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Abstract

Six different strategies for updating split conformal predictive systems in an online
(streaming) setting are evaluated. The updating strategies vary in the extent and frequency
of retraining as well as in how training data is split into proper training and calibration
sets. An empirical evaluation is presented, considering passenger booking data from a ferry
company, which stretches over a number of years. The passenger volumes have changed
drastically during 2020 due to COVID-19 and part of the evaluation is focusing on which
updating strategies work best under such circumstances. Some strategies are observed
to outperform others with respect to continuous ranked probability score and validity,
highlighting the potential value of choosing a proper strategy.

Keywords: Conformal predictive distributions · Split conformal predictive systems · con-
cept drift

1. Introduction

Today, many companies with less quantitatively focused staff tend to do a lot of manual
work. With the increased focus on artificial intelligence, companies are however now aiming
for automating many manual steps in their respective businesses. For a ferry company,
such as Stena Line, it is important to understand future volumes for the different capacities
on board the vessels, in both the long and short term. Understanding volumes of basic
capacities such as passengers, cars and freight allows for optimizing staffing both on board
and in the port, leading to more efficient operations. These volume estimates play a key
role when estimating demand for on board entertainment, shops and restaurants.
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Forecasting passenger volumes and optimization of ticket pricing have also been exten-
sively investigated in the airline industry (Littlewood, 2005; Weatherford and Bodily, 1992;
McGill and van Ryzin, 1999; Belobaba, 2016) where models are updated at specific decision
points described in days before departure. Predictions are typically made using instance
based calculations but both linear regressors and time series models have been evaluated.
Airlines typically optimise the capacity as the number of seats on an aircraft, and switch
aircraft if demand is significantly lower or higher. Due to the low degree of standardisation
of vessels and ports coupled with the comparatively high costs of moving vessels that is
not an option in the ferry transportation business. This means that there can be signifi-
cant deviations of on board passenger volumes in the high season and in the low season,
for example a ferry that can take 2000 passengers in high season could still sail with less
than 50 passengers in low season. Day of week and time of day are two other parameters
that influence passenger volumes on board, and volumes tend to fluctuate even short term
prior to departure. This requires forecasts that not only result in point predictions but can
deliver bounds on uncertainties as well. Since the volume estimates are key components
for both efficient scheduling of staff and ordering of required on board consumables, models
resulting in well-calibrated probability distributions would allow for efficient operational
decision making where uncertainties can be taken into account by decision makers.

Conformal predictive systems (Vovk et al., 2020) generate valid predictive distributions
under the assumption that the training and test data is exchangeable. Conformal predictive
distributions are useful in decision making contexts as they provide more information than
point predictions, as produced by standard regressors, and prediction intervals, as produced
by conformal regressors. The original approach to forming predictive distributions was
formulated as a transductive approach, incorporating new observations one by one. In
theory, such a formulation directly fits an online (streaming) scenario. However, due to
that the transductive framework requires training and calibration for each new observation,
the computational cost often becomes too high in practical applications. To reduce this
cost, the more efficient Split Conformal Predictive Systems (SCPS) have been proposed
(Vovk et al., 2020), requiring model training and calibration to take place only once.

The Covid-19 pandemic has had a dramatic impact on most businesses; within the
transportation sector the effects have been both positive and negative. On the one hand,
people have not been allowed to cross borders due to lock down measures in trying to
restrict the spread of the SARS-CoV-2 virus. On the other hand, some other activities,
such as internet shopping, have increased, which have driven an increase in transportation
of goods. Regardless of the type of business, it is extremely important to be able to react
on sudden changes. From a predictive modeling perspective, this highlights the importance
of being able to detect or adapt to changes in the underlying data distribution, something
which is commonly referred to as concept drift (Webb et al., 2016).

In a real streaming scenario, where observations are collected over longer periods of time
and concept drift may occur, the choice of strategy to update the predictive model may
have a large impact on the resulting predictive performance. For standard (point) predic-
tive models, a large variety of approaches for detecting and adapting to concept drift have
been proposed and evaluated, see e.g. (Gama et al., 2014) for an overview. However, for
conformal prediction, and conformal predictive systems in particular, such investigations
are relatively rare, mainly focusing on detecting violations of the exchangeability assump-
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tion rather than adapting to such changes, see e.g. (Fedorova et al., 2012; Volkhonskiy
et al., 2017; Vovk et al., 2021). Conclusions drawn from adapting point predictors do not
necessarily carry over to conformal predictors, since the latter may not only update the
underlying model (point predictor) but also the calibration set. This means that separate
investigations of the latter are motivated.

