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overview

Conformal Prediction

Aggregated Conformal Predictors

Validity of Aggregated Conformal Predictors
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conformal prediction



conformal prediction

Conformal classifiers (Vovk et al., 2006) provide us with

Confidence sets h(xi, ϵ) = Γϵi ⊆ Y
Confidence predictions h(xi) = (ŷi, ϵiy)

We know the probability of these predictions being correct

P(yi ∈ Γϵi ) = 1− ϵ

P(yi = ŷi) = 1− ϵiy

∙ For confidence sets user specifies a (well-calibrated) error rate ϵ

∙ For confidence predictions the conformal predictor finds the (well-calibrated) error
probability of the most likely prediction

Achieved through statistical randomness testing
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inductive conformal classification—training

Divide the training set Z into two disjoint subsets

A proper training set Zt
A calibration set Zc where |Zc| = q

Fit a classification model h using Zt (any learning algorithm will do)

This is the underlying model

Choose an error function f(z), e.g. f(zi) = 1− P̂h(yi | xi)

This is the nonconformity (strangeness) function1

Apply f(Z) to ∀zi ∈ Zc

Save these calibration scores
We denote these α1, ..., αq

1In reality, the nonconformity function can be any function f : Z → R, but using (classifier + error function)
typically works well for classification problems
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inductive conformal classification—set prediction

Fix a significance level ϵ ∈ (0, 1)

For each ỹ ∈ Y

Let αỹ
i = f [(xi, ỹ)]

Calculate

pỹ
i =

∣∣∣{zj ∈ Zc : αj > αỹ
i

}∣∣∣
q+ 1 + θi

∣∣∣{zj ∈ Zc : αj = αỹ
i

}∣∣∣+ 1
q+ 1 , θi ∼ U [0, 1]

Prediction region

Γϵi =
{
ỹ ∈ Y : pỹ

i > ϵ
}
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different types of conformal predictors

Transductive conformal predictors are (relatively) slow

Need to retrain underlying model (at least) once for each new test object

Indcutive conformal predictors are (relatively) inefficient

Need to use some of the training data for calibration

Aggregated conformal predictors

∙ Cross-conformal predictors (Vovk, 2015)
∙ Bootstrap-conformal predictors (Vovk, 2015)
∙ Aggregated conformal predictors (Carlsson et al., 2014)

Try to solve both issues:

∙ All data used for training and calibration
∙ Model(s) trained only once
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aggregated conformal predictors



cross-conformal predictors

1. Divide training data into k folds Z1, . . . , Zk
2. For each fold l

2.1 Fit a model using Z1, . . . , Zk \ Zl
2.2 Compute (calibration) nonconformity scores for Zl

Computing a p-value:

pỹ
n+1 =

∑k
l=1

[∣∣∣{zi ∈ Zl : αi,l > αỹ
n+1,l

}∣∣∣+ θn+1,l

(∣∣∣{zi ∈ Zl : αi,l = αỹ
n+1,l

}∣∣∣)]+ θn+1

n+ 1

NB

pỹ
n+1 ≈ p̄ỹ

n+1 ,

where p̄ỹ
n+1 =

1
k
∑k

l=1 p
ỹ
n+1,l, given that k ≪ n.
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aggregated conformal predictors

1. From training set Z, draw k samples Z1, . . . , Zk, where ∀Zi : Zi ⊂ Z
2. For each sample l

2.1 Fit a model using Z1
2.2 Compute (calibration) nonconformity scores for Z \ Zl

Computing a p-value:

pỹ
n+1 =

1
k
∑

pỹ
n+1,l
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aggregated conformal predictors

Aggregated conformal predictors seem great

But... are they valid?

∙ Vovk (2015) shows that cross-conformal predictors can become invalid under certain
circumstances (non-transitive nonconformity functions in leave-one-out conformal
predictors)

∙ Carlsson et al. (2014) show that aggregated conformal predictors requires consistent
resampling

Consistent resampling

If Zn ⊂ Zm → limn,m→inf f(Zn) = f(Zm)

General validity of aggregated conformal predictors is not clear-cut
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valid conformal predictors

Conformal predictors are automatically valid when:

A If a sequence z1, . . . , zn+1 is exchangeable, then pyi
i ∼ U[0, 1], and

B Criterion A is not dependent on the choice of nonconformity function.

