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Abstract

Predictive models communicating algorithmic confidence are very informative, but only if
well-calibrated and sharp, i.e., providing accurate probability estimates adjusted for each
instance. While almost all machine learning algorithms are able to produce probability
estimates, these are often poorly calibrated, thus requiring external calibration. For multi-
class problems, external calibration has typically been done using one-vs-all or all-vs-all
schemes, thus adding to the computational complexity, but also making it impossible to
analyze and inspect the predictive models. In this paper, we suggest a novel approach for
calibrating inherently multi-class models. Instead of providing a probability distribution
over all labels, the estimation is of the probability that the class label predicted by the
underlying model is correct. In an extensive empirical study, it is shown that the suggested
approach, when applied to both Platt scaling and Venn-Abers, is able to improve the
probability estimates from decision trees, random forests and extreme gradient boosting.

Keywords: Multi-class, Calibration, Probabilistic classifiers, Platt scaling, Venn-Abers

1. Introduction

Classifiers accompanying the predicted label with some measure of algorithmic confidence
are expected to increase a user’s appropriate trust. The most obvious example of such
models is probabilistic predictors that, for each prediction, return a probability distribution
over all possible labels. If these models are both well-calibrated, and sharp, a user will get
probability estimates reflecting the true underlying probabilities on the instance level.

While almost all machine learning algorithms are capable of producing some measures
of confidence, these can rarely be interpreted as probabilities. With this in mind, a number
of external calibration methods have been suggested, converting these internal confidences
into probability estimates. The two most well-known calibration techniques are Platt scaling
(Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2001). Both these techniques fit
a function (either a logistic or an isotonic) to the confidence measures and the true targets
on a calibration set. Fitting a function, however, requires that the underlying model is a
scoring classifier, i.e., that higher confidences indicate a larger belief in the positive class.
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As a consequence, these calibration techniques are only directly applicable to two-class
problems.

Another technique that can be used for calibration is so-called Venn-Abers predictors
(Vovk and Petej, 2012). Venn-Abers also operates on scoring classifiers, producing multi-
probabilistic predictors with unique validity properties. While these multi-probabilistic
predictors are highly informative, and could be used for both prediction and analysis, they
are also calibrators similar to Platt scaling and isotonic regression, see e.g., (Johansson
et al., 2019).

For multi-class problems, i.e., when there are more than two classes but each instance
should be given exactly one class label, the standard approach has been to use either one-vs-
all or all-vs-all schemes, before performing calibration for each class and then aggregating
the results into probability estimates. In addition to the obvious drawback of having to
train a number of models, it must be noted that when using these approaches, there is no
longer one predictive model used for the predictions, but a set of models. One consequence
of this is that even if the algorithm employed produces interpretable models, like decision
trees or rule sets, it is no longer possible to inspect and analyze a single model to understand
the logic behind the predictions.

In this study, we suggest a novel way of calibrating multi-class models, restricting the
investigation to inherently multi-class models, i.e., models that are capable of predicting
not only a label, but also a confidence measure for each possible label. For such models,
an obvious approach to creating probabilistic predictors, without using one-vs-all or all-
vs-all schemes, would simply be to directly apply the inherently multi-class model to a
calibration set. Here, it must be noted that we make one natural, but also very important,
simplification; the predicted label may not change due to the calibration. Instead, the
output will always be the same label as predicted by the model, and we are only interested in
the probability estimate for that label. This is of course very different from most calibration
techniques that output probabilities for all class labels, and where the predicted label may
very well change due to the calibration. One straightforward interpretation of the output
probability estimates of the proposed approach is that they provide an estimate of whether
the prediction is correct or not. With this setup, the key idea is to for each prediction
consider the predicted label as the positive class, and all other labels as the negative class,
thus making it possible to utilize the calibration techniques requiring scoring classifies.

In the empirical investigation, we use three different inherently multi-class techniques;
decision trees, random forests and extreme gradient boosting (xGB) as underlying models.
For the calibration, we compare uncalibrated models to models calibrated using the sug-
gested approach together with either Platt scaling or Venn-Abers for the actual calibration.

In the next section, we describe probabilistic prediction, Platt scaling, Venn-Abers and
multi-class calibration, before outlining the algorithms producing the underlying models in
the experimentation. In Section 3, we introduce the suggested approach and describe the
experimental setup, including the data sets used. In Section 4, we first demonstrate the
approach and then present and analyze the results obtained when using each of the three
types of underlying models. Finally, in Section 5, we give the main conclusions and outline
some directions for future work.
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2. Background

2.1. Probabilistic prediction

As described above, a probabilistic predictor outputs both the predicted class label and a
probability distribution over the labels. If the predicted probability distributions perform
well against statistical tests based on subsequent observation of the labels, they are consid-
ered valid. However, as shown by Gammerman et al. (1998), validity can not, in a general
sense, be achieved for probabilistic prediction. In this paper, we focus, however, only on
calibration:

p(cj | pcj ) = pcj , (1)

where pcj is the probability estimate for class j. In order to not be misleading, the predicted
probabilities must be matched by observed accuracy. In other words, if a number of pre-
dictions with the probability estimate 0.9 are made, these predictions should be correct in
about 90% of the cases. While most predictive models are inherently capable of producing
probability estimates, the achieved estimates are often poorly calibrated. The typical way
of handling poorly calibrated models is to apply some external calibration method, where
Platt scaling (Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2001) are the two
most frequently used. The standard procedure for these external methods is to perform the
actual calibration on a separate part of the available labelled data called the calibration set.