In this study, we will evaluate different strategies for updating conformal predictive
systems in the context of streaming data, and in particular investigate their effectiveness in
the presence of extreme changes in the underlying data distribution.

The remainder of this paper is structured as follows. In Section 2, we restate the
definition of Split Conformal Predictive Systems (Vovk et al., 2020), outline the algorithm
that will be used for detecting concept drift (Simple Jumper) (Vovk et al., 2021) and
describe six strategies for updating the underlying model and calibration set. In Section
3, we describe the experimental setup and present the results. Finally, in Section 4, we
summarize the main findings of the investigation and point out directions for future research.

2. Methods

We first recapitulate split conformal predictive systems and the Simple Jumper algorithm
for detecting violations of the exchangeability assumption. We then define the six different
strategies that will be evaluated. Finally, we present the performance metrics that will be
used in the evaluation.

2.1. Conformal predictive systems

Conformal predictive systems for regression output well-calibrated cumulative probability
distributions over the possible target values. In this paper, we utilize a computationally
efficient variant, called Split Conformal Predictive System (SCPS), which was introduced
in (Vovk et al., 2020).

Let {z1, z2, . . . , zn} be a set of observations, where zi = (xi, yi). We assume a scenario
where the conformal predictive system is given a set of m observations for proper training,
i.e.,: {z1, . . . , zm} and n −m corresponding examples for calibration. An outline of SCPS
is shown in Algorithm 1. Here, ŷ is a prediction of a machine learning algorithm using the
proper training set and σ̂ is an estimate of the quality of ŷ. In the outline the conformity
function used is defined as:

Am(z1, . . . , zm, (x, y)) :=
y − ŷ
σ̂

, (1)

which yields

Ci = ŷ +
σ̂

σ̂m+i
(ym+i − ŷm+i), i = 1, . . . , n−m (2)

which is directly used in Algorithm 1. The predictive distribution is then defined as:

Q(z1, . . . , zn, (x, y), τ) :=


i+τ

n−m+1 if y ∈ (C(i), C(i+1)) for i ∈ {1, 1, . . . , n−m},

i′+1+(i′′−i′+2)τ
n−m+1 if y = C(i) for i ∈ {1, . . . , n−m},

(3)
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where m < n, i′ := min{j|C(j) = C(i)}, i′′ := max{j|C(j) = C(i)} and τ ∼ U(0, 1) is
independently sampled for each yi.

Algorithm 1 Split Conformal Predictive System

Input: Proper training set {z1, . . . , zm}, calibration set {zm+1, . . . , zn}, test object x.
for i = 1, . . . , n−m do

Ci = ŷ + σ̂
σ̂m+i

(ym+i − ŷm+i).

end
Sort Ci in increasing order such that C(1) ≤ . . . ≤ C(n−m)

Set C0 = −∞ and Cn−m+1 =∞
Return the predictive distribution Q.

2.2. Conformal Martingales

Changes in the generating distribution can result in that the predictive ability of the model
is reduced over time. In settings where the generating distribution is expected to change,
detecting such changes becomes very important. One approach to detect changes is to
apply a betting martingale such as the Simple Jumper, described in (Vovk et al., 2021),
and outlined in Algorithm 2. When Algorithm 2 returns an Si greater than a predefined
threshold, one may assume that a change has occurred.

Algorithm 2 Simple Jumper

Input: p-values (p1, p2, . . .), parameter J
fε(p) = 1 + ε(p− 0.5)
C−1 = C0 = C1 = 1/3
C = 1
for i = 1, 2, . . . do

for ε ∈ {−1, 0, 1} do
Cε = (1− J)Cε + (J/3)C

end
for ε ∈ {−1, 0, 1} do

Cε = Cεfε(pi)
end
Si = C = C−1 + C0 + C1

end
Return (S1, S2, . . .)

2.3. Updating strategies

We assume a scenario where the conformal predictive system is given an initial sequence of
n training examples (objects with labels), i.e., (z1 = (x1, y1), . . . , zn = (xn, yn)), and then
evaluated on k test examples, where for each test example zn+i ∈ {zn+1, . . . , zn+k}. The
conformal predictive system is assumed to have access to the object xn+i but not the label
yn+i.

