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Abstract

Conformal prediction is a machine learning methodology that produces valid prediction re-
gions. Ensembles of conformal predictors have been proposed to improve the informational
efficiency of inductive conformal predictors by combining p-values, however, the validity of
such methods has been an open problem. We introduce synergy conformal prediction which
is an ensemble method that combines monotonic conformity scores, and is capable of pro-
ducing valid prediction intervals. We study the applicability in three scenarios; where data
is partitioned, where an ensemble of different machine learning methods is used, and where
data is unpartitioned. We evaluate the method on 10 data sets and show that the synergy
conformal predictor produces valid prediction intervals that on partitioned data performs
well compared to the most efficient model trained on individual partitions, making it a
viable approach for federated settings when data cannot be pooled. We also show that our
method has advantages over current ensembles of conformal predictors by producing valid
and efficient results on unpartitioned data, and that it is less computationally demanding.

Keywords: Conformal Prediction, Machine Learning, Synergy Conformal Prediction, Big
Data, Federated Learning, Conformal Predictor Ensembles

1. Introduction

Conformal prediction is an established method in the machine learning (ML) landscape that
yields valid prediction regions for new objects (Vovk et al., 2005). Transductive conformal
prediction (Vovk, 2013) and Inductive conformal prediction (Papadopoulos, 2008) are two
approaches for the construction of prediction regions. The transductive approach requires
re-training the model on each prediction, and inductive conformal prediction was developed
to overcome this. The validity of Transductive Conformal Predictors (TCPs) and Inductive
Conformal Predictors (ICPs) is proven in that they produce 1 − ε expectation tolerance
regions, where ε is the selected significance level (Vovk et al., 2005).

The inductive conformal prediction approach comes at the expense that part of the data
needs to be set aside as a calibration set, and the model hence becomes less informationally
efficient (the predicted regions are larger). Conformal predictor ensembles, such as cross-
conformal predictors (Vovk, 2015) and aggregated conformal predictors (Carlsson et al.,
2014b), have been developed to improve the informational efficiency of ICPs. The idea is
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to train multiple ICPs to make better use of the examples for modeling and calibration,
and aggregate the resulting p-values. However, the validity of these ensemble methods has
been an open problem for researchers (Linusson et al., 2017). Though it has been shown
to achieve empirical validity under certain conditions, its theoretical validity has not been
proven yet and it remains a practical problem in many settings. Since the aforementioned
conformal predictor ensembles try to aggregate conformal p-values, which usually does not
yield standard uniform distribution, the validity is not guaranteed.

Our research tries to answer these two questions: (1) Can we partition a dataset and
train multiple models and obtain valid prediction regions with good accuracy when com-
bined? (2) Can we train multiple models on a dataset using different modeling methods,
and obtain valid prediction regions with good accuracy when combined?

In this manuscript, we introduce Synergy Conformal Prediction (SCP) which is a method
that aggregates monotonic conformity scores instead of p-values. This work is inspired by
the method of “Synergy of Monotonic Rules” proposed by Vapnik et al. (Vapnik and
Izmailov, 2016), in which the authors combine the estimated conditional probabilities to
construct the optimal synergy rules for pattern recognition problems. Here we focus on
classification problems.

The organization of the paper is as follows. In section 2, we introduce the background
concepts and notations used throughout the paper. In Section 3, we present synergy con-
formal prediction and we prove its useful properties. In Section 4, we perform numerical
analysis on a set of real data sets. In Section 5, we discuss the results and the applications
of SCP. Finally, in Section 6, we conclude and provide directions for further research.

2. Background

This section gives a brief background about conformal prediction framework and fixes no-
tations and assumptions used throughout the paper.

The object space is denoted by X = Rq, where q is the number of features, and label
space is denoted by Y ∈ {1, . . . ,K}, where K is the number of labels. We assume that
each example consists of an object and its label, and its space is given as Z := X × Y.
In a typical classification problem, given a training dataset Z = {z1, ..., z`} – where ` is
the number of examples in the training set, and each example zi = (xi, yi) is labeled – we
want to predict the label of a new object xnew whose label is unknown. Our experiments
are limited to classification problems, and we also assume the exchangeability of examples
throughout the paper. The random variables x1, . . . , x` are said to be exchangeable under
a probability measure p if the joint probability distribution satisfies the following equality
condition,

p(x1, . . . , x`) = p(xπ(1), . . . , xπ(`)),

for all permutations π defined on the set {1, . . . , `}.
In the following, we define conformity measures and conformity scores. The conformity

measure is the score from a function that measures the closeness of an example in relation
to the previous examples.

