U, uv ω.
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Coherent immediate prediction
What about Skeptic’s prices?

Forecaster determines Skeptic’s move spaces St and
gain functions λt as follows:

St = Rt

λt(w,h) =−h(w), where h ∈Rt and w ∈Wt

So Skeptic can take Forecaster up on his
commitments.

This leads to a coherent probability protocol, and
Skeptic’s lower and upper prices turn out to be identical
to Forecaster’s predictive lower and upper previsions.
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Properties of predictive previsions
Concatenation Theorem

Theorem (Concatenation Theorem)
Consider any two cuts U and V of a situation t such that
U precedes V. Then for all t-gambles f on Ω,

1 P(f |t) = P(P(f |U)|t);
2 P(f |U) = P(P(f |V)|U).

We can calculate P(f |t) by backwards recursion, starting
with P(f |ω) = f (ω), and using only the local models:

Ps(g) = sup{α : g−α ∈Rs},

where the non-terminal sw t and g is a gamble on Ws.
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Properties of predictive previsions
Concatenation Theorem

t
u2

u1

U
P(f |ω1) = f (ω1)

P(f |ω2) = f (ω2)

P(f |ω3) = f (ω3)

P(f |ω4) = f (ω4)

P(f |ω5) = f (ω5)

P(f |u1)

P(f |u2)

P(f |t) = P(P(f |U)|t)
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Properties of predictive previsions
Envelope theorems

Consider in each non-terminal situation s a
compatible precise model Ps on L (Ws):

Ps ∈Ms⇔ (∀g ∈L (Ws))(Ps(g)≥ Ps(g))

This leads to collection of compatible probability
trees in the sense of Huygens (and Shafer).
Use the Concatenation Theorem to find the
corresponding precise predictive previsions P(f |t)
for each compatible probability tree.

Theorem (Lower Envelope Theorem)
For all situations t and t-gambles f , P(f |t) is the infimum
(minimum) of the P(f |t) over all compatible probability
trees.
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Considering unbounded time

What if Reality’s event tree no longer has a finite time
horizon:

how to calculate the lower prices/previsions P(f |t)?

The Shafer–Vovk–Ville approach

sup
{

α : f −α ≥ limsupI S for some t-selection S
}
.

Open question(s):
What does natural extension yield in this case, must
coherence be strengthened to yield the
Shafer–Vovk–Ville approach, and if so, how?
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Imprecise Markov chains
Discrete-time and finite state uncertain process

Consider an uncertain process with variables X1, X2, . . . ,
Xn, . . .

Each Xk assumes values in a finite set of states X .
This leads to a standard event tree with situations

s = (x1,x2, . . . ,xn), xk ∈X , n≥ 0

In each situation s there is a local imprecise belief
model Ms: a closed convex set of probability mass
functions p on X .
Associated local lower prevision Ps:

Ps(f ) := min
{

Ep(f ) : p ∈Ms
}

; Ep(f ) := ∑
x∈X

f (x)p(x).
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Imprecise Markov chains
Example of a standard event tree

a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

X 1

X 2
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Imprecise Markov chains
Precise Markov chain

The uncertain process is a (stationary) precise Markov
chain when all Ms are singletons (precise), and

M� = {m1},
Markov Condition:

M(x1,...,xn) = {q(·|xn)}.
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Imprecise Markov chains
Probability tree for a precise Markov chain

a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

m1

q(·|a)

q(·|b)

q(·|a)

q(·|b)

q(·|a)

q(·|b)
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Imprecise Markov chains
Definition of an imprecise Markov chain

The uncertain process is a (stationary) imprecise
Markov chain when the Markov Condition is satisfied:

M(x1,...,xn) = Q(·|xn).

An imprecise Markov chain can be seen as an infinity of
probability trees.
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Imprecise Markov chains
Probability tree for an imprecise Markov chain

a

(a,a)
(a,a,a)

(a,a,b)

(a,b)
(a,b,a)

(a,b,b)

b

(b,a)
(b,a,a)

(b,a,b)

(b,b)
(b,b,a)

(b,b,b)

M1

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)
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Imprecise Markov chains
Lower and upper transition operators

T: L (X )→L (X ) and T: L (X )→L (X )

where for any gamble f on X :

Tf (x) := min
{

Ep(f ) : p ∈Q(·|x)
}

Tf (x) := max
{

Ep(f ) : p ∈Q(·|x)
}

Then the Concatenation Formula yields:

Pn(f ) = P1(Tn−1f ) and Pn(f ) = P1(Tn−1f ).

