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Sketch of the Argument

• Omnipresence of measurement error

• Severe bias in statistical analysis when neglecting it

• Powerful correction methods based on the “classical model of testing
theory”

construct unbiased estimating functions → zero expectation → con-
sistency

• The underlying assumptions are very restrictive, and rarely satisfied in
social surveys

• Relax assumptions: imprecise measurement error model

construct unbiased sets of estimating functions → zero expectation
for one element of the credal set → credal consistency
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1. Measurement Error
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1. Measurement Error

Applied Statistics (statistical modelling): Learning from data by sophisti-
cated models

Complex relationships between variables

dependent
variable Yi

� effects �
independent
variable Xi

? ?

? ?

6

data - inference � data
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Often the relationship between variables and data is complex, too:

* Often variables of interest (gold standard) are not ascertainable.

* Only proxy variables (surrogates) are available instead.
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dependent
variable Yi

� effects �
independent
variable Xi

? ?

? ?

6

data - inference � data

error model error model

proxy variable Y ∗i proxy variable X∗i

* -Notation (here)
X,Z : (unobservable) variable, gold standard
X∗, Z∗: corresponding possibly incorrect measurements
analogously: Y , Y ∗ and T , T ∗
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Typical examples: Measurement Error

• Error-prone measurements of true quantities

* error in technical devices
* indirect measurement
* response effects
* use of aggregated quantities, averaged values, imputation, rough

estimates etc.
* anonymization of data by deliberate contamination

• Measured indicators of complex constructs; latent variables

* long term quantities: long term protein intake, long term blood
pressure

* permanent income
* importance of a patent
* extent of motivation, degree of costumer satisfaction
* severeness of undernutrition
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Note:

• ’Measurement error’ and ’misclassification’ are not just a matter of
sloppiness.

• Latent variables are eo ipso not exactly measurable.

• “Almost all economic variables are measured with error. [...]
Unfortunately, the statistical consequences of errors in explanatory
variables are severe.”
(Davidson and Mackinnon (1993),
Estimation and Inference in Econometrics.)

• In nonlinear models, the later statement may apply (!?) to the dependent
variable, too. (Dependence on the DGP: Torelli & Trivellato (1993, J.
Econometrics))
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The triple whammy effect of measurement error
Carroll, Ruppert, Stefanski, Crainiceanu (2006, Chap.H.)

– bias

– masking of features

– loss of power

• classical error: ”attenuation ”
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2. Measurement Error Correction
based on Precise Error Models
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2.1. Classical Measurement Error Modelling

Terminology

continuous variables discrete variables
↓ ↓

measurement error misclassification
↓ ↓

error Ui
↙ ↓ ↘ ↘ ↙

classical Berkson Rounding Anonymization
meas. error error Heaping Techniques
Xi ⊥ Ui X∗i ⊥ Ui
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The Classical Model of Testing Theory

Measurement = True Value + Error

X∗i [j] = Xi[j] + Ui[j] , i = 1, . . . , n, j = 1, . . . , p

Assumptions on the distribution

E(Ui) = 0 [A1.1]
V ar(Ui) = σ2

i (≡ σ) [A1.2]
Ui ∼ N(0, σ2) [A1.3]

Independence Assumptions “⊥” (Uncorrelatedness)

Ui[j] ⊥ Xi[j] [A2.1]
Ui1[j] ⊥ Ui2[j] i1 6= i2 [A2.2]
Ui[j1] ⊥ Ui[j2] j1 6= j2 [A2.3]
Ui1[j1] ⊥ Xi2[j2] i1 6= i2; j1 6= j2 [A2.4]
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2.2 Unbiased Estimating
Equations and

Corrected Score Functions
for Classical Measurement Error
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Full Bayes-Inference in Flexible Models

• Sample latent variables in a hierarchial setting: MCMC; graphical mod-
elling

• Berry, Carroll & Ruppert (2002, JASA).

• Kneib, Brezger & Crainiceanu (2010, Fahrmeir Fest.)

