Imprecise Measurement Error Models – Towards a More Reliable Analysis of Messy Data

Thomas Augustin

Department of Statistics, Ludwig-Maximilians Universität (LMU) Munich, Germany

22 June 2010 1

Sketch of the Argument

- Omnipresence of measurement error
- Severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency

- The underlying assumptions are very restrictive, and rarely satisfied in social surveys
- Relax assumptions: imprecise measurement error model

construct unbiased sets of estimating functions \to zero expectation for one element of the credal set \to credal consistency

Outline

1. Measurement Error

2. Measurement Error Correction based on Precise Error Models

- 2.1 Classical Measurement Error Modelling
- 2.2 Unbiased Estimating Equations and Corrected Score Functions for Classical Measurement Error

3. Overcoming the Dogma of Precision in Deficiency Models

- 3.1 Credal Deficiency Models as Imprecise Measurement Error Models
- 3.2 Credal Consistency of Set-Valued Estimators
- 3.3 Minimal and Complete Sets of Unbiased Estimating Functions under Imprecise Measurement Error Models

1. Measurement Error

1. Measurement Error

Applied Statistics (statistical modelling): Learning from data by sophisticated models

Complex relationships between variables

Often the relationship between variables and data is complex, too:

- * Often variables of interest (gold standard) are not ascertainable.
- * Only proxy variables (surrogates) are available instead.

* -Notation (here)

X, Z: (unobservable) variable, gold standard X^*, Z^* : corresponding possibly incorrect measurements analogously: Y, Y^* and T, T^*

Typical examples: Measurement Error

- Error-prone measurements of true quantities
 - * error in technical devices
 - * indirect measurement
 - * response effects
 - * use of aggregated quantities, averaged values, imputation, rough estimates etc.
 - * anonymization of data by deliberate contamination
- Measured indicators of complex constructs; latent variables
 - * long term quantities: long term protein intake, long term blood pressure
 - * permanent income
 - * importance of a patent
 - * extent of motivation, degree of costumer satisfaction
 - * severeness of undernutrition

Note:

- 'Measurement error' and 'misclassification' are not just a matter of sloppiness.
- Latent variables are eo ipso not exactly measurable.
- "Almost all economic variables are measured with error. [...] Unfortunately, the statistical consequences of errors in explanatory variables are severe." (Davidson and Mackinnon (1993), Estimation and Inference in Econometrics.)
- In nonlinear models, the later statement may apply (!?) to the dependent variable, too. (Dependence on the DGP: Torelli & Trivellato (1993, J. Econometrics))

The triple whammy effect of measurement error Carroll, Ruppert, Stefanski, Crainiceanu (2006, Chap.H.)

- bias
- masking of features
- loss of power

• classical error: "attenuation "

Results

Figure 1: Effect of additive measurement error on linear regression

2. Measurement Error Correction based on Precise Error Models

2.1. Classical Measurement Error Modelling

Terminology

The Classical Model of Testing Theory

Assumptions on the distribution

$$\begin{array}{lll} \mathbb{E}(\boldsymbol{U_i}) & = & 0 & [A1.1] \\ Var(\boldsymbol{U_i}) & = & \sigma_i^2 \ (\equiv \sigma) & [A1.2] \\ \boldsymbol{U_i} & \sim & N(0, \sigma^2) & [A1.3] \end{array}$$

Independence Assumptions " \perp " (Uncorrelatedness)

2.2 Unbiased Estimating Equations and

Corrected Score Functions for Classical Measurement Error

Full Bayes-Inference in Flexible Models

- Sample latent variables in a hierarchial setting: MCMC; graphical modelling
- Berry, Carroll & Ruppert (2002, JASA).
- Kneib, Brezger & Crainiceanu (2010, Fahrmeir Fest.)
- Rummel, Augustin & Küechenhoff (2010, Biometrics)

The Basic Idea: Estimating Functions

• Idea: Do not investigate estimators directly but the equations producing estimators

estimator = root(function(ObservedData, Parameter))

- Estimator is not systematically biased when
 - * in the average this was the right decision,
 - * i.e. when the true value is indeed the root of the expected value of the function

• Frame the problem in terms of *unbiased estimating functions* (score functions) for the parameter ϑ

 $s^{\mathbf{X}}(\mathbf{Y}; \mathbf{X}; \vartheta)$ such that $\mathbb{E}_{\vartheta}(s^{\mathbf{X}}(\mathbf{Y}; \mathbf{X}; \vartheta)) = 0$

at the true parameter value ϑ

- Concept contains as special cases
 - * maximum likelihood estimators
 - * least squares estimators in linear regression
 - * quasi-likelihood estimators (McCullagh, 1981, Ann. Stat.; 1990, Cox Fest.)
 - * M-estimators (Huber, 1981, Wiley);
 - * Godambe (1991, Oxford UP).
 - * GMM-estimators (Wansbeek & Meijer, 2000, Elsevier)
- Under mild regularity conditions still
 - * consistency
 - * and asymptotic normality.