2.2. Platt scaling

Platt scaling (Platt, 1999) fits a sigmoid function to the scores obtained by the model on
the calibration set. Given a probability estimation score s, the function is

p̂(c | s) =
1

1 + eAs+B
, (2)

where p̂(c | s) is the probability that an instance belongs to class c, given its score s. The
parameters A and B are found by a gradient descent search, minimizing the loss function
as suggested by Platt (1999).

To avoid the risk of infinite losses due to the estimates being exactly 0 or 1, regularization
is often applied. The regularization use the following target values (where k+ and k− are
the number of calibration instances labeled 1 and 0, respectively) instead of 0 and 1:

t+ :=
k+ + 1

k+ + 2

t− :=
1

k− + 2

(3)

2.3. Venn-Abers predictors

Venn predictors introduced by Vovk et al. (2004) are probabilistic predictors that circumvent
the general impossibility result regarding validity by (i) restricting the statistical tests for
validity to calibration, and (ii) outputting multiple probabilities for each label, with one of
them being the valid one. As described below, these multiprobabilistic predictions can be
converted into probability intervals for each label, where the size of the intervals gives a

3



Calibrating Multi-Class Models

crude indication of the confidence in the estimation. Inductive Venn prediction (Lambrou
et al., 2015) uses an underlying model to divide the calibration instances into a number of
categories, based on a so-called Venn taxonomy. For each class label, the relative frequency
of calibration instances with that label and falling into a category is then used as the
estimated probability for test instances falling into the same category. Validity is achieved
by including the test instance in this calculation. To handle the fact that the true label
is unknown for test instances, every possible label is tried, and the resulting probability
distribution is calculated. This results in a set of C label probability distributions, where
C is the number of possible labels. For an extended introduction to Venn predictors,
see (Johansson et al., 2019).

A critical decision when using Venn predictors is to pick a suitable taxonomy. However,
for scoring classifiers, described below, Venn-Abers predictors (Vovk and Petej, 2012) offer
an alternative where the taxonomy is automatically optimized using isotonic regression.
Since Venn-Abers predictors are Venn predictors, they inherit the validity guarantees.

A scoring classifier is a classifier restricted to two-class problems that, when making
a prediction for a test object xi, outputs a prediction score s(xi), where a higher value
indicates a larger belief in label 1. To obtain the predicted class label from a scoring
classifier, the score is compared to a fixed threshold t, and the prediction is 1 if s(x) > t,
and otherwise 0. A Venn-Abers predictor requires a scoring classifier as the underlying
model. Instead of using a fixed threshold, an increasing function g is fitted using a number
of prediction scores with known true targets. This function, g(s(x)), can then be interpreted
as the probability that the label for x is 1, i.e., it is a calibrator. Venn-Abers predictors use
isotonic regression (Zadrozny and Elkan, 2001) for the fitting.

An isotonic calibrator is a step-wise, non-decreasing, regression function typically pro-
duced by the pair-adjacent violators algorithm. The algorithm starts with a set of input
probability intervals, where the borders are the scores of the calibration instances. It then
repeatedly merges adjacent intervals where the lower interval contains a higher (or equally
high) fraction of examples belonging to the positive class. This process continues until no
such pair of intervals can be found. When the algorithm has terminated, it outputs a func-
tion that, for each interval, returns the fraction of positive examples in the calibration set
in that interval.

A multiprobabilistic prediction from an inductive Venn-Abers predictor is produced as
follows:

1. Let {z1, . . . , zl+q} be a training set where each instance zi = (xi, yi) consists of two
parts; an object xi and a label yi.

2. Let the training set be divided into a proper training set ZT with q instances and a
calibration set {z1, . . . , zl}.

3. Train a scoring classifier using the proper training set ZT to produce the prediction
scores s0 for {z1, . . . , zl, (xl+1, 0)} and s1 for {z1, . . . , zl, (xl+1, 1)}.

4. Let g0 be the isotonic calibrator for {(s0(x1), y1), . . . , (s0(xl), yl), (s0(xl+1), 0)} and g1
be the isotonic calibrator for {(s1(x1), y1), . . . , (s1(xl), yl), (s1(xl+1), 1)}.

5. Let the probability interval for yl+1 = 1 be [g0(s0(xl+1)), g1(s1(xl+1))].

4



Calibrating Multi-Class Models

2.4. Multi-class calibration

For multi-class calibration, Zadrozny and Elkan (2002) suggested a one-vs-all approach,
training a binary classifier on each split before calibrating. In general, such an approach is
applicable to any underlying model, and to using any binary calibration technique. Exactly
how to combine the calibrated estimates is not obvious though.