• Rummel, Augustin & Küechenhoff (2010, Biometrics)
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The Basic Idea: Estimating Functions

• Idea: Do not investigate estimators directly but the equations producing
estimators

estimator = root(function(ObservedData, Parameter))

• Estimator is not systematically biased when

* in the average this was the right decision,
* i.e. when the true value is indeed the root of the expected value of

the function
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• Frame the problem in terms of unbiased estimating functions (score
functions) for the parameter ϑ

sX(Y;X;ϑ) such that Eϑ(sX(Y;X;ϑ)) = 0

at the true parameter value ϑ

• Concept contains as special cases

* maximum likelihood estimators
* least squares estimators in linear regression
* quasi-likelihood estimators (McCullagh, 1981, Ann. Stat.; 1990, Cox

Fest.)
* M-estimators (Huber, 1981, Wiley) ;
* Godambe (1991, Oxford UP).
* GMM-estimators (Wansbeek & Meijer, 2000, Elsevier)

• Under mild regularity conditions still

* consistency
* and asymptotic normality.
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• For the moment classical covariate measurement error only

X∗i = Xi + Ui , Xi ⊥ Ui .

• Note that typically, even if E(X∗) = E(X)
then E((X∗)r) 6= E(Xr), r > 1.

• Therefore naive estimation by simply replacing X with X∗, leads in
general to ∣∣Eϑ (sX (Y;X∗;ϑ)

)∣∣ ≥ a > 0 ,

resulting in inconsistent estimators. For instance,

E

(
n∑
i=1

(yi − β0 − β1 ·X∗i )

(
1
Xi
∗

))
6= E

(
n∑
i=1

(yi − β0 − β1 ·Xi)

(
1
Xi

))
=0

• Measurement error correction: Find an estimating function sX
∗
(Y,X∗, ϑ)

in the error prone data with

EϑsX
∗
(Y;X∗;ϑ) = 0.
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The technical argument condensed:

on the construction of unbiased estimating equations
under measurement error

• ϑ true parameter value

• Ideal estimating function: ψX,Y (X,Y, ϑ)

• Naive estimating function: ψsic! X,Y (X∗,Y∗, ϑ)

• Find ψX
∗,Y ∗(X∗,Y∗, ϑ) such that

Eϑ
(
ψX

∗,Y ∗(X∗,Y∗, ϑ)
)

!
= 0 (∗)

• Idea: use the ideal score function as a building block!

• Try ψX
∗,Y ∗(X∗,Y∗, ϑ) = f(ψX,Y (X∗,Y∗, ϑ)) for some appropriate f(·)
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• In general, ψ
X∗,Y ∗(·), i.e. f(·), can not be determined directly.

• Note that, since Eϑ
(
ψX,Y )(X,Y, ϑ)

)
= 0, (∗) is equivalent to

Eϑ
(
ψX

∗,Y ∗(X∗,Y∗, ϑ)
)

= Eϑ
(
ψX,Y (X,Y∗, ϑ)

)
• Look at the expected difference between ψX

∗,Y ∗(·) and ψX,Y (·).

• Try to break ψX,Y (X,Y, ϑ) into
”
additive pieces“, and handle it piece

by piece
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• Typically, ψ(·) has the form ψ(X,Y, ϑ) = 1
n

∑n
i=1ψi(Xi, Yi, ϑ), and

there are representations such that, for i = 1, . . . , n,

ψi(Xi, Yi, ϑ) =

s∑
j=1

gj(Xi, Yi, ϑ).

• Then try to find f1(·), . . . , fs(·) such that

Eϑ (fj(gj(X
∗
i ,Y

∗
i , ϑ))) = Eϑ (gj(Xi,Yi, ϑ)) (∗∗)

• (conditionally/locally) corrected score functions (for covariate measure-
ment error: Nakamura (1990, Biometrika), Stefanski (1989, Comm.
Stat. Theory Meth.))