• For the moment classical covariate measurement error only

$$X_i^* = X_i + U_i, \quad X_i \perp U_i.$$

- Note that typically, even if $\mathbb{E}(X^*) = \mathbb{E}(X)$ then $\mathbb{E}((X^*)^r) \neq \mathbb{E}(X^r), r > 1.$
- Therefore *naive estimation* by simply replacing X with X^* , leads in general to

$$\mathbb{E}_{\vartheta}\left(s^{\mathbf{X}}\left(\mathbf{Y};\mathbf{X}^{*};\vartheta\right)\right) \ge a > 0,$$

resulting in inconsistent estimators. For instance,

$$\mathbb{E}\left(\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \beta_{1} \cdot X_{i}^{*}\right) \left(\begin{array}{c}1\\X_{i}^{*}\end{array}\right)\right) \neq \mathbb{E}\left(\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \beta_{1} \cdot X_{i}\right) \left(\begin{array}{c}1\\X_{i}\end{array}\right)\right) = 0$$

• Measurement error correction: Find an estimating function $s^{X^*}(\mathbf{Y}, \mathbf{X}^*, \vartheta)$ in the error prone data with

$$\mathbb{E}_{\vartheta}s^{X^*}(\mathbf{Y};\mathbf{X}^*;\vartheta) = \mathbf{0}.$$

22 June 2010 22

The technical argument condensed: on the construction of unbiased estimating equations under measurement error

- ϑ true parameter value
- Ideal estimating function: $\psi^{X,Y}(\mathbf{X},\mathbf{Y},\vartheta)$
- Naive estimating function: $\psi^{sic! X, Y}(\mathbf{X}^*, \mathbf{Y}^*, \vartheta)$
- Find $\psi^{X^*,Y^*}(\mathbf{X}^*,\mathbf{Y}^*,\vartheta)$ such that

$$\mathbb{E}_{\vartheta}\left(\psi^{X^*,Y^*}(\mathbf{X}^*,\mathbf{Y}^*,\vartheta)\right) \stackrel{!}{=} 0 \qquad (*)$$

- Idea: use the ideal score function as a building block!
- Try $\psi^{X^*,Y^*}(\mathbf{X}^*,\mathbf{Y}^*,\vartheta) = f(\psi^{X,Y}(\mathbf{X}^*,\mathbf{Y}^*,\vartheta))$ for some appropriate $f(\cdot)$

- In general, $\psi^{X^*,Y^*}(\cdot)$, i.e. $f(\cdot)$, can not be determined directly.
- Note that, since $\mathbb{E}_{\vartheta}\left(\psi^{X,Y}\right)(X,Y,\vartheta) = 0$, (*) is equivalent to

$$\mathbb{E}_{\vartheta}\left(\psi^{X^*,Y^*}(\mathbf{X}^*,\mathbf{Y}^*,\vartheta)\right) = \mathbb{E}_{\vartheta}\left(\psi^{X,Y}(\mathbf{X},\mathbf{Y}^*,\vartheta)\right)$$

- Look at the expected difference between $\psi^{X^*,Y^*}(\cdot)$ and $\psi^{X,Y}(\cdot)$.
- Try to break $\psi^{X,Y}(\mathbf{X},\mathbf{Y},\vartheta)$ into "additive pieces", and handle it piece by piece

• Typically, $\psi(\cdot)$ has the form $\psi(X, Y, \vartheta) = \frac{1}{n} \sum_{i=1}^{n} \psi_i(X_i, Y_i, \vartheta)$, and there are representations such that, for $i = 1, \ldots, n$,

$$\psi_i(X_i, Y_i, \vartheta) = \sum_{j=1}^s g_j(X_i, Y_i, \vartheta).$$

• Then try to find $f_1(\cdot),\ldots,f_s(\cdot)$ such that

$$\mathbb{E}_{\vartheta}\left(f_j(g_j(X_i^*, \mathbf{Y}_i^*, \vartheta))\right) = \mathbb{E}_{\vartheta}\left(g_j(X_i, \mathbf{Y}_i, \vartheta)\right) \quad (**)$$

(conditionally/locally) corrected score functions (for covariate measurement error: Nakamura (1990, Biometrika), Stefanski (1989, Comm. Stat. Theory Meth.))