Complexity is linear in the number of time steps!
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Imprecise Markov chains
An example with lower and upper mass functions

[
TI{{a}} TI{{b}} TI{{c}}

]
=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)


=

1
200

 9 9 162
144 18 18

9 162 9



[
TI{{a}} TI{{b}} TI{{c}}

]
=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)


=

1
200

 19 19 172
154 28 28
19 172 19
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Imprecise Markov chains
An example with lower and upper mass functions

n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

n = 9 n = 10 n = 22 n = 1000
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Imprecise Markov chains
A Perron–Frobenius Theorem

Theorem ([4])
Consider a stationary imprecise Markov chain with finite
state set X and an upper transition operator T.
Suppose that T is regular, meaning that there is some
n > 0 such that minTnI{{x}} > 0 for all x ∈X . Then for
every initial upper prevision P1, the upper prevision
Pn = P1 ◦Tn−1 for the state at time n converges
point-wise to the same upper prevision P∞:

lim
n→∞

Pn(h) = lim
n→∞

P1(Tn−1h) := P∞(h)

for all h in L (X ). Moreover, the corresponding limit
upper prevision E∞ is the only T-invariant upper
prevision on L (X ), meaning that P∞ = P∞ ◦T.
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Independent product

Consider a number of variables Xn assuming values in a
finite set Xn, n ∈ N.

For each subset I of N, we consider the tuple XI with
components Xi, i ∈ I assuming values in

XI =×i∈IXi.

For each variable Xn, we have a coherent marginal lower
prevision:

Pn : L (Xn)→ R
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Independent product

Our aim: an independent product
We want to combine these marginal lower previsions Pn
into a joint lower prevision (product) for XN

PN : L (XN)→ R

that models that the variables Xn, n ∈ N are independent.
We want to extend Walley’s (1991, Chapter 9)
discussion of the case of two variables to the case of
any finite number of variables.
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What does this independence mean?

Consider any disjoint O and I ⊆ N.

Then XI is epistemically irrelevant to XO.

This irrelevance assessment allows us to infer a
conditional lower prevision PO(·|XI) from the joint PN :

PO(f |XI) = PN(f ) for all f ∈L (XO).

So making the independence assessment allows us to
infer from any joint lower previsions PN a family of
conditional lower previsions:

I (PN) = {PO(·|XI) : O, I ⊆ N,O∩ I = /0}.
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Definition of an independent product

Definition
A joint lower prevision PN is called an independent
product of its marginals Pn, n ∈ N if it is coherent with the
family of conditional lower previsions I (PN).

– do such independent products always exist?
– are they unique?

They are guaranteed to exist, and to be unique, for
precise marginals Pn: their usual independent product

×n∈NPn.

Definition
If it exists, then the point-wise smallest independent
product of the marginals Pn is called their independent
natural extension and denoted by ⊗n∈NPn.
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Factorising joint lower previsions

The independent product EN =×n∈NPn of precise
marginals Pn is factorising in the sense that:

EN(∏
n∈N

fn(Xn)) = ∏
n∈N

Pn(fn(Xn))

Definition
A coherent joint lower prevision PN is called factorising if
for all disjoint subsets I,O⊆ N, all non-negative
fI ∈L (XI) and all fO ∈L (XO):

PN(fOfI) = PN(PN(fO)fI) =

{
PN(fO)PN(fI) if PN(fO)≥ 0
PN(fO)PN(fI) if PN(fO)≤ 0
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Important theorem

Theorem
If a coherent joint lower prevision PN is factorising, then it
is an independent product of its marginals.

In other words, if PN is factorising, then it is coherent
with the family of conditional lower previsions I (PN).

Not necessarily the other way around!
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Strong product

Consider the marginals Pn and the corresponding sets of
dominating linear previsions M (Pn).