Try to find f1(·), . . . , fs(·) such that

Eϑ (fj(gj(X
∗
i ,Y

∗
i , ϑ))|Xi,Yi) = gj(Xi,Yi, ϑ) (∗∗),

then the law of iterated expectation leads to (**).
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• Sometimes indirect proceeding: (globally or locally) corrected log-
likelihood lX

∗
(Y,X, ϑ) with

E(lX
∗
(Y,X∗, ϑ)|X,Y) = lX(Y,X, ϑ).

or
E
(

lX
∗
(Y,X∗, ϑ)

)
= E

(
lX(Y,X, ϑ)

)
.

• Same techniques as before

* piece by piece
* globally or locally

• Under mild regularity conditions unbiased estimating function by taking
the derivative with respect to ϑ.
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+ Functional method: no (unjustified !?) assumptions on the distr. of X

+ Successful for generalized linear models, polynomial regression, etc.
(Survey: Schneeweiß & Augustin, 2006, ASTA; Hübler & Frohn (eds.);
Cox model: Augustin (2004, Scand. J. Stat.))

– Numerical difficulties for small samples

– Handling of transformations (e.g. lnX) complicated or impossible

– Non-existence of corrected score functions for some models

+ Extensions to misclassification (Akazawa, Kinukawa, Nakamura, 1998,
J. Jap. Stat. Soc.; Zucker, Spiegelman, 2008, Stat. Med.)

+ Quite general error distribution can often be handled (only existing mo-
ment generating function needed); this includes deliberate contamination
for privacy protection (Bleninger & Augustin )

+ Extension to dependent variable ⇒ unified understanding of censoring
and measurement error (Pötter & Augustin)

+ Extension to Berkson Error (Wallner & Augustin)

+ Extension to rounding (Felderer, Müller, Schneeweiß, Wiencierz & Au-
gustin)
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3. Overcoming the Dogma of

Precision in Deficiency Models
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3.1 Credal Deficiency Model as Imprecise Measurement
Error Models
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

”The credibility of inference decreases with the strength of the as-
sumptions maintained.” (Manski (2003, p. 1))
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

”The credibility of inference decreases with the strength of the as-
sumptions maintained.” (Manski (2003, p. 1))

Identifying assumptions in measurement error models Very strong
assumptions needed to ensure identifiability = precise solution

• Measurement error model must be known precisely

- type of error, in particular assumptions on (conditional) independence
- independence of true value
- independence of other covariates
- independence of other measurements

- type of error distribution
- moments of error distribution

• validation studies typically not available
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Reliable Inference Instead of Overprecision!
• Make more

”
realistic“ assumption and let the data speak for themselves!

• Consider the set of all models that maybe compatible with the data
(and then add successively additional assumptions, if desirable)

• The results may be imprecise, but are more reliable for sure

• The extent of imprecision is related to the data quality!

• As a welcome by-product: clarification of the implication of certain
assumptions

• parallel developments (missing data; transfer to measurement error con-
text!)
* economics: partial identification: e.g., Manski (2003, Springer)
* biometrics: systematic sensitiviy analysis: e.g., Vansteelandt, Goet-

ghebeur, Kenword, Molenberghs (2006, Stat. Sinica)

• current developments, e.g.,
* Cheng, Small (2006, JRSSB)
* Henmi, Copas, Eguchi (2007, Biometrics)
* Stoye (2009, Econometrica)
* Gustafson & Greenland (2009, Stat. Science)

• Kleyer (2009, MSc.); Kunz, Augustin, Küchenhoff (2010, TR)
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Credal Deficiency Models

Different types of deficiency can be expressed

• Measurement error problems

• Misclassification

• If Y∗ j P(Y)× {0, 1} : coarsening, rounding, censoring, missing data

• Outliers

credal set: convex set of traditional probability distributions

[Y |X,ϑ] ∈ PY |X,ϑ
[Y ∗|X,Y ] ∈ PY ∗|X,Y or [Y |X,Y ] ∈ PY |Y ∗,X
[X∗|X,Y ] ∈ PX∗|X,Y or [X|X∗, Y ] ∈ PX|X∗,Y
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Credal Estimation

• Natural idea: sets of traditional models −→ sets of traditional estimators

• Construct estimators Θ̂ ⊆ Rp, i.e. set of plausible parameter values,
appropriately reflecting the ambiguity (non-stochastic uncertainty, igno-
rance) in the credal set P.