When Manokhin (2017) used standard and cross Venn-Abers for multi-class calibra-
tion, a pair-wise (all-vs-all) approach was suggested and applied on models built by logistic
regression, support vector machines and neural networks. The overall result was that prob-
abilistic models calibrated with Venn-Abers were generally better calibrated than both the
uncalibrated predictors and when using Platt scaling.

As argued by Wenger et al. (2020), however, most modern classifiers are inherently
multi-class, thus offering an alternative to the traditional approach with one-vs-all or all-
vs-all schemes. More specifically, instead of training a number of models before calibrating
and aggregating, the predictions from the inherently multi-class model on a calibration set
can be used directly for calibration.

2.5. Probability Estimation Trees

Decision trees are interpretable models that are rather accurate and fast to train with
relatively few parameters to tune. The decision tree algorithm uses a greedy divide-and-
conquer strategy which iteratively splits the training data into smaller subsets using the
split that maximizes the gain as determined by a loss function. Every split results in an
internal node, using the split as a condition. Each subset is recursively split into smaller
and smaller parts until it is not possible to find any split that increase the gain. When no
more splits can be found, leaf nodes are created, using the most frequent class label in the
leaf as the prediction.

A decision tree producing probabilistic predictions is called a probability estimation tree
(PET) (Provost and Domingos, 2003). The most straightforward probability estimate for
a decision tree is to use the relative frequency of the classes in the leaf nodes. This is also
what is used by the DecisionTreeClassifier in scikit-learn.

2.6. Random forests

Random forests (Breiman, 2001) are ensembles consisting of random trees. A random tree
is a decision tree trained i) using bagging, and ii) by only considering a random subset of the
available attributes when choosing each split. When using bagging, a bootstrap replicate is
drawn by sampling q instances, with replacement, from q training instances.

When using the RandomForestClassifier in scikit-learn, the class probability of a single
tree is the fraction of samples of the same class in a leaf. In order to get the probability
estimates of the forest, the mean predicted class probabilities of all trees is calculated.

2.7. Extreme Gradient Boosting (xGB)

Extreme Gradient Boosting (Chen and Guestrin, 2016), often called XGBoost, is a highly
scalable implementation of gradient boosting (Friedman, 2001). A gradient boosting en-
semble is built sequentially, one tree at a time. At each iteration, the current ensemble
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predicts the training data. The gradients for each instance are calculated according to the
loss function and the gradients are used to determine gradient histograms for each attribute
and every leaf in the tree. The gradient histograms determine the gradient distribution,
for each combination of attribute and leaf and for every possible value of an attribute.
The gradient distribution of the right and left child of the parent leaf determines if an at-
tribute would be used as splitting criteria. The optimal split point, maximizing the gain as
determined by the loss function, is used to grow the tree.

XGBoost includes several improvements over the original gradient boosting algorithm,
intended to enable parallel and distributed computation of sparse data, and weighted quan-
tile sketch for approximate tree learning, for details see, (Chen and Guestrin, 2016).

The XGBClassifier in the xgboost package, implementing the algorithm in Python, uses
the same calculation to get the probability estimate as the RandomForestClassifier.

3. Method

In the suggested approach, an underlying model is first trained using a proper training set,
before it is applied to the calibration set, resulting in a set of confidence measures for each
label. The procedure then utilizes the same underlying model and calibration set for the
calibration of all test instances.

More specifically, to produce a probability estimate for a test instance, the label pre-
dicted by the underlying model is considered the positive class, and all other labels are
regarded as belonging to the negative class. After this, the actual calibration is performed
in the standard way for Platt scaling and Venn-Abers, resulting in a probability estimate
for the positive class, i.e., the label predicted.

It may be noted that for Platt scaling, the fitting is only performed once for each label,
but Venn-Abers requires two isotonic regressions for each test instance. The standard
approach, of course, trains at least C models, where C is the number of classes.

When comparing Venn-Abers calibrations to other techniques, the output probability
intervals (p0, p1), must be aggregated into a single probability estimate. In this study, we
follow the recommendation from Vovk and Petej (2012) and use a regularized value:

p =
p1

1− p0 + p1
(4)

In summary, we compare the following three setups:

• No external calibration (NoCal): Uses the output from the underlying model as prob-
ability estimates. Since this setup requires no calibration set, all available labelled
data were used for inducing the models.

• Platt scaling (Platt): One logistic function is fitted to the calibration set for each
label, considering all other labels as the negative class. For each test instance, the
label predicted by the underlying model is the positive class.

• Venn-Abers (VA): For each test instance, the label predicted by the underlying model
is considered the positive class, and then two isotonic regressions are fitted to the
calibration set; once augmented with the test instance labelled as the positive class,
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and once augmented with the test instance labelled as the negative class. The resulting
probability interval is then converted into a single probability estimate for the positive
class using eq. 4.