All strategies considered here, Strategies 1-6, for forming conformal predictive systems
split the initial sequence into a proper training and calibration set, which are given as input
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to Algorithm 1. The six strategies that are considered in this study vary in how each
subsequent observation is handled, e.g., how the respective proper training and calibration
sets are updated.

Strategy 1 (S1) The initial split conformal predictive system (SCPS) is kept unchanged
and thus new data is discarded.
Input: training sequence Zt = (z1, . . . , zn), test sequence (zn+1, . . . , zn+k)
randomly split Zt into Zp and Zc
for i = 1, . . .,k do

Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yn+i

end

Strategy 2 (S2) The underlying model of the SCPS is kept unchanged, while the calibra-
tion set is replaced every fth test observation with the l latest observations. In essence, the
calibration set is updated using a sliding window of size l, moving f observations at each
update.

Input: training sequence (z1, . . . , zn), test sequence (zn+1, . . . , zn+k), parameters f and l
Zp = (z1, . . . , zn−l)
Zc = (zn−l+1, . . . , zn)
for i = 1, . . .,k do

if i mod f = 0 then
Zc = (zn+i−1−l, . . . , zn+i−1)

end
Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yn+i

end

Strategy 3 (S3) A new SCPS is produced every fth observation, using all observed ex-
amples, which are split randomly into a proper training and a calibration set.

Input: training sequence Zt = (z1, . . . , zn), test sequence (zn+1, . . . , zn+k), parameter f
randomly split Zt into Zp and Zc
for i = 1, . . .,k do

if i mod f = 0 then
randomly split Zt into Zp and Zc

end
Qi = SCPS(Zp, Zc, xn+i)
Zt = Zt + zn+i
evaluate Qi w.r.t. yi

end
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Strategy 4 (S4) A new SCPS is produced every fth example, where the l most recent
examples are split randomly into a proper training and calibration set.

Input: training sequence Zt = (z1, . . . , zn), test sequence (zn+1, . . . , zn+k),
parameters f and l
Zt = (zn−l+1, . . . , zn)
randomly split Zt into Zp and Zc
for i = 1, . . .,k do

if i mod f = 0 then
Zt = (zn+i−l, . . . , zn+i−1)
randomly split Zt into Zp and Zc

end
Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yi

end

Strategy 5 (S5) Similar to S2, but the calibration set is only updated when a change
is detected (using SimpleJumper). The size of the updated set is not predetermined, but
contains the largest number of the most recent examples for which SimpleJumper will not
detect a change.

Input: training sequence Zt = (z1, . . . , zn), test sequence (zn+1, . . . , zn+k),
parameters m and J
randomly split Zt into Zp and Zc
s = 1
for i = 1, . . . , k do

Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yn+i
pi = Qi(yn+i)
S1,i = SimpleJumper((ps, . . . , pi), J)
if S1,i > 100 then

j = 0
S2,0 = SimpleJumper((pi), J)
while S2,j < 100 & i− j ≥ s do

j = j + 1
S2,j = SimpleJumper((pi, . . . , pi−j), J)

end
Zc = (zn+i−j , . . . , zn+i)
s = i

end

end

2.4. Evaluation

To evaluate the overall performance of the strategies, we use the same loss function as in
(Vovk et al., 2020), namely Continuous Ranked Probability Score (CRPS). CRPS measures
the squared error of a cumulative distribution function compared to the oracle, a step
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Strategy 6 (S6) Similar to S5, but where both the calibration and the proper training set
are updated when a change is detected.

Input: training sequence Zt = (z1, . . . , zn), test sequence (zn+1, . . . , zn+k),
parameters m and J
randomly split Zt into Zp and Zc
s = 1
for i = 1, . . . , k do

Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yn+i
pi = Qi(yn+i)
S1,i = SimpleJumper((ps, . . . , pi), J)
if S1,i > 100 then

j = 0
S2,0 = SimpleJumper((pi), J)
while S2,j < 100 & i− j ≥ s do

j = j + 1
S2,j = SimpleJumper((pi, . . . , pi−j), J)

end
Zc = (zn+i−j , . . . , zn+i)
Zp = (z1, . . . , zn+i−j−1)
s = i

end
Qi = SCPS(Zp, Zc, xn+i)
evaluate Qi w.r.t. yn+i

end

function at the label. Let F be the cumulative distribution and yi the label for instance i
then CRPS is defined as:

CRPS(F, yi) =

∫ ∞
−∞

(F (y)− 1y>yi)
2dy. (4)

To determine if the methods produce valid probabilistic distributions we look at the
distribution of the labels location on our cumulative distribution functions generated for
the evaluation dataset. For valid strategies, the cumulative probabilities for the observed
target values in the test set should be uniformly distributed between zero and one. This
means that for a chosen probability on the distribution function the proportion of labels
which in fact are smaller than the corresponding value should be equal to the probability.
Let αi = F (yi), i.e. αi is the value of the probability distribution at the point of the
label. Then, to generate a calibration plot we calculate the percentage of α that are smaller
or equal to the values {0, 0.01, 0.02, . . . , gi, . . . , 1}. For valid system where there are N α
1
N |j : αj ≤ gi| = gi, i.e. the proportion of α which are smaller or equal to a value gi is
gi. To quantify the performance from the calibration plots the L2 norm of the distance
from the theoretical line, is calculated for each strategy, where L2(d) =

√
d21 + . . . d2n and

di = 1
N |j : αj ≤ gi| − gi.
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3. Experiments

In this section, we first describe the experimental setup and then the results of the experi-
ment.

3.1. Experimental setup

The experiments concern Stena Line passenger booking data for all departures on one route
between 2017 and 2020. Due to COVID-19 there was a significant drop in the number of
passengers in 2020. To simulate passenger volumes going back to normal in 2021 without
generating synthetic data the available data was reordered. The data from 2017 was moved
to follow 2020 and relabeled as 2021, see Figure 1. The features of the data set are sum-
marized in Table 1. The target variable, NO OF BOARDED GUESTS, is the number of
guests that had boarded at the time of departure.

Figure 1: Original data and reordered data.

For each strategy presented in Section 2.3, the experiment was run with and without the
booking state, i.e., with and without the features NO OF BOOKINGS and NO OF GUESTS,
which represent the number of bookings and number of guests, respectively, two weeks before
the departure. The features used in both cases were WEEKDAY, MONTH, WEEKEND
and WEEK and when the booking state was used the features NO OF BOOKINGS and
NO OF GUESTS were also included. Each individual experiment was run 10 times and
the average results are reported.

The parameters for the strategies were selected as follows; n = 712 such that initial data
sequence contained the samples from 2018 and 2019, i.e. zi, i ∈ {1, 2 . . . , n = 712}. The
updating frequency parameter was set to f = 7 to mimic a weekly update. In strategy 2,
to isolate the effects of only changing the data samples in the calibration set and not the
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sizes, the size of the sliding window was set to l = 214. In strategy 4 the size of the sliding
window was set to l = 712 in order to show the effect of changing the data samples available
for training but avoid the effect of changing the number available samples.The threshold
for detecting a change in Algorithm 2 was set to Si > 100 which is in line with (Vovk et al.,
2021). In Algorithm 1 the quality, σ̂ of the predictions, ŷ was not estimated, the parameter
was set as σ̂ = 1. The parameter J in Algorithm 2 was set to J = 0.01. The underlying
model used was Random Forest (Pedregosa et al., 2011), which was only retrained when a
strategy updated the proper training sequence.

Feature Description

WEEKDAY Day of the week encoded as integers, {0, 1, . . . , 6}
MONTH Month as an integer {1, 2, . . . , 12}

WEEKEND 1 if departure is in on Saturday or Sunday, 0 otherwise {0,1}
WEEK Week number, {1, 2, . . . , 52}

NO OF BOOKINGS Number of unique bookings for the departure
NO OF GUESTS Number of passengers booked for the departure

NO OF BOARDED GUESTS Number of passengers boarded at the time of departure

Table 1: Features included in data set.

3.2. Experimental results

For each strategy, CRPS scores were calculated for the entire evaluation data set as well
as for the first and second year separately. The averages of the CRPS scores from the ten
runs with booking state are presented in Table 2 and without booking state in Table 3. The
lowest (best) value in each column is highlighted with bold-face. Table 4 and Table 5 show
the L2 norm of the deviation in the calibration plots for the runs with and without booking
state, respectively.