Try to find $f_1(\cdot), \ldots, f_s(\cdot)$ such that

 $\mathbb{E}\vartheta\left(f_j(g_j(X_i^*, \mathbf{Y}_i^*, \vartheta))|X_i, \mathbf{Y}_i\right) = g_j(X_i, \mathbf{Y}_i, \vartheta) \quad (**),$

then the law of iterated expectation leads to (**).

• Sometimes indirect proceeding: (globally or locally) corrected log-likelihood $l^{X^*}(\mathbf{Y}, \mathbf{X}, \vartheta)$ with

$$\mathbb{E}(l^{X^*}(\mathbf{Y}, \mathbf{X}^*, \vartheta) | \mathbf{X}, \mathbf{Y}) = l^X(\mathbf{Y}, \mathbf{X}, \vartheta).$$

or

$$\mathbb{E}\left(\mathbf{l}^{X^*}(\mathbf{Y},\mathbf{X}^*,\vartheta)\right) = \mathbb{E}\left(\mathbf{l}^X(\mathbf{Y},\mathbf{X},\vartheta)\right).$$

- Same techniques as before
 - * piece by piece
 - * globally or locally
- Under mild regularity conditions unbiased estimating function by taking the derivative with respect to ϑ .

- + Functional method: no (unjustified !?) assumptions on the distr. of X
- + Successful for generalized linear models, polynomial regression, etc. (Survey: Schneeweiß & Augustin, 2006, ASTA; Hübler & Frohn (eds.); Cox model: Augustin (2004, Scand. J. Stat.))
- Numerical difficulties for small samples
- Handling of transformations (e.g. $\ln X$) complicated or impossible
- Non-existence of corrected score functions for some models
- + Extensions to misclassification (Akazawa, Kinukawa, Nakamura, 1998, J. Jap. Stat. Soc.; Zucker, Spiegelman, 2008, Stat. Med.)
- + Quite general error distribution can often be handled (only existing moment generating function needed); this includes deliberate contamination for privacy protection (Bleninger & Augustin)
- + Extension to dependent variable \Rightarrow unified understanding of censoring and measurement error (Pötter & Augustin)
- + Extension to Berkson Error (Wallner & Augustin)
- + Extension to rounding (Felderer, Müller, Schneeweiß, Wiencierz & Augustin)

3. Overcoming the Dogma of Precision in Deficiency Models

3.1 Credal Deficiency Model as Imprecise Measurement Error Models

Manski's Law of Decreasing Credibility

Reliability !? Credibility ?

"The credibility of inference decreases with the strength of the assumptions maintained." (Manski (2003, p. 1))

Manski's Law of Decreasing Credibility

Reliability !? Credibility ?

"The credibility of inference decreases with the strength of the assumptions maintained." (Manski (2003, p. 1))

Identifying assumptions in measurement error models Very strong assumptions needed to ensure identifiability = precise solution

- Measurement error model must be known precisely
 - type of error, in particular assumptions on (conditional) independence
 - independence of true value
 - independence of other covariates
 - independence of other measurements
 - type of error distribution
 - moments of error distribution
- validation studies typically not available

Reliable Inference Instead of Overprecision!

- Make more "realistic" assumption and let the data speak for themselves!
- Consider the *set* of *all* models that maybe compatible with the data (and then add successively additional assumptions, if desirable)
- The results may be imprecise, but are more reliable for sure

• The extent of imprecision is related to the data quality!

- As a welcome by-product: clarification of the implication of certain assumptions
- parallel developments (missing data; transfer to measurement error context!)
 - * economics: *partial identification:* e.g., Manski (2003, Springer)
 - * biometrics: *systematic sensitiviy analysis:* e.g., Vansteelandt, Goetghebeur, Kenword, Molenberghs (2006, Stat. Sinica)
- current developments, e.g.,
 - * Cheng, Small (2006, JRSSB)
 - * Henmi, Copas, Eguchi (2007, Biometrics)
 - * Stoye (2009, Econometrica)
 - * Gustafson & Greenland (2009, Stat. Science)
- Kleyer (2009, MSc.); Kunz, Augustin, Küchenhoff (2010, TR)

Credal Deficiency Models

Different types of deficiency can be expressed

- Measurement error problems
- Misclassification
- If $\mathcal{Y}^* \subseteq \mathcal{P}(\mathcal{Y}) \times \{0,1\}$: coarsening, rounding, censoring, missing data
- Outliers

credal set: convex set of traditional probability distributions

$$\begin{array}{lcl} [Y|X,\vartheta] &\in \mathcal{P}_{Y|X,\vartheta} \\ [Y^*|X,Y] &\in \mathcal{P}_{Y^*|X,Y} & \text{or} & [Y|X,Y] \in P_{Y|Y^*,X} \\ [X^*|X,Y] &\in \mathcal{P}_{X^*|X,Y} & \text{or} & [X|X^*,Y] \in P_{X|X^*,Y} \end{array}$$