3.1. Experimental setup

In the experimentation, scikit-learn, was used and all parameter values were left at the
default settings with one exception. For the decision trees, the parameter min samples leaf
was set to 4, i.e., each leaf should contain at least four training instances. For the evaluation,
standard 10x10-fold stratified cross-validation was used. For Platt scaling and Venn-Abers,
the proper training set consisted of 2/3 of all the training instances and the calibration
set of 1/3. For the non-calibrated models, all training data was, as mentioned above, used
for generating the model. In the experiments, 20 publicly available multi-class data sets
from the UCI repository (Dua and Graff, 2017) were used. The data sets characteristics
are presented in Table 1, where #class is the number of classes, #inst. is the number of
instances and #attrib. is the number of input attributes.

Table 1: Data sets
Data set #class #inst. #attrib. Data set #class #inst. #attrib.

balance 3 625 4 tae 3 151 5
cars 4 1728 6 user 5 403 5
cmc 3 1473 9 wave 3 5000 40
cool 3 768 8 vehicle 4 846 18
ecoli 8 336 7 whole 3 440 7
glass 6 214 9 wine 3 178 13
heat 3 768 8 wineR 6 1599 11
image 7 2310 19 wineW 7 4898 11
iris 3 150 4 vowel 11 990 11
steel 7 1941 27 yeast 10 1484 8

For the evaluation, accuracy and area under the ROC-curve (AUC) are used to measure
the predictive performance. Investigating the quality of the calibration, we report log losses
and the expected calibration error (ECE). The log loss is calculated using

λlog =

{
−log p if correct

−log(1− p) if incorrect
(5)

where log is the binary logarithm and p the estimate for the predicted label. It should be
noted that the log loss function used (from scikit-learn) avoids infinite results by clipping
the probabilities making sure that they never are exactly 0 or 1.

When calculating ECE, the probability estimates for the predicted class are divided
into M (here M = 10) equally sized bins, before taking a weighted average of the absolute
differences between the fraction of correct (foc) predictions and the mean of the prediction
probabilities (mop), see Eq. 6 where n is the size of the data set and Bi represents bin i.

ECE =

M∑
i=1

|Bi|
n

∣∣∣foc(Bi)−mop(Bi)
∣∣∣ (6)
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4. Results

In this section, we first demonstrate the suggested approach before presenting the results
for each of the three underlying model types.

4.1. Demonstration

Fig. 1 shows an induced VA-tree for the Image data set. The tree parameter min weight -
fraction leaf was here set to 0.1 to force the tree to be small enough for this analysis. Each
leaf, with corresponding intervals for the calibrated probabilities, predict one of the seven
classes. The sizes of the intervals are dependent on the number of instances falling into
the leaves, with more data resulting in smaller intervals. As a consequence of the small
tree, with a large number of instances in each leaf, all intervals will be fairly tight. In a
fully-grown tree, the interval sizes could be expected to vary more, as a consequence of the
much larger variation in the number of instances falling into each leaf node. In the long
run, we would expect the true error rate in each leaf node to be within the interval as a
consequence of the probabilities being well-calibrated. In this example, we would expect to
be correct 66.7− 68.0 % of the time when predicting window, whereas we would be almost
certain when predicting sky or grass. In fact, both these leaves are 100 % accurate in our
example.

exgreen−mean <= 101.778
| sa turato in−mean <= 0.892
| | reg ion−centro id−c o l <= 158.500
| | | i n t en s i t y−mean <= 27.389
| | | | sa turato in−mean <= −1.876
| | | | | sa turato in−mean <= −2.151
| | | | | | P(0 . 705 , 0 . 718 ) c l a s s : f o l i a g e
| | | | | sa turato in−mean > −2.151
| | | | | | P(0 . 667 , 0 . 680 ) c l a s s : window
| | | | sa turato in−mean > −1.876
| | | | | P(0 . 791 , 0 . 802 ) c l a s s : b r i c k f a c e
| | | i n t en s i t y−mean > 27 .389
| | | | P(0 . 893 , 0 . 911 ) c l a s s : cement
| | reg ion−centro id−c o l > 158.500
| | | P(0 . 918 , 0 . 932 ) c l a s s : path
| sa turato in−mean > 0 .892
| | P(0 . 993 , 1 . 000 ) c l a s s : g r a s s
exgreen−mean > 101.778
| P(0 . 993 , 1 . 000 ) c l a s s : sky

Figure 1: Venn-Abers calibrated tree for the Image data set

Table 2 lists a few examples of instances predicted by random forest and XGBoost. A
decision-maker using the predictions from our proposed solution would use the information
in the prediction and probability columns. The target column provides the ground truth for
these instances as comparison. As can be expected, predictions with higher probabilities are
more likely to be correct. A direct consequence of the connection between interval size and
the amount of data is that smaller data sets generally have larger intervals, as can be seen
when comparing the tae (with only 151 instances) and the cmc (with 1473 instances) data
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sets. Despite very similar accuracy, tae have much wider intervals due to fewer instances.
The probabilities over an entire data set can be expected to average to values close to the
accuracy achieved on the data set. However, as can be seen, probabilities can range from
intervals including very low probabilities (rows 4, 5, and 11), to intervals including very
high probabilities (rows 2, 3, and 8).