Conformal prediction provides a layer on top of an existing machine learning method
and uses available data to determine valid prediction regions for new objects (Vovk et al.,
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2005). Conformal prediction was primarily defined as an online transductive framework, in
which the underlying model must be retrained each time an object is to be predicted and
is hence computationally expensive. For further details on the transductive approach, we
refer to (Vovk et al., 2005). A more computationally efficient inductive framework was then
proposed as an alternative to the transductive approach. In the inductive approach, the
training data has to be divided into a proper training set and a calibration set. Since ICP
is a key building block for our method, we define it in a bit more detail in the following; for
full length details we refer to (Papadopoulos, 2008).

Definition 1 Inductive Conformal Predictor (ICP)
Given a training set of ` examples, Z = {z1, ..., z`}, drawn from an exchangeable distribution
P . The training data is first divided into a proper training set {ZT } and a calibration set
{ZC}, where (T,C) is a partition of {1, ..., `}. Let A be a conformity measure, and the
conformity score A(ZT , z) is used to measure how well the example z conforms to the
proper training set ZT . For example,

A(ZT , (x, y)) = p(Y = y | f(x)), (1)

where f : X → Y , is a prediction rule of the model trained on the proper training set ZT ,
and p(Y = y | f(x)) is a calibrated conditional probability. The predictive model trained
on the proper training set ZT , is then used to compute the conformity scores (i.e. class
conditional probabilities) for the calibration set, αyj = p(Y = y | f(xj)), for j ∈ C and
y ∈ Y. Let xnew (follows the same distribution P ) be the example we want to predict,
and let αynew be its conformity scores computed using the same function A(ZT , .). The ICP
p-values are then computed as

pynew =
|j ∈ Cy;αynew > αyj |+ τ |j ∈ Cy;αynew = αyj |

|Cy|+ 1
, (2)

where Cy denotes the class-wise partition of C (if j ∈ Cy, then j ∈ C and yj = y), y ∈ Y,
and τ ∈ [0, 1] is a random number.
The inductive conformal predictor corresponding to the tuple (ZC ,A(ZT , .)) is defined as a
set predictor

Γε = {y | py > ε}, (3)

where ε ∈ (0, 1) is a chosen significance level, and (1− ε) is known as confidence level.
As mentioned before, in ICP some examples are used for modeling only and some are

used for calibration only, and this makes ICP less informationally efficient than TCP. To
improve the informational efficiency of ICP, ensembles of conformal predictors were pro-
posed. Cross Conformal Predictor (CCP), and Bootstrap Conformal Predictor (BCP) were
proposed in (Vovk, 2015) and it was generalized as Aggregated Conformal Predictor (ACP)
in (Carlsson et al., 2014a). In CCP, training data is divided into separate folds and each fold
is used as calibration set and remaining data is used as a proper training set, and eventually
p-values are averaged across all folds. In BCP, the training set is bootstrapped to obtain a
proper training set and out-of-bag examples are used as a calibration set. The p-values are
then aggregated across bootstrap replications. The ACP is a generalization of CCP and
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BCP, where a consistent resampling scheme is used for constructing the calibration set. We
refer to (Carlsson et al., 2014a) for details on ACP.

Other ensemble methods in the conformal prediction framework have been proposed, in-
cluding (Toccaceli and Gammerman, 2018), (Löfström et al., 2013) and (Balasubramanian
et al., 2015). In all the above ensemble methods, the main aim was to get more information-
ally efficient conformal predictors by combining p-values. However, most of the resulting
models are not guaranteed to be valid, as the combined p-values need not be uniformly
distributed on (0,1). For a detailed study on the validity of such ensemble methods, we
refer to (Linusson et al., 2017).

3. Synergy Conformal Prediction

In all the ensemble methods discussed in the previous section, the key idea is to combine p-
values computed from various ICPs. We propose a novel method of combining (monotonic)
conformity scores for the calibration set and for the test examples computed from various
trained models. In the following, we define “Synergy Conformal Prediction” (SCP).