Aggregated conformal predictors

∙ Can fulfill criterion A (as shown in several research papers)
∙ Might not fulfill criterion B (?)
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valid conformal predictors

Distribution of nonconformity scores (calibration set and test set, assuming true label)
and p-values of test set (assuming true label) for an ICP

(a) Nonconformity distribution (b) p-value distribution

12



valid conformal predictors

Calibration plot (error rate per ϵ) and nonconformity-rank distribution of test set (ICP)

(c) Calibration plot (error rate per ϵ) (d) Nonconformity rank distribution

Nonconformity rank

A rank r denotes that r− 1 calibration examples had an equal or lower nonconformity
score than the test pattern, i.e., it corresponds to the numerator of the p-value equation
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valid conformal predictors

Calibration plot (error rate per ϵ) and nonconformity-rank distribution of test set (CCP
using 10 SVM-models)

(e) Calibration plot (error rate per ϵ) (f ) Nonconformity rank distribution
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valid conformal predictors (?)

Calibration plot (error rate per ϵ) and nonconformity-rank distribution of test set (CCP
using 10 random forest models, each consisting of 5 decision trees)

(g) Calibration plot (error rate per ϵ) (h) Nonconformity rank distribution
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What happened?
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validity of aggregated conformal predictors



cross-conformal predictors

In a cross-conformal predictor, we are effectively summing nonconformity ranks (p-value
numerators) from several different ICPs

Extreme cases

∙ Ranks from ICP components are identical: no problem (but also no benefit)
∙ Ranks from ICP components are independent: (?)

Summing (or averaging) multiple independent uniform distributions

Leads to a unimodal Irwin-Hall (or Bates) distribution (uh-oh!)

It seems we have introduced an additional requirement, making validity conditional on
the underlying models (or, the nonconformity functions)
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cross-conformal predictors

Correlation plot of nonconformity ranks for ICP component pairs, (using RF-5 and SVM).
Note: all ICP components produce uniformly distributed ranks separately.

(i) RF using 5 trees → unimodal p-values (j) SVM → (near-)uniform p-values
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cross-conformal predictors

So what’s the problem?

Random forests with only 5 trees are unstable in the sense of Breiman (1996)

∙ A small change in training data might cause large changes in the resulting classifier
∙ Hence, each of our 10 random forests (each trained on a separate subset of the
avaliable training data) behaves quite differently

Support vector machines are relatively stable

∙ Small changes in training data do not greatly affect the resulting hyperplane
∙ Hence, each of our 10 SVMs behaves similarly (even though they are trained on
separate subsets of the training data)

Unstable classifiers + varied training data → loosely correlated nonconformity scores
(calibration set and test set) → loosely correlated ranks (test set) → non-uniform
p-values
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approximately valid aggregated conformal predictors

Approximately valid ACP (informal)

Aggregated conformal predictors are approximately valid when the underlying learning
algorithm is stable (produces similar decision boundaries given training data with small
variations).

This effectively a restatement of the condition of consistent resampling, but w.r.t to
properties of the underlying model.

Approximately valid ACP (formal)

Please read the paper :-)
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averaging p-values

Averaging p-values is not a valid approach in general

∙ We require additional assumptions w.r.t. the dependency of p-values

For interesting (small) values of ϵ, validity is violated in a non-interesting way

∙ Error of making an error is less than ϵ.

Conservative validity as a result from averaging is problematic primarily w.r.t. efficiency

∙ Predictions are unecessarily large
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future work

Future Work

∙ Quantify relationship between instability and invalidity
∙ Quantify impact on efficiency
∙ Compare to out-of-bag calibration (Boström et al., 2017)
∙ Consider other methods of combining p-values (briefly evaluated in appendix of
presented paper)
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shameless plug

Nonconformist—Conformal Prediction in Python

https://github.com/donlnz/nonconformist

pip install nonconformist
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Questions?
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alternative methods of combining p-values

Can we do better than averaging?

(k) ICP — perfect!
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alternative methods of combining p-values

Can we do better than averaging?

(l) mean(p) — conservative (inefficient) for low ϵ

27



alternative methods of combining p-values

Can we do better than averaging?

(m) median(p) — empirically conservative (inefficient)
for low ϵ, empirically superior to mean(p)
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alternative methods of combining p-values

Can we do better than averaging?

(n) Extended chi-square function, based on Fisher
(Balasubramanian et al., 2015) — invalid for low ϵ
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alternative methods of combining p-values

Can we do better than averaging?

(o) Simple normal form (Balasubramanian et al., 2015)
— invalid for low ϵ
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alternative methods of combining p-values

Can we do better than averaging?

(p) Benjamini-Hochberg correction for false discovery
rate — empirically conservative (inefficient) for for low
ϵ, empirically similar to median(p)
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