Row Algorithm Data set Target Prediction Probability

1 RF tae Low Low P(0.40, 0.60)
2 RF tae High High P(0.83, 1.00)
3 RF tae High Medium P(0.50, 1.00)
4 xGB tae Medium High P(0.00, 0.21)
5 xGB tae Low Low P(0.14, 0.33)

6 xGB vehicle Opel Saab P(0.66, 0.67)
7 xGB vehicle Bus Bus P(0.75, 0.86)
8 xGB vehicle Van Van P(0.97, 1.00)

9 RF cmc No-use No-use P(0.45, 0.46)
10 RF cmc Short-term Short-term P(0.65, 0.66)
11 RF cmc Short-term No-use P(0.14, 0.25)

Table 2: Examples of predicted instances with the VA-calibrated intervals

4.2. Results for decision trees

Starting with the predictive performance, we see that using external calibration usually
results in lower accuracy and AUC. The reason is of course the need for a separate calibration
set reducing the labelled data available for the training of the model. Here it should be
noted, as described above, that in this setting both Platt scaling and Venn-Abers will predict
the same label as the underlying model. The ranking ability, i.e., the AUC is, on the other
hand, based on the calibrated probability estimates.

Table 3: Decision trees - predictive performance
Accuracy AUC Accuracy AUC

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance .803 .793 .793 .836 .783 .780 user .871 .871 .871 .783 .664 .666
cars .951 .945 .945 .932 .918 .922 vehicle .686 .675 .675 .661 .653 .652
cmc .521 .492 .492 .639 .643 .666 vowel .755 .719 .719 .730 .680 .683
cool .938 .935 .935 .832 .861 .947 wave .752 .744 .744 .625 .603 .607
ecoli .828 .812 .812 .699 .750 .763 whole .582 .550 .550 .661 .648 .652
glass .689 .680 .680 .682 .647 .653 wine .884 .908 .908 .701 .729 .775
heat .979 .978 .978 .901 .864 .937 wineR .594 .563 .563 .604 .602 .602
image .948 .945 .945 .838 .803 .918 wineW .570 .543 .543 .634 .606 .607
iris .947 .940 .940 .849 .860 .650 yeast .534 .539 .539 .661 .610 .606
steel .715 .692 .692 .705 .694 .756 Mean .754 .743 .743 .729 .711 .713
tae .526 .534 .534 .605 .603 .521 Mean rank 1.40 2.30 2.30 1.50 2.25 2.25

Before presenting the aggregated results for the calibration, we take a detailed look at
a few data sets exhibiting some typical patterns. Starting with Fig. 2, we can see a fairly
common picture where the calibration takes a very poorly calibrated model and reduces the
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ECE significantly. Here, the decision tree is extremely overconfident, actually returning a
large proportion of estimates very close to 1.0. Both Platt scaling and Venn-Abers lower
these estimates substantially, which of course is a good sign since the accuracy is just over
0.5. In fact, there are no calibrated estimates higher than 0.8.

Figure 2: Yeast data set - decision trees

Another similar example, also seen in a number of the data sets, is Fig. 3, where the
poorly calibrated tree is significantly improved, but with relatively high ECE:s as the end
result. Here it is interesting to see that while the decision tree have many estimates close
to 1.0, there are no calibrated estimates from Platt scaling or Venn-Abers higher than 0.9.

Figure 3: Glass data set - decision trees
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The last example for decision trees is Fig. 4 where the already rather well-calibrated tree
models are slightly improved using the calibration techniques. With an accuracy over 0.94,
it is no surprise that even the calibrated models produce most estimates close to 1.0. Still,
both Platt scaling and Venn-Abers lower the extreme estimates from the tree, resulting in
better calibration.

Figure 4: Image data set - decision trees

When looking at the aggregated results in Table 4, there is a clear ordering between
the three alternatives. The uncalibrated decision trees often exhibit very high log losses
and ECE:s, with the obvious interpretation that they normally are too overconfident in a
large majority of all predictions. Platt scaling significantly reduces this, generally resulting
in well-calibrated PET:s. While the differences are small in absolute numbers, Venn-Abers
actually improves on the Platt scaling results on a large majority of the data sets.