Given ` examples, Z = {z1, ..., z`}, drawn from an exchangeable distribution P . Akin
to the ICP method, here also the training data is first divided into the proper training set
{ZT } and the calibration set {ZC}, where (T,C) is a partition of {1, ..., `}. But then the
proper training data is further divided into M non-empty disjoint subsets and each subset
ZTm ,m = 1, . . . ,M is then used as an actual training set for modeling. (T1, ..., TM ) is a
partition of T . The M predictive models trained on individual partitions are then used
to compute the monotonic conformity scores (i.e. class conditional probabilities) for the
calibration set denoted by αymj , for j ∈ C, m = 1, . . . ,M , y ∈ Y. For example,

αymj = pm(Y = y | fm(xj)), (4)

where fm(x) is the prediction rule defined by the predictive model trained on the mth part
of the training set. The aggregated conformity scores across models are then defined as

αyj =
1

M

M∑
m=1

αymj

Let xnew (follows the same distribution P ) be the example we want to predict, and let
αynew be the aggregated conformity scores across models. The SCP p-values are then
computed using eq. (2). The synergy conformal predictor corresponding to the tuple
(ZC ,A(ZT1 , .), ...,A(ZTM , .)) is defined as a set predictor as given in eq. (3). The main
steps are summarized in Algorithm 1.

The SCP method differs from the other ensemble methods discussed in the previous
section by:

1. Traditional ensemble methods combine conformal p-values obtained from different
ICPs.

2. Within the inductive conformal prediction framework, SCP tries to improve the infor-
mational efficiency by combining monotonic conformity scores (for example, calibrated
probability estimates from support vector machines).
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Algorithm 1 Synergy Conformal Predictor

Input: training dataset:Z, object to predict:xnew, a conformity measure:A
Output: p-values
Step1: Split the training set into two smaller sets, {ZT } and the calibration set {ZC}.
(T,C) is a partition of {1, ..., |Z|}.
Split the set ZT into M proper training sets, {ZTm ,m = 1, . . . ,M}. (T1, ..., TM ) is a
partition of T .
Step2: For each part ZTm , train and construct the rule to generate conformity scores.
Step3: Compute the aggregated conformity scores across M models for each example in
the calibration set. αyj , for j ∈ C and y ∈ Y.
Step4: Compute the aggregated conformity scores across M predictive models to the
object xnew, which results in αynew, for y ∈ Y.
Step5: Compute p-values for each of the K classes using eq. 2.
return (p1new, . . . , p

K
new);

3.1. Properties of Synergy Conformal Predictors

In this section, we discuss the properties of SCP. First we prove that the SCP algorithm
produces valid predictions. Then, we also prove that the SCP is more efficient than each
individual small ICP of a partitioned dataset.

Proposition 1 The synergy conformal predictor is valid.
Proof:
When we do not partition the proper training set into smaller subsets, in that case SCP is
exactly ICP and hence valid. In particular for this case, the whole partition ZT is used for
predictive modeling, and the corresponding calibration set ZC and the conformity measure
based on the prediction rule obtained from ZT , forms an ICP, and an ICP is proven to be
valid (Vovk et al., 2005).

Alternatively, SCP can be viewed as a single ICP and hence valid, where synergy of
monotonic conformity scores is considered as one function producing the (aggregated) con-
formity scores. To illustrate this, let us consider partition of the set ZT into two subsets,
ZT1 and ZT2 , and let their corresponding rules for computing conformity scores be A(ZT1 , .)
and A(ZT2 , .) respectively. By the definition of ICP, each individual ICP based on the tuple
{ZC ,A(ZTm , z)} for m = 1, 2, is valid. Let us define a new conformity score A(ZT , .) which
aggregated the conformity scores of an example z, A(ZT , z) = 1

2

∑2
m=1A(ZTm , z). The pair

{ZC ,A(ZT , .)} forms an ICP corresponding to the new conformity measure A(ZT , .), hence
valid, and it can be generalized for any number of subsets.

Proposition 2 The synergy conformal predictor corresponding to the tuple
(ZC ,A(ZT1 , .), ...,A(ZTM , .)) is more informationally efficient that each individual small ICP
corresponding to the tuple (ZC ,A(ZTm , .)) for m = 1, . . . ,M .
Proof:
The choice of calibrated conditional probability of support vector machine as conformity
measure, is a monotonically increasing function, in the sense that the higher the score of an
object x, the higher the probability of x belonging to the positive class. The aggregation
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Figure 1: An overview of synergy conformal prediction: the given dataset is randomly par-
titioned into a test set (20%) and the remaining training set (80%) is then split
into a proper training set and a calibration set in proportion 2 : 1. The proper
training data set is randomly split into M (almost) equal disjoint subsets, “Split
1”, ..., “Split M”. A model is trained on each split individually. Finally, the
(monotonic) conformity scores for the calibration set and for the test examples
computed from various trained models are combined to compute the conformal
p-values.