Consider the set of joint linear previsions:

{×n∈NPn : Pn ∈M (Pn),n ∈ N}

Then the strong product SN =×n∈NPn of the marginals Pn
is the lower envelope of this set of independent products.

Theorem
For any coherent marginal lower previsions Pn, n ∈ N,
their strong product ⊗n∈NPn is factorising, and therefore
an independent product of these marginals.
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Independent natural extension

Consider any coherent marginal lower previsions Pn,
n ∈ N.

1 The independent natural extension ⊗n∈NPn exists,
and is factorising.

2 For any non-empty subset R of N, ⊗r∈RPr is the
XR-marginal for ⊗n∈NPs.

3 For any partition R,S of N:

⊗n∈NPn = (⊗r∈RPr)⊗ (⊗s∈SPn).

(⊗n∈NPn)(f )= sup
hn∈L (XN)

n∈N

inf
zN∈XN

[
f (zN)−∑

n∈N
[hn(zN)−Pn(hn(·,z{n}c))]

]
.
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Credal trees

X1

X2

X3 X4

X5

X6

X7

X8 X9

X10 X11
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Credal trees
Local uncertainty models

Xm(i)

Xj . . . Xi . . . Xk

the variable Xi may assume a value in the finite set
Xi;
for each possible value xm(i) ∈Xm(i) of the mother
variable Xm(i), we have a conditional lower prevision
Pi(·|xm(i)) : L (Xi)→ R:

Pi(f |xm(i)) = lower prevision of f (Xi), given that
Xm(i) = xm(i)

local model Pi(·|Xm(i)) is a conditional lower
prevision operator
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Credal trees under epistemic irrelevance
Definition

Interpretation of graphical structure:
Conditional on the mother variable, the non-parent
non-descendants of each node variable are
epistemically irrelevant to it and its descendants.

X1

X2

X3 X4

X5

X6

X7

X8 X9

X10 X11
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Credal trees under epistemic irrelevance
Example

X1 X2

X3

X4

X1 is epistemically irrelevant to X3, conditional on X2

X3 need not be epistemically irrelevant to X1,
conditional on X2.

Conclusion
X1 and X3 need not be epistemically independent,
conditional on X2.
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Credal trees under epistemic irrelevance
Example

X1 X2

X3

X4

X3 is epistemically irrelevant to X4, conditional on X2

X4 is epistemically irrelevant to X3, conditional on X2.

Conclusion
X3 and X4 are epistemically independent, conditional on
X2.
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Credal networks under epistemic irrelevance
As an expert system

When the credal network is a (Markov) tree we can find
the joint model from the local models recursively, from
leaves to root.

Exact message passing algorithm

– credal tree treated as an expert system
– linear complexity in the number of nodes

Python code

– written by Filip Hermans
– testing in cooperation with Marco Zaffalon and

Alessandro Antonucci

Current (toy) applications in HMMs

– character recognition [3]
– air traffic trajectory tracking and identification [1]
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Example of application
HMMs: character recognition for Dante’s Divina Commedia

Original text:

OCR output:

. . .

. . .

V

V

S1

I

S2

T

S3

A

O1

I

O2

T

O3

O



Imprecise probabilities

De Cooman

Imprecise probabilities

Event trees

Immediate prediction

Predictive previsions

Time unbound

Imprecise Markov
chains

Independent natural
extension

Credal nets

CTIr

MePiCTIr

Literature

Example of application
HMMs: character recognition for Dante’s Divina Commedia

Accuracy 93.96% (7275/7743)
Accuracy (if imprecise indeterminate) 64.97% (243/374)
Determinacy 95.17% (7369/7743)
Set-accuracy 93.58% (350/374)
Single accuracy 95.43% (7032/7369)
Indeterminate output size 2.97 over 21

Table: Precise vs. imprecise HMMs. Test results obtained by
twofold cross-validation on the first two chants of Dante’s
Divina Commedia and n = 2. Quantification is achieved by IDM
with s = 2 and modified Perks’ prior. The single-character
output by the precise model is then guaranteed to be included
in the set of characters the imprecise HMM identifies.
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Œuvres complètes de Christiaan Huygens.
Martinus Nijhoff, Den Haag, 1888–1950.
Twenty-two volumes. Available in digitised form from
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