Table 4: Decision trees - calibration
Log loss ECE Log loss ECE

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance 1.536 .402 .391 .072 .070 .044 user 1.695 .345 .345 .077 .024 .030
cars .242 .124 .111 .021 .017 .014 vehicle 5.455 .591 .593 .219 .035 .025
cmc 3.508 .661 .660 .217 .033 .022 vowel 3.406 .549 .548 .127 .050 .051
cool .634 .172 .144 .036 .048 .027 wave 5.497 .543 .542 .185 .014 .008
ecoli 2.486 .427 .421 .116 .046 .038 whole 5.839 .652 .648 .247 .024 .031
glass 3.756 .608 .597 .163 .063 .063 wine 2.181 .254 .247 .082 .007 .024
heat .159 .068 .064 .012 .015 .009 wineR 6.446 .672 .670 .242 .032 .034
image .579 .162 .154 .027 .013 .011 wineW 6.219 .670 .670 .255 .013 .011
iris .527 .154 .164 .031 .020 .029 yeast 4.910 .673 .674 .242 .029 .019
steel 4.400 .554 .552 .175 .020 .017 Mean 3.196 .448 .444 .140 .031 .027
tae 4.452 .682 .688 .245 .048 .034 Mean rank 3.00 1.75 1.25 2.90 1.80 1.30
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Summarizing the results for decision trees, the main conclusion is that while the un-
derlying tree models are often extremely poorly calibrated, specifically overconfident, the
calibration techniques are able to turn these models into good or very good probabilistic
predictors. Regarding the predictive performance, the improved calibration, at least for
these rather small data sets, come at a price of lower accuracy and AUC, due to the fact
that less labelled data is available for generating the trees.

4.3. Results for random forests

Looking at the predictive performance in Table 5, it can be seen that access to more training
data is beneficial also for the random forests. While the differences in absolute numbers
are often small on individual data sets, the mean ranks show that the uncalibrated models
are significantly more accurate and have a significantly higher AUC than both Platt scaling
and Venn-Abers. Comparing Platt scaling to Venn-Abers, Platt scaling has a higher AUC
when considering the mean ranks, but it should still be noted that on a few data sets, like
Heat and Wine, the AUC is substantially lower than for Venn-Abers.

Table 5: Random forests - predictive performance
Accuracy AUC Accuracy AUC

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance .832 .851 .851 .947 .909 .906 user .908 .904 .904 .844 .822 .811
cars .986 .975 .975 .978 .960 .956 vehicle .750 .736 .736 .849 .830 .821
cmc .521 .516 .516 .636 .630 .626 vowel .972 .933 .933 .924 .896 .887
cool .950 .945 .945 .938 .891 .921 wave .854 .852 .852 .818 .815 .812
ecoli .873 .843 .843 .772 .810 .801 whole .706 .701 .701 .516 .509 .532
glass .786 .756 .756 .775 .749 .741 wine .982 .978 .978 .960 .575 .911
heat .986 .987 .987 .943 .817 .905 wineR .701 .661 .661 .750 .713 .709
image .981 .975 .975 .980 .969 .968 wineW .704 .660 .660 .770 .728 .725
iris .953 .945 .945 .911 .914 .931 yeast .620 .603 .603 .693 .684 .677
steel .783 .772 .772 .822 .804 .799 Mean .827 .809 .809 .822 .783 .805
tae .692 .583 .583 .619 .638 .654 Mean rank 1.20 2.40 2.40 1.35 2.15 2.50

’

For some data sets, like Vowel in Fig. 5, the uncalibrated random forest is extremely
underconfident. Luckily, calibration using either Platt scaling or Venn-Abers is able to
reduce the ECE substantially.
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Figure 5: Vowel data set - random forests

Another similar example is the Wave data set, where the random forest is again clearly
underconfident, see Fig. 6. Here, both calibration techniques create a number of very
confident predictions, leading to almost perfect calibration.

Figure 6: Wave data set - random forests

Actually, the random forests are underconfident on almost all data sets, especially for
the higher estimates. The one very different example is the CMC data set, see Fig. 7, where
the random forest is actually very overconfident. It is, of course, reassuring to see that both
Platt scaling and Venn-Abers are able to calibrate these models too, producing generally
lower estimates, thus resulting in significantly lower ECE:s.

13
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Figure 7: CMC data set - random forests

One of the few data sets where the calibrated models are worse than the uncalibrated
is TAE, see Fig. 8. Interestingly enough, while both Platt scaling and Venn-Abers lower
the confidences, they are still too confident for the predictions with the highest probability
estimates. All-in-all though, ECE:s of 5− 8% should probably be considered acceptable on
a data set where the model accuracy is under 0.7.

Figure 8: TAE data set - random forests

Considering the aggregated results for random forests in Table 6, we see that the two cal-
ibration techniques are able to substantially lower the log loss and significantly improve the
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ECE. Looking at both average results and mean ranks, Platt scaling actually outperforms
Venn-Abers, even if the differences are small.