of monotonic estimated conditional probabilities (conformity scores) across various models
is monotonic, and has been proven to be more accurate than the individual scores (Vapnik
and Izmailov, 2016). Moreover, the subsets used for training different predictive models
are independent, thus averaging of M conditional probability values decreases the variance
of resulting conditional probability by a factor of M . Therefore the combined scores are
more robust than the individual ones. Hence SCP is more informationally efficient than
each individual ICP. For further details on synergy of monotonic conditional probability
functions we refer to (Vapnik and Izmailov, 2016).

Note that the proof can be generalized for any conformity measure that is a monotonic
function.
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Table 1: Description of the datasets from UCI repository that are used in the evaluation.

Dataset Training Calibration Test

Spambase 2453 1227 921

Breast Cancer 303 152 114

Phishing Websites 5896 2948 2211

Covertype 9296 4648 3486

Adult 17365 8683 6513

Tic-tac-toe 510 256 192

Australian 368 184 138

MONK’s-1 296 148 112

MONK’s-2 320 160 121

Bank 2410 1206 905

4. Experiments

We evaluate SCP on ten classification datasets from UCI machine learning repository (Lich-
man et al., 2013), see Table 1 for specifications. We present 5 experiments: SCP using the
same ML algorithm on partitioned data, SCP using different ML algorithms on partitioned
data, SCP using different ML algorithms on unpartitioned data, Calibration of SCP and
Evaluation of running times. For Experiment 1 and 2 we partition data according to the
following procedure (see also Figure 1): Each dataset is randomly partitioned into a test
set (20%) and the remaining training set (80%) is then split into a proper training set and
a calibration set in proportion 2 : 1. The proper training data set is randomly split into
three equal disjoint subsets (partitions). Each subset is considered as an actual training
set to train an underlying machine learning model and compute conditional probabilities
(as conformity measure), and then conditional probabilities are aggregated across all the
models to compute the p-values.

In all the experiments, we use the calibrated conditional probability from classifiers such
as support vector machine (SVM) and random forest (RF) as the comformity measure.
The corresponding hyper-parameters are learned using 5-fold cross-validation, and Platt
scaling (Platt et al., 1999) is used to transform SVM output to conditional probability. To
compute the corresponding p-values, we use the smoothed Mondrian approach (Vovk et al.,
2005), where the taxonomy is defined by the labels. To assess the predictive performance of
the conformal predictors we consider validity and efficiency. Validity is empirically assessed
in terms of calibration plots, the plot of the percentage of errors against ε ∈ (0, 1). For a valid
prediction, the calibration plots are usually very close to the bisector of the first quadrant.
We use observed fuzziness (Vovk et al., 2016) as a measure of efficiency, which is defined as
the sum of all p-values for the incorrect class labels (a lower value is advantageous). SVM
with linear kernel and SVM with RBF kernel is trained using python implementation of
LibSVM (Chang and Lin, 2004) in SciKit Learn (Pedregosa et al., 2011). RF is trained
using SciKit Learn (Pedregosa et al., 2011). All experiments are repeated 30 times.
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4.1. Experiment 1: SCP using the same ML algorithm on partitioned data

The objective of this experiment is to compare SCP with individual ICPs trained on each
data partition, and with an ICP trained on the whole proper training set.

We consider the form of SCP as given in Figure 1 with three equal non-overlapping
partitions, M = 3. Linear Support Vector Machine (linear SVM) and non-linear Support
Vector Machine with an RBF kernel (RBF-SVM) were used as the underlying machine
learning methods in this experiment. The average efficiency of SCP across 30 repetitions
is reported in the third column of Table 2. The first column is the average efficiency of
the best performing ICP on a data partition (the lowest value for observed fuzziness), we
call it the ‘ICPp’. The second column is the average efficiency of the ICP where the proper
training set as a whole is used for modeling. To illustrate the difference between ICPp, ICP
and SCP, box plots are presented in Figure 2(a) and Figure 2(b) for the Australian dataset.
Box plots for the other data sets are available in Appendix A.

