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Decision Theoretic Online Learning (DTOL)

Algorithm Hedge
Initial weights w1 = ( 1

N , . . . , 1
N ).

FOR t = 1,2, . . .
Forecaster predict with weights wt = (w1,t , . . . ,wN,t ).
Experts announce losses lt = (l1,t , . . . , lN,t ).

Aggregating algorithm loss ht = (wt · lt ) =
N
∑

i=1
wi ,t l it .

Weights update:

wi ,t+1 =
wi ,t e

−η l it

N
∑

j=1
wj ,t e

−η l jt
, where η is a learning parameter.

ENDFOR
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Regret

Li
T =

T
∑

t=1
l it – cumulative loss of an expert 1≤ i ≤ N.

HT =
T
∑

t=1
ht – cumulative loss of the aggregating algorithm.

R i
T = HT −Li

T – regret with respect to an expert i .
RT = max1≤i≤N R i

T = HT −min1≤i≤N Li
T – minimax regret.

The goal of the algorithm is to minimize regret.

mt =− 1
ηt

ln
N
∑

i=1
wi ,te−η l it – mixloss.

MT =
T
∑

t=1
mt – cumulative mixloss (close to loss of the best

expert).
RT = O(

√
T lnN) for Hedge algorithm.
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AdaHedge

mt =− 1
ηt

ln
N
∑

i=1
wi ,te−ηt l it – mixloss.

δt = ht −mt and mixability gap ∆T =
T
∑

t=1
δt , HT = MT + ∆T .

ηt = 1/∆t−1 – learning rate

l−t = min
i

l it , l+t = max
i

l it , L+
T =

T
∑

t=1
l+t , L−T =

T
∑

t=1
l−t .

st = l+t − l−t , ST = max{s1, . . . ,sT}, L∗T = min1≤i≤N Li
T .

By de Rooij et al. (2014)

RT ≤ 2

√
ST

(L∗T −L−T )(L+
T −L∗T )

L+
T −L−T

lnN +

(
16
3

lnN + 2
)

ST .

No assumptions are made about range of one-step experts
losses.
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Algorithm MPP and Fixed Share

qt = (q1,t , . . . ,qN,t ) – a sequence of comparison vectors.

RT = HT −
T
∑

t=1
(qt · lt ) – shifting regret.

Fixed Share minimizes shifting regret in case where there are
small changes of comparison vectors.
MPP (Bousquet and Warmuth 2002) is a generalization of
Fixed Share.
Problem: Combine MPP and AdaHedge:

Standard MPP uses a constant learning rate η ;
AdaHedge uses a variable learning rate ηt .
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Mixing scheme

wm
t = (wm

1,t , . . . ,w
m
N,t ) – normalized experts weights at step t .

wt+1 =
t
∑

s=0
β

t+1
s wm

s with weights β
t+1
s , 0≤ s ≤ t , where

wm
s = (wm

1,s, . . . ,w
m
N,s).

By the method MPP a mixing scheme is defined by a vector

β t+1 = (β
t+1
0 , . . . ,β t+1

t ), where
t
∑

s=0
β

t+1
s = 1 and β

t+1
s ≥ 0 for

0≤ s ≤ t .
Put wi ,1 = wm

i ,0 = 1
N for i = 1, . . . ,N, η1 = ∞.
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Adaptive MPP

FOR t = 1, . . . ,T
Predict with weights wt = (wi ,1, . . . ,wi ,N).
Receive losses of the experts lt = (l1t , . . . , l

N
t ).

Compute the aggregating algorithm loss ht =
N
∑

i=1
wi ,t l it .

Loss Update

Define wm
i ,t =

wi ,t e
−ηt l it

N
∑

j=1
wj ,t e

−ηt l jt
for 1≤ i ≤ N.

Mixing Update
Choose a mixing scheme β t+1 = (β

t+1
0 , . . . ,β t+1

t ) and define

wi ,t+1 =
t
∑

s=0
β

t+1
s wm

i ,s for 1≤ i ≤ N.

Learning Parameter Update Define ηt+1 = 1/∆t .
ENDFOR
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Example: Fixed Share

Example 1. A version of Fixed Share by Herbster and Warmuth
(1998) with a variable learning rate:
A sequence 1≥ α1 ≥ α2 ≥ . . . of parameters be given.
Define β

t+1
t = 1−αt+1 and β

t+1
0 = αt+1 (β t+1

s = 0 for 0 < s < t).
Prediction for step t + 1 is defined

wi ,t+1 =
αt+1

N
+ (1−αt+1)wm

i ,t

for all 1≤ i ≤ N.
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Uniform Past

Example 2. Uniform Past by Bousquet and Warmuth(2002)
with a variable learning rate:
β

t+1
t = 1−αt+1 and β

t+1
s = αt+1

t for 0≤ s < t .
Prediction for step t + 1 is defined

wi ,t+1 = αt+1
t−1
∑

s=0

wm
i ,s
t + (1−αt+1)wm

i ,t for all i and t .
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Main result

Theorem

Let αt = 1
t+1 for all t and mixing scheme from Example 1 was

used. Then for any T , for any sequence of losses of the
experts, and for any sequence of comparison vectors qt ∈ ΓN
given online with no more than k changes,

MT ≤
T

∑
t=1

(qt · lt ) + ((k + 2) ln(T + 1) + (k + 1) lnN + 1)∆T .

Besides,

HT ≤
T

∑
t=1

(qt · lt ) + ((k + 2) ln(T + 1) + (k + 1) lnN + 2)∆T .

Denote γ(T ) = (k + 2) ln(T + 1) + (k + 1) lnN + 2.
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Bound for mixability gap

Recall that l−t = min
i

l it , l+t = max
i

l it , L+
T =

T
∑

t=1
l+t , L−T =

T
∑

t=1
l−t .

st = l+t − l−t , ST = max{s1, . . . ,sT}, L∗T = min1≤i≤N Li
T .

L(k)
T =

T
∑

t=1
(qt · lt ), where qt is a comparison vector and k is the

number of t ≤ T such that qt 6= qt−1.
By Rooij et al.(2014)

∆T ≤

√√√√ST
(L+

T −L(k)
T )(L(k)

T −L−T )

L+
T −L−T

+

(
γ(T ) +

5
3

)
ST .
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Main result

Theorem

For any T and for any sequence of comparison vectors qt ∈ ΓN
with no more than k changes given online,

R(k)
T = HT −L(k)

T ≤ γ(T )

√√√√ST
(L+

T −L(k)
T )(L(k)

T −L−T )

L+
T −L−T

+

+γ(T )

(
γ(T ) +

5
3

)
ST ,

where γ(T ) = (k + 2) ln(T + 1) + (k + 1) lnN + 2 for scheme of
Example 1.
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Experiments

Figure: Artificial data. Three blue, green, and red lines – experts E1,
E2, E3 cumulative losses, AdaHedge losses – thick blue line, MPP
losses – thick red line.
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Experiments

Figure: Zero-Sum game for US1.GLW stock. Two symmetric green
and blue lines – experts income, AdaHedge relative income – thick
blue line, MPP relative income – thick red line.
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Experiments
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Figure: Russian 7 stocks 2014: AdaHedge income – thick blue line,
MPP income – thick red line.
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Experiments
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Figure: BATS Electronic Market 7 stocks 2014: AdaHedge income –
thick blue line, MPP income – thick red line.
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Experiments

Figure: BATS Electronic Market 42 stocks 2015: AdaHedge income –
thick blue line, MPP income – thick red line.