Table 6: Random forests - calibration
Log loss ECE Log loss ECE

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance .240 .264 .264 .075 .051 .047 user .290 .258 .275 .076 .018 .046
cars .103 .067 .072 .071 .005 .015 vehicle .414 .437 .430 .057 .063 .029
cmc .710 .663 .655 .131 .055 .031 vowel .367 .172 .180 .263 .005 .019
cool .154 .138 .133 .005 .015 .019 wave .387 .334 .336 .115 .010 .007
ecoli .392 .360 .369 .061 .037 .046 whole .639 .612 .610 .086 .026 .033
glass .455 .486 .504 .081 .038 .069 wine .122 .101 .102 .080 .003 .041
heat .052 .052 .054 .023 .004 .018 wineR .528 .575 .576 .037 .032 .016
image .074 .062 .064 .040 .005 .012 wineW .516 .560 .555 .056 .041 .014
iris .166 .143 .145 .017 .014 .048 yeast .608 .620 .625 .021 .014 .018
steel .447 .426 .428 .074 .024 .016 Mean .364 .350 .352 .071 .027 .030
tae .617 .671 .655 .052 .078 .062 Mean rank 2.25 1.70 2.05 2.70 1.55 1.75

’

Summarising the random forest experiment, the main result is that the two calibration
techniques are able to successfully calibrate the most often underconfident random forests.
Again, the price paid is a small loss in predictive performance.

4.4. Results for xGB

As seen in Table 7, the predictive results are very similar also for xGB. Again, the need
for a separate calibration set leads to lower accuracy and AUC. It may be noted that when
using xGB as underlying models, Venn-Abers predictors clearly outperform Platt scaling
with the regard to AUC.

Table 7: xGB - predictive performance
Accuracy AUC Accuracy AUC

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance .872 .875 .875 .960 .923 .907 user .918 .901 .901 .856 .799 .835
cars .995 .986 .986 .993 .962 .980 vehicle .762 .745 .745 .842 .762 .792
cmc .512 .496 .496 .667 .659 .670 vowel .927 .873 .873 .882 .846 .861
cool .953 .943 .943 .904 .875 .909 wave .857 .852 .852 .830 .813 .832
ecoli .851 .833 .833 .806 .796 .814 whole .675 .661 .661 .572 .588 .575
glass .790 .734 .734 .756 .727 .749 wine .966 .978 .978 .970 .505 .869
heat .991 .987 .987 .893 .844 .862 wineR .697 .641 .641 .720 .659 .671
image .983 .976 .976 .970 .930 .974 wineW .687 .649 .649 .710 .691 .689
iris .953 .940 .940 .735 .683 .848 yeast .594 .580 .580 .681 .662 .656
steel .804 .788 .788 .835 .813 .811 Mean .822 .800 .800 .810 .760 .798
tae .656 .563 .563 .618 .658 .659 Mean rank 1.20 2.40 2.40 1.50 2.65 1.85

’

Looking at a few general patterns, Fig. 9 is one common example where the xGB is very
overconfident, specifically returning a high number of estimates close to 1.0. Here, both
Platt scaling and Venn-Abers move the bulk of estimates to substantially lower estimates,
which make sense because the overall accuracy is around 0.7
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Figure 9: WineR data set - xGB

Unfortunately, and somewhat unexpected, there are a few data sets where the calibration
is clearly detrimental. One such case is shown in Fig. 10. In this example, a large majority
of all estimates are very high. Venn-Abers and, to a smaller degree, Platt scaling are
slightly underconfident on these. Venn-Abers also returns more low estimates than the
other techniques.

Figure 10: Balance data set - xGB

Looking finally at one of the easiest data sets, we see in Fig. 11 that Venn-Abers again
is somewhat underconfident for the estimates close to 1.0. Here, where the accuracy of the
model is almost 0.98, Platt scaling actually finds the perfect balance when returning almost
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all estimates close to but not equal to 1.0. Venn-Abers, on the other hand, becomes too
conservative and is again underconfident for the highest estimates.

Figure 11: Wine data set - xGB

When analyzing the overall calibration results for xGB in Table 8 we see that for a
large majority of the data sets, the calibration does indeed reduce the ECE:s. On average,
the ECE:s go from 0.084 to 0.038, which is a substantial difference. Regarding log losses,
however, there is only a small gain using calibration for the xGB models. In an outright
comparison, Platt scaling lowers the log loss on nine of twenty data sets, compared to the
uncalibrated model. The corresponding number for Venn-Abers is eleven.

Table 8: xGB - calibration
Log loss ECE Log loss ECE

NoCal Platt VA NoCal Platt VA NoCal Platt VA NoCal Platt VA

balance .181 .253 .242 .034 .058 .051 user .249 .291 .264 .041 .018 .051
cars .020 .044 .041 .011 .005 .011 vehicle .493 .506 .452 .127 .062 .034
cmc .780 .660 .638 .195 .069 .047 vowel .189 .289 .282 .021 .032 .030
cool .125 .161 .140 .017 .029 .030 wave .382 .355 .324 .068 .054 .010
ecoli .429 .381 .370 .089 .055 .058 whole .966 .629 .641 .199 .019 .048
glass .532 .525 .519 .118 .076 .059 wine .075 .108 .120 .020 .005 .055
heat .036 .058 .060 .003 .010 .024 wineR .667 .627 .609 .150 .038 .031
image .037 .076 .059 .004 .006 .013 wineW .578 .600 .596 .070 .040 .014
iris .186 .181 .171 .038 .011 .057 yeast .801 .647 .648 .187 .041 .038
steel .431 .432 .406 .089 .050 .020 Mean .401 .375 .362 .084 .038 .038
tae .857 .678 .664 .204 .090 .085 Mean rank 2.00 2.35 1.65 2.35 1.80 1.85