Table 2: Results from Experiment 1, SCP using the same ML algorithm on partitioned
data. Comparison of efficiency between ICPp, ICP and SCP, where linear SVM
and non-linear SVM with RBF kernel are used as the underlying machine learning
algorithms. ICPp corresponds to the model trained on the partition having the
lowest (best) efficiency, ICP refers to the efficiency where the whole dataset is
used, and SCP to the synergy conformal prediction method.

Linear NonLinear
Dataset ICPp ICP SCP ICPp ICP SCP

Spambase 0.359 0.03 0.357 0.38 0.028 0.385

Breast Cancer Wisconsin 0.35 0.004 0.351 0.052 0.004 0.035

Phishing Websites 0.26 0.022 0.259 0.071 0.009 0.057

Covertype 4.965 0.334 4.965 0.67 0.232 0.594

Adult 0.237 0.151 0.237 0.203 0.103 0.177

Tic-tac-toe 0.444 0.427 0.413 0.634 0.001 0.636

Australian 0.299 0.078 0.161 0.15 0.081 0.141

MONK’s-1 0.366 0.252 0.397 0.467 0.008 0.422

MONK’s-2 0.435 0.496 0.479 0.391 0.028 0.425

Bank 0.126 0.169 0.118 0.161 0.17 0.199
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4.2. Experiment 2: SCP using different ML algorithms on partitioned data

The objective of this experiment is to compare SCP with each ICP trained on individual
data partitions, in order to show that SCP is a viable method to integrate models from
different machine learning algorithms. We use the same setup as in Fig 1 with M = 3,
and with three different machine learning algorithms: RBF-SVM, linear SVM and Random
Forest (RF), one for each data partition. The results are reported in Table 3. To illustrate
the difference between the best ICPp and SCP, box plots are presented in Figure 2(c) for
the Australian dataset. Box plots for the other data sets are available in Appendix A.

Table 3: Results from Experiment 2, SCP using different ML algorithms on partitioned
data. We report efficiency of ICPs on partitioned data using the three different
algorithms: RBF SVM, linear SVM and RF and the efficiency of SCP for these
models.

Dataset SVM-ICPp RF-ICPp RBF-SVM-ICPp SCP

Spambase 0.36 0.047 0.419 0.051

Breast Cancer Wisconsin 0.349 0.062 0.052 0.066

Phishing Websites 0.262 0.034 0.075 0.044

Covertype 4.958 1.056 0.73 1.137

Adult 0.238 0.14 0.217 0.153

Tic-tac-toe 0.454 0.3 0.634 0.434

Australian 0.319 0.133 0.158 0.11

MONK’s-1 0.378 0.199 0.462 0.151

MONK’s-2 0.563 0.585 0.428 0.512

Bank 0.124 0.111 0.187 0.115
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4.3. Experiment 3: SCP using different ML algorithms on unpartitioned data

This objective attempts to explore SCP as an ensemble method on top of different base
models with three unpartitioned data sources, and and compare with an ICP on the whole
dataset and Cross Conformal Prediction (CCP) with three folds. Three different underlying
machine learning algorithms are used: RBF SVM, linear SVM and RF. The efficiencies of
all methods are reported in Table 4.

Table 4: Results from Experiment 3, SCP using different ML algorithms on unpartitioned
data. Comparison of efficiency between ICP, SCP and CCP. The first three
columns show results from the ICP using linear SVM, RBF-SVM and RF as the
underlying machine learning algorithms respectively. The fourth column shows re-
sults for SCP when ensemble of different machine learning algorithms (RBF SVM,
linear SVM and RF) are used on the unpartitioned proper training set, and the
fifth, sixth and seventh columns show results for the three fold CCP with linear
SVM, RBF-SVM and RF methods used for training.

Dataset SVM-
ICP

RF-
ICP

RBF-
SVM-
ICP

SCP SVM-
CCP

RF-
CCP

RBF-
SVM-
CCP

SB 0.03 0.016 0.028 0.015 0.031 0.016 0.027

BC 0.004 0.01 0.004 0.003 0.006 0.012 0.006

Phishing 0.022 0.006 0.009 0.006 0.022 0.006 0.01

Cover 0.334 0.173 0.232 0.169 0.35 0.173 0.25

Adult 0.151 0.095 0.103 0.096 0.151 0.094 0.103

Tic-tac-toe 0.427 0.013 0.001 0.001 0.434 0.014 0.002

Australian 0.078 0.063 0.081 0.062 0.075 0.067 0.078

Monks-1 0.252 0.0 0.008 0.001 0.248 0.0 0.014

Monks-2 0.496 0.084 0.028 0.034 0.502 0.081 0.037

Bank 0.169 0.1 0.17 0.107 0.167 0.104 0.178

To illustrate the difference between the ICP, SCP and CCP, box plots are presented
in Figure 2(d) for Australian dataset. Similar plots for other data sets are available in
Appendix A.
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(a) Linear SVM, partitioned data (b) RBF-SVM, partitioned data

