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Abstract

This paper introduces a probabilistic guaranteed prediction method for trajectory data
of the hypersonic flight vehicle classification problem. This paper devoted two problems:
(1) hypersonic flight vehicle trajectory classification algorithm using functional data anal-
ysis method, and (2) a distributions-free uncertainty quantity for the classification results
applying conformal prediction methodology. Our approach provides explicit finite-sample
guarantees for any data set by using functional data analysis methods, which map the
original data into feature space. The distribution-free uncertainty quantity results for the
label of new objects include two indications, such as confidence and credibility respectively.
Lastly, the proposed method aims to communicate instance-wise uncertainty under the
probabilistic guaranteed and generate a prediction set at a user-specified confidence level
for the hypersonic flight vehicle classification problem.

Keywords: Hypersonic flight vehicle; Conformal prediction; Distribution-free uncertainty
Quantity; Functional data analysis; Support Vector Machines

1. Introduction

Making an accurate classification, based on the observed trajectories facts, is of intense
demand in hypersonic flight vehicle (HFV) trajectory discrimination. Intuitively, in many
respects, the mainstream of the classical point view of the trajectory is the time series
analysis, and there is much more research using deep learning-based approaches to the raw
observed trajectory for prediction and classification (Gaiduchenko and Gritsyk, 2019; Shi
and Wang, 2020; Bartusiak et al., 2021; Xie et al., 2021). All of these reveal that the progress
of classification has made it possible to solve ever more difficult problems in a wide variety
of HF'V classification fields. However, a major drawback remains that there is no confidence
measure for the prediction of output value for particular new inputs (Gammerman and Vovk,
2006). For example, traditional machine learning and deep learning algorithms for pattern
recognition just output simple predictions, without any associated uncertainty quantity for
the results of algorithms (Vovk et al., 2005; Gawlikowski et al., 2021). Confidence and
credibility measures of uncertainty quantity is an attraction indication of how likely each
prediction is of being correct and it makes sense of information to evaluate the performance.

The prediction that is associated with some kind of valid uncertainty quantity is highly
desirable in many risk-sensitive applications, such as those used for medical diagnosis
(Nouretdinov et al., 2013), security (Balasubramanian et al., 2014), healthcare (Vazquez
and Facelli, 2022), and various empirical sciences. In fact, such valid uncertainty quantity
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information can benefit the application of the design adaptive systems, as the results of
confidence values can be used to determine the way in which prediction will be arranged.
For instance, a filtering discriminate system can be employed so that only predictions which
satisfy a specified level of confidence will be taken into account. There are two main areas
in mainstream learning algorithms that can be used in order to obtain some confidence
measures: the Bayesian framework and the theory of probably approximately correct (PAC
theory) (Valiant, 1984). In order to apply the Bayesian framework one is required to have
some prior distribution knowledge about the data generation. When some prior knowledge
on the distribution of the data is known, Bayesian methods provide valid optimal decisions.
However, for empirical science, the required knowledge is not available. Generally, one has
to assume the existence of a general “rule”.

There is a commendable place that conformal prediction is a suitable and informative
method to overcome this gap. Conformal prediction obtains confidence measure was pro-
posed by Vovk et al. (2005). It is developed on top of any learning algorithm, especially
for the “Block Box” models, to build distribution-free uncertainty quantity values. Instead
of the traditional statistical methods, which provide the average treatment effect measure-
ments, conformal prediction provides a measure of confidence and credibility measurements
for individual treatment effects and does not require a specific distribution assumption.
Confidence measures how likely our prediction is under the adoption of learning algorithms
and the credibility serves as an indication of how suitable the training data are for classi-
fying the test examples. In contrast with the Bayesian method and PAC theory, conformal
prediction gives a probabilistic guarantee valid uncertainty measure, as they are only based
on the general independently and identically distributed (I.I.D.) assumption.

Meanwhile, when we operate the hypersonic flight vehicle classification problem, data
should be considered as discretized functions rather than as standard scale vectors. So
from the point of the functional perspective, it provides a powerful tool for many em-
pirical science processes. Typical examples arise out of temporal-spatial structure data,
longitudinal data, and trajectory data (Rossi and Villa, 2006; Hyndman and Ullah, 2007;
Martin-Barragan et al., 2014). The raw observation facts are the dependent data, as men-
tioned in Dashevskiy and Luo (2011); Chernozhukov et al. (2018); Xu and Xie (2021), to
apply conformal prediction methods to dependent data, a major challenge is incompatible
with the L.I.D. assumption. However, when we map the dependent data onto the feature
space, represented by orthogonal basis function, and then we can apply the machine learn-
ing methods to the obtained finite-dimensional data, a conformal prediction approach to
explore functional data with cluster can be found in Lei et al. (2015).