’

Summarizing the xGB experiment, we see that the calibration is again most often able
to improve the probability estimates. Specifically, on an aggregated level and using ECE
as the main metric, the often seriously overconfident xGB-models are by Platt scaling and
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Venn-Abers turned into well-calibrated probabilistic classifiers. Similar to decision trees
and random forests, xGB also suffers from having to use smaller training sets, resulting in
slightly worse predictive performance.

4.5. Prediction intervals for VAP

One advantage for Venn-Abers compared to other calibration techniques is the potentially
more informative probability intervals. Table 9 shows the mean values for the low and high
ends of the prediction intervals, together with the empirical accuracies. Starting with the
decision trees, we see that for eight of twenty data sets, the empirical accuracy is actually
outside the interval. While this is slightly discouraging, it should be remembered that for
decision trees, there will be a number of identical estimates since every leaf will have one
prediction interval, i.e., each instance falling into that leaf will get the same prediction
interval, resulting in a set of very tight intervals. For the random forests and for xGB,
however, where the estimates are more granular, we see larger intervals, which, on the other
hand, almost always cover the empirical accuracies.

Table 9: VAP probability intervals
Decision tree Random forest xGB

Low High Acc Low High Acc Low High Acc

balance .766 .793 .793 .788 .838 .851 .811 .866 .875
cars .938 .947 .945 .956 .975 .975 .973 .991 .986
cmc .498 .512 .492 .511 .539 .516 .512 .545 .496
cool .914 .929 .935 .916 .950 .945 .902 .949 .943
ecoli .782 .818 .812 .796 .870 .843 .760 .847 .833
glass .591 .654 .680 .648 .758 .756 .630 .754 .734
heat .970 .981 .978 .963 .991 .987 .958 .990 .987
image .946 .952 .945 .959 .976 .975 .964 .981 .976
iris .900 .958 .940 .872 .982 .945 .876 .977 .940
steel .704 .713 .692 .758 .781 .772 .775 .800 .788
tae .487 .554 .534 .515 .643 .583 .572 .671 .563
user .849 .880 .871 .839 .905 .904 .851 .914 .901
vehicle .674 .692 .675 .722 .766 .736 .719 .769 .745
vowel .670 .686 .719 .907 .939 .933 .835 .877 .873
wave .736 .739 .744 .847 .858 .852 .839 .853 .852
whole .531 .561 .550 .689 .732 .701 .610 .673 .661
wine .885 .922 .908 .924 .996 .978 .900 .994 .978
wineR .563 .572 .563 .659 .685 .661 .632 .659 .641
wineW .530 .534 .543 .648 .659 .660 .636 .649 .649
yeast .527 .539 .539 .585 .613 .603 .559 .592 .580

Mean .723 .747 .743 .775 .823 .809 .766 .818 .800
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5. Concluding remarks

We have proposed a novel approach for calibrating multi-class models. Rather than pro-
viding probability estimates for all possible labels for each prediction, we here consider the
task of estimating the probability that the class label predicted by the underlying model
is correct. This avoids a translation of the multi-class problem into a set of binary clas-
sification tasks, for which multiple (binary) calibrators have to be generated and merged.
In addition to the increased computational complexity, traditional methods also makes the
interpretation of the final output more difficult. In contrast, the proposed approach requires
only one calibration step, with no need for combining the output of multiple calibrators,
hence maintaining the interpretability of the underlying models.

We have presented results from an empirical investigation with 20 data sets and three
learning algorithms; decision trees, random forests and xGB. Uncalibrated models have been
compared to models calibrated with the proposed approach, using either Platt scaling or
Venn-Abers for the actual calibration step. The results show that the quality of the output
probabilities, as measured by log loss and expected calibration error, improve compared to
not using calibration, and most clearly so for individual decision trees. Platt scaling was
observed to perform on par with Venn-Abers, except for PETs, when there was a clear
difference in favor of the latter technique.

There are several directions for future research. One suggestion concerns investigating
additional underlying models and possibly identifying model classes for which calibration is
more effective than for others. Various settings of the hyper-parameters of the techniques,
including the fraction of training instances to be used for calibration, could be explored
and also the option to use out-of-bag calibration for random forests, like for any other
technique that employs bagging. In addition, the usefulness of complementing an underlying
predictive model with (well-calibrated) probability estimates of the correctness, as provided
by the proposed approach, remains to be evaluated. The employed performance metrics
give an indication of how accurate the probability estimates are, but does not demonstrate
the actual gains of the approach, e.g., in terms of increased utility or reduced costs.
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