(c) Different ML Models (d) Unpartitioned data

Figure 2: Results from Experiment 1, 2 and 3 comparing the efficiency between different
methods for the Australian dataset. (a and b): Experiment 1, comparison of
individual ICPs trained on data partitions, ICP on the entire dataset, and SCP
where (a) linear SVM is used, and (b) RBF SVM is used as the underlying
machine learning algorithm; (c): Experiment 2, comparing individual ICPs on
partitions and SCP where three different algorithms (linear SVM, RF and RBF-
SVM ) are used on partitioned training data; (d): Experiment 3 comparing ICP,
SCP and CCP where three methods (linear SVM, RF and RBF-SVM ) are used
on unpartitioned training data.
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4.4. Experiment 4: Calibration of SCP

In this experiment, we compare the calibration of ICP, SCP and CCP. We use the same
setup as in Figure 1 with M = 3, and with RF using 10 trees as an underlying ML algorithm.
We also train a three fold CCP model using RF with 10 trees. Calibration plots for the
Spambase dataset are shown in Figure 3. We observe that all the individual ICPs as well as
SCP models are valid, in contrast to CCP that shows the same behaviour deviating from
validity as reported earlier (Linusson et al., 2017).

(a) ICP (b) SCP (c) CCP

Figure 3: Results from Experiment 4, Calibration of SCP. Calibration plots of ICP, SCP
and CCP for the Spambase dataset using random forest with 10 trees for training
all the underlying models.

4.5. Experiment 5: Evaluation of running times

In this experiment, we compare the running time of ICP, SCP and CCP. For ICP, we use
the whole training set and linear SVM as an underlying machine learning algorithm. For
SCP, we use the same setup as in Fig 1 with M = 3, and with linear SVM as an underlying
ML algorithm. For CCP, we use the whole training set with three fold cross conformal
prediction using linear SVM as an underlying machine learning algorithm. The experiment
was performed sequentially on one core, and the average running time over 10 runs are
reported in Table 5.

Table 5: Results from Experiment 5, Comparison of Running Time. Comparison of average
running time over 10 runs (in seconds) between ICP, SCP and CCP.

Dataset ICP SCP CCP

SB 17.39 8.06 47.45
Adult 7654.5 2598.3 21276.2
Covertype 6018.8 2211.8 16121.8

12



Synergy Conformal Prediction

5. Discussions

The purpose of this study was to introduce SCP and demonstrate its properties in different
practical settings for predictions with confidence on partitioned and unpartitioned data.

In Experiment 1 (see Table 2), we showed that when using partitioned data, SCP is
capable of combining the models and for the case of Linear SVM, in most cases (7 out of 10
datasets) and for Non-Linear SVM (5 out of 10 datasets) obtain improved efficiency than
the best individual ICP trained on partitioned data (ICPp). As expected the efficiency of
an ICP trained on the entire dataset is better than SCP and ICPp, with the exception of
the Linear SVM for the two datasets MONKs-2 and Bank. These results support that SCP
can be used when data cannot easily be collected into a single dataset. This is the case in a
federated setting, where data is located in different locations, and the data cannot be pooled
due to privacy or regulatory reasons, or for practical reasons such as long data transfer times.
The SCP method allows for efficiently combining such federated data sources, under the
condition that a shared calibration set is available in the aggregation process.

Another possibility is to develop new and efficient parallel implementations for predic-
tions, such as in locality-aware Big-data framework. These results open up for the possibility
to instead of running long inductive training on a large dataset, to use the SCP method on
partitioned data and benefit from reduced modeling time while still getting accurate and
valid predictions.