• Θ̂ “small” if and only if (!) P is “small”

* Usual point estimator as the border case of precise probabilistic infor-
mation

* Connection to Manski’s (2003) identification regions and Vanstee-
landt, Goetghebeur, Kenward & Molenberghs (Stat Sinica, 2006)
ignorance regions.

• Construction of unbiased sets of estimating functions

• Credal consistency
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3.2 Credal Consistency

•
(

Θ̂(n)
)
n∈N
⊆ Rp is called credally consistent (with respect to the credal

set Pϑ) if ∀ϑ ∈ Θ :

∀p ∈ Pϑ ∃
(
ϑ̂(n)
p

)
n∈N
∈
(

Θ̂(n)
)
n∈N

: plim
n→∞

ϑ̂(n)
p = ϑ.

Thomas Augustin, LMU Munich 22 June 2010 35



3.3 Construction of Credally Consistent Estimators

• Transfer the framework of unbiased estimating functions

• A set Ψ of estimating functions is called

* unbiased (with respect to the credal set Pϑ) if for all ϑ:

∀ψ ∈ Ψ ∃pψ,ϑ ∈ Pϑ : Epψ,ϑ(Ψ) = 0

* complete (with respect to the credal set Pϑ) if for all ϑ:

∀p ∈ Pϑ ∃ψp,ϑ ∈ Ψ : Ep(ψp,ϑ) = 0.

• A complete and unbiased set ψ of estimating functions is called minimal
if there is no complete and unbiased set of estimating functions Ψ̃ ⊂ Ψ.
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Construction of Minimal Consistent Estimators

Define for some set Ψ of estimating functions

Θ̂Ψ =
{
ϑ̂
∣∣∣ ϑ̂ is root of ψ, ψ ∈ Ψ

}
.

Under the usual regularity conditions (in particular unique root for every ψ)

• Ψ unbiased and complete ⇒ Θ̂Ψ credally consistent
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3.4 Examples

• Imprecise sampling model : neighborhood model PY |X,ϑ around some
ideal central distribution pY |X,ϑ
Let ψ be an unbiased estimation function for pY |X,ϑ. Then (if well
defined)

Ψ =
{
ψ∗|ψ∗ = ψ − Ep(ψ), p ∈ PY |X,ϑ

}
is unbiased and complete.

• Imprecise measurement error model, e.g. PX∗|X,Y :
Ψ =

{
ψ|ψ is corrected score function for some p ∈ PX∗|X,Y

}
is unbi-

ased and complete.

• Construction of confidence regeions:

* union of traditional confidence regions
* can often be improved (Vansteelandt, Goetghebeur, Kenward & Molen-

berghs (Stat Sinica, 2006), Stoye (2009, Econometrica)).
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Sketch of the Argument

• Omnipresence of measurement error

• Severe bias in statistical analysis when neglecting it

• Powerful correction methods based on the “classical model of testing
theory”

construct unbiased estimating functions → zero expectation → con-
sistency

• The underlying assumptions are very restrictive, and rarely satisfied in
social surveys

• Relax assumptions: imprecise measurement error model

construct unbiased sets of estimating functions → zero expectation
for one element of the credal set → credal consistency
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dependent
variable Yi

� effects �
independent
variable Xi

? ?

? ?

6

data - inference � data

error model error model

proxy variable Y ∗i proxy variable X∗i
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Y ∈ Y � ϑ = (βT , νT )T

[Y |X;ϑ]

X ∈ X

?

[Y ∗|X,Y ]

?

[X∗|X,Y ]

Y ∗ ∈ X ∗ X∗ ∈ X ∗

? ?

6

y∗1, . . . , y
∗
n x∗1, . . . , x

∗
n
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