Figure 2 includes a calibration plot for each strategy with and without booking state.
Each plot is generated from the outputs of the 10 runs for the given strategy and feature
set. Each sub figure shows a calibration plot computed from the output from year 2019
(Y1), 2020 (Y2) and both 2019 and 2020 (Y1+Y2).

Table 2: CRPS with the booking state
Strategy Y1+Y2 Y1 Y2

S1 13.64 13.21 14.08
S2 15.32 17.19 13.45
S3 12.55 11.29 13.80
S4 13.39 12.28 14.49
S5 14.15 13.59 14.71
S6 13.09 11.92 14.28
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Table 3: CRPS without booking state
Strategy Y1+Y2 Y1 Y2

S1 47.38 59.03 35.70
S2 48.80 54.65 42.96
S3 33.15 30.92 35.38
S4 33.49 28.59 38.39
S5 41.15 44.29 37.95
S6 30.82 25.61 36.15

Table 4: L2-norm with booking state
Strategy Y1+Y2 Y1 Y2

S1 0.57 0.69 0.47
S2 0.18 0.28 0.17
S3 0.21 0.51 0.33
S4 0.08 0.32 0.32
S5 0.19 0.15 0.37
S6 0.47 0.42 0.79

Table 5: L2-norm without booking state
Strategy Y1+Y2 Y1 Y2

S1 0.98 2.08 0.17
S2 0.16 0.55 0.55
S3 0.15 0.47 0.23
S4 0.07 0.43 0.40
S5 0.63 0.87 0.53
S6 0.74 0.40 1.13

3.3. Discussion

Which strategy performs the best apparently depends on the performance metric and the
dataset. When CRPS is used as a metric, strategy 3 appears favorable performing well for
both 2020 and 2021, and feature sets. However, if the L2-norm is used, strategy 2 may be
preferred in the case when the booking state is included but when it is not strategy 4 would
perhaps be preferred. In general the differences between the best methods are rather small.

When comparing the results in Table 2 and 3, it is clear that the overall performance,
as measured by CRPS, drops substantially when the booking state is not used. This may
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(a) With booking state (b) Without booking state

(c) With booking state (d) Without booking state

(e) With booking state (f ) With booking State

(g) With booking state (h) Without booking state
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(i) With booking state (j ) Without booking state

(k) With booking state (l) Without booking state

Figure 2: Calibration plots for the evaluated strategies with and without booking state.
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be explained by the fact that the booking state two weeks before a departure is highly
correlated to the number of passengers at the departure, which makes the prediction task
easier. When the passenger volumes decrease, the correlation between the booking state
and the number of passengers at departure still remains. This may also explain why the
L2 norms are lower for most strategies when the booking state is included as can be seen
in Table 4 and 5. When looking the L2 norms, the combined value for 2020 and 2021
(Y1+Y2), appears to be better than both 2020 (Y1) and 2021 (Y2). This is however due
to a skew in the output from 2020 and 2021 which cancel each other out, in 2020 the
predictions are too high and in 2021 the predictions are too low. Which leads to a skew
in the predictive distributions, clearly exemplified by Figure 2(d). In the experiments, the
updates for strategies S2, S3 and S4 were done quite often (every seventh observation),
but similar results were achieved by using Algorithm 2 to determine when an update was
needed, resulting in much fewer updates.

4. Concluding remarks

The presented experimental results show that employing a strategy for updating split
conformal predictive systems can significantly improve the performance, as measured by
continuous-ranked probability score (CRPS) and L2-norm of the deviation in the calibra-
tion. No clear winner among the strategies was observed in the experiment. However,
updating the underlying model and calibration set with the most recent data is better than
not updating the model and calibration set, independently of what dataset is considered. In
addition, we see that the application of martingales to detect concept drift, as implemented
by the Simple Jumper algorithm, can clearly reduce the amount of retraining required, hence
reducing the computational cost required for keeping high performing models available in
the online setting.

There are several possible directions for further research. One obvious direction in-
volves conducting more large-scale empirical investigations, covering additional datasets
and learning algorithms as well as concept drift of different types, e.g., with less abrupt
data distribution shifts than what has been considered here. Another direction concerns
developing and evaluating more complex updating strategies, e.g., including tuning of the
employed hyperparameters, such as the threshold for the Simple Jumper algorithm. An
important direction for future research includes evaluating the strategies in real decision
making contexts, e.g., by calculating the actual profit from using the different strategies.
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