In Experiment 2, we combined multiple modeling methods. Table 3 shows that the
model trained with RF method outperform the other models for most of the datasets, but
SCP shows improved efficiency for 2 datasets (Australian and MONKs-1). An important
observation is that even though the individual models outperform SCP for 8 out of 10
datasets, the SCP efficiency is very close to the best model in all cases apart from the
Covertype dataset. This has implications in settings where data cannot be pooled and
when models are combined without requiring the same modeling method. Again, this is
useful in a federated setting when the different participants in the federation might have
different modeling methods and do not wish to disclose details of these. By establishing a
shared calibration set and only disclosing nonconformity measures for an object to predict,
the SCP method can integrate these results and make predictions.

In Experiment 3 we show on unpartioned training data that SCP for 6 out of 10 datasets
outperform ICP and CCP using Linear SVM, RBF-SVM and RF as underlying ML models.
Even for the remaining 4 datasets, SCP is very similar to the best performing ICP or CCP. In
Experiment 4, we illustrate the theoretically proven validity (proposition 1) by showing that
individual small ICPs and SCP are well calibrated (close to the bisector of the first quadrant)
even with a non-optimal predictive model (random forest with only 10 trees). In concordance
with Linusson et al. (2017) we also note that CCP is poorly calibrated (Figure 3), which is
because it (as other previous methods) operate by combining p-values. The validity property
of SCP is key to our method, and makes it a practical alternative to especially CCP. SCP
also has an additional advantage in being less computationally demanding, as illustrated
in Experiment 5, offering faster training times even without parallelization. In most of the
experiments, Covertype dataset stands out from others probably due to imbalanced classes.

A drawback of SCP is that it requires a shared calibration set across the individual
models, which for the case of partitioned proper training data makes it less efficient as
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compared to an ICP of the entire dataset. However for the case when data cannot be pooled,
and when using unpartitioned data, SCP offers an ensemble method for conformal predictors
as it outputs valid prediction intervals with reasonable to good efficiency depending on the
dataset.

6. Conclusions and Future Directions

We presented Synergy Conformal Prediction (SCP), a new ensemble learning method that
produces valid prediction intervals for new objects. We demonstrated that the method
makes it possible to partition the data and aggregate the resulting predictions, improving
the modeling time while retaining reasonable to good accuracy depending on the dataset.
We also demonstrated that SCP is a viable approach to the commonly used CCP approach,
making it widely applicable as a valid ensemble confidence predictor. Due to its low compu-
tational complexity and parallel scalability, we believe the method will be potentially useful
for Big-data problems, and due to its isolated and non-sharing data sources and trained
models it can have a potential application in federated settings. Future directions when
working on partitioned data include (i) studying the effect of the number and size of data
partitions, as well as the overlapping partitions (ii) trying with different monotonic (non)
conformity scores (using different underlying ML algorithms) with individual partitions.
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Appendix A. Results from Experiment 1, 2 and 3

A.1. Results for Spambase dataset

Figure 4: Linear SVM Figure 5: RBF-SVM

Figure 6: Different ML Models Figure 7: Unpartitioned data

A.2. Results for Breast Cancer Wisconsin dataset

Figure 8: Linear SVM Figure 9: RBF-SVM

Figure 10: Different ML Models Figure 11: Unpartitioned data
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A.3. Results for Phishing Websites dataset

Figure 12: Linear SVM Figure 13: RBF-SVM

Figure 14: Different ML Models Figure 15: Unpartitioned data

A.4. Results for Covertype dataset

Figure 16: Linear SVM Figure 17: RBF-SVM

Figure 18: Different ML Models Figure 19: Unpartitioned data
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A.5. Results for Adult dataset

Figure 20: Linear SVM Figure 21: RBF-SVM

Figure 22: Different ML Models Figure 23: Unpartitioned data

A.6. Results for Tic-tac-toe dataset

Figure 24: Linear SVM Figure 25: RBF-SVM

Figure 26: Different ML Models Figure 27: Unpartitioned data
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A.7. Results for Australian dataset

Figure 28: Linear SVM Figure 29: RBF-SVM

Figure 30: Different ML Models Figure 31: Unpartitioned data

A.8. Results for MONKs-1 dataset

Figure 32: Linear SVM Figure 33: RBF-SVM

Figure 34: Different ML Models Figure 35: Unpartitioned data

19



Gauraha Spjuth

A.9. Results for MONKs-2 dataset

Figure 36: Linear SVM Figure 37: RBF-SVM

Figure 38: Different ML Models Figure 39: Unpartitioned data

A.10. Results for Bank dataset

Figure 40: Linear SVM Figure 41: RBF-SVM

Figure 42: Different ML Models Figure 43: Unpartitioned data
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