Credal Estimation

- Natural idea: sets of traditional models \longrightarrow sets of traditional estimators
- Construct estimators $\widehat{\Theta} \subseteq \mathbb{R}^p$, i.e. set of plausible parameter values, appropriately reflecting the ambiguity (non-stochastic uncertainty, ignorance) in the credal set \mathcal{P} .
- $\widehat{\Theta}$ "small" if and only if (!) \mathcal{P} is "small"
 - * Usual point estimator as the border case of precise probabilistic information
 - * Connection to Manski's (2003) *identification regions* and Vansteelandt, Goetghebeur, Kenward & Molenberghs (Stat Sinica, 2006) *ignorance regions*.
- Construction of unbiased sets of estimating functions
- Credal consistency

3.2 Credal Consistency

• $(\widehat{\Theta}^{(n)})_{n \in \mathbb{N}} \subseteq \mathbb{R}^p$ is called *credally consistent* (with respect to the credal set \mathcal{P}_{ϑ}) if $\forall \vartheta \in \Theta$:

$$\forall p \in \mathcal{P}_{\vartheta} \exists \left(\hat{\vartheta}_{p}^{(n)}\right)_{n \in \mathbb{N}} \in \left(\widehat{\Theta}^{(n)}\right)_{n \in \mathbb{N}} : \underset{n \to \infty}{\operatorname{plim}} \hat{\vartheta}_{p}^{(n)} = \vartheta.$$

3.3 Construction of Credally Consistent Estimators

- Transfer the framework of unbiased estimating functions
- A set Ψ of estimating functions is called
 - * *unbiased* (with respect to the credal set \mathcal{P}_{ϑ}) if for all ϑ :

$$\forall \psi \in \Psi \; \exists p_{\psi,\vartheta} \in \mathcal{P}_{\vartheta} : \; \mathbb{E}_{p_{\psi,\vartheta}}(\Psi) = 0$$

* *complete* (with respect to the credal set \mathcal{P}_{ϑ}) if for all ϑ :

$$\forall p \in \mathcal{P}_{\vartheta} \; \exists \psi_{p,\vartheta} \in \Psi : \; \mathbb{E}_p(\psi_{p,\vartheta}) = 0.$$

• A complete and unbiased set ψ of estimating functions is called *minimal* if there is no complete and unbiased set of estimating functions $\tilde{\Psi} \subset \Psi$.

Construction of Minimal Consistent Estimators

Define for some set Ψ of estimating functions

$$\widehat{\Theta}_{\Psi} = \left\{ \left. \hat{\vartheta} \right| \hat{\vartheta} \text{ is root of } \psi, \, \psi \in \Psi \right\}.$$

Under the usual regularity conditions (in particular unique root for every ψ)

• Ψ unbiased and complete $\Rightarrow \widehat{\Theta}_{\Psi}$ credally consistent

3.4 Examples

• Imprecise sampling model: neighborhood model $\mathcal{P}_{Y|X,\vartheta}$ around some ideal central distribution $p_{Y|X,\vartheta}$ Let ψ be an unbiased estimation function for $p_{Y|X,\vartheta}$. Then (if well

defined)

$$\Psi = \left\{ \psi^* | \psi^* = \psi - \mathbb{E}_p(\psi), \, p \in \mathcal{P}_{Y|X,\vartheta} \right\}$$

is unbiased and complete.

- Imprecise measurement error model, e.g. $\mathcal{P}_{X^*|X,Y}$: $\Psi = \{\psi | \psi \text{ is corrected score function for some } p \in \mathcal{P}_{X^*|X,Y}\}$ is unbiased and complete.
- Construction of confidence regeions:
 - * union of traditional confidence regions
 - * can often be improved (Vansteelandt, Goetghebeur, Kenward & Molenberghs (Stat Sinica, 2006), Stoye (2009, Econometrica)).

Sketch of the Argument

- Omnipresence of measurement error
- Severe bias in statistical analysis when neglecting it
- Powerful correction methods based on the "classical model of testing theory"

construct unbiased estimating functions \rightarrow zero expectation \rightarrow consistency

- The underlying assumptions are very restrictive, and rarely satisfied in social surveys
- Relax assumptions: imprecise measurement error model

construct unbiased sets of estimating functions \to zero expectation for one element of the credal set \to credal consistency

Thomas Augustin, LMU Munich

22 June 2010 40

[Y|X; artheta]