In this paper, we proposed a conformal prediction method of the underlying algorithm
under functional data analysis to provide a probabilistic guarantee valid confidence and reli-
ability set prediction for HF'V classification. Using proposed conformal prediction methods,
we can obtain the p-values, confidence, and reliability measure, and produce a set predic-
tions for instance-wise examples to any specified significance level. Additionally, the validity
and efficiency of learning algorithms under different functional data analysis methods, such
as B-spline and the Fourier basis function methods, are introduced and the different signifi-
cance levels results are demonstrated and evaluated on the HFV data sets by our methods.
To our best knowledge, this is the first paper to do a set of prediction for HF'V classification
with finite sample probabilistic guarantees.
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The paper is organized as follows: In Section 2 we introduce the dynamic models of HF'V
for simulation trajectory data. In Section 3.1 we introduce the functional data analysis tools
for trajectory data representative. In Section 3.2 we introduce the Support Vector Machines
as the underlying algorithms. In Section 3.3 we present the main theoretical properties of
the proposed extended conformal prediction. In Section 4 we apply the proposed algorithm
to efficiently construct a probabilistic guarantee set prediction for HF'V trajectory functional
data, the results are based on good finite sample property under any specified significance
level and in Section 5 we give some conclusions.

2. Dynamic models of HFVs

Following Li et al. (2015), equations describing the motion of HFVs will be very complex
when the rotation and non-spherical perturbations of the Earth are considered. But the
maneuver characteristics of HFVs are little affected by the presence of mentioned effects,
motion equations of HFVs can be deduced based on the assumption that the Earth is a
homogeneous sphere without rotation and the sideslip angle is zero, and are of the form

V =—D — gsiné,

0 =[Lcosv+ (V?/r—g)cosb]/V,

6 = Lsinv/(V cosf) 4+ V tan ¢ cosfsino/r,
7= Vsinf,

A = —V cosOsino/(rcos d),

¢ =Vcosbcosa/r,

where V, 0, 0,1, \, ¢ are speed, flight path angle, velocity heading angle measured from North
in a clockwise direction, the radial distance from the center of the Earth to the vehicle,
longitude, and latitude, respectively. v is bank angle, one of the two control variables. g is
gravity acceleration. The lift and drag accelerations are defined as

1
L= iCLpVQSM/m,

1
D = §CDpVZSM/m,

where C1, = Cr(a, M) and Cp = Cp(a, M,,) are lift and drag coefficients that are functions
of angle of attack, a, and Mach number, Ma. Sj; is the reference area and m is the vehicle
mass. The atmospheric density is modeled by the following exponential function of altitude

p = poexp(—h/hs),

where pg is the atmospheric density at sea level, and hg is the scale-altitude. h = r — R, is
the altitude and R, is the radius of the Earth.

Generally, the pairs (r, \, ¢) denote the position of the vehicle in the space. In this paper
we devoted the original observation (r,, A, ¢,) € R3 into position information P, (t) and
then summary the position information by local-scale transform into functional data X, (t),

Py(t) = V/r2(t) + A2(1) + 62 (1),
Xn(t) = log(Pn(t)) - log(Pn(O))
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Figure 1: The three-dimensional trajectory plots of different maneuver models of HFV. Red
lines: CAV-H, blue lines: CAV-L.

Figure 2: The local-scale transform data for three-dimensional trajectory plots of different
maneuver models of HFV. The horizontal coordinate axis represents the obser-
vation time and the vertical coordinate axis represents the values of local-scale
transform.

where n is the index of the HFV trajectory curve, and t is the observation time. We
simulate two types of HFV, the CAV-H (indicated by -1) and CAV-L (indicated by 1),
under different complex conditions. Figure 1 shows the three-dimensional trajectory plots
of different maneuver models of HFV, the red lines are CAV-H, and the blue lines are
CAV-L. Figure 2 show the local-scale transform data for three-dimensional trajectory. In
addition, we apply functional data analysis tools to operate the local-scale transformed data
to project the curves onto a finite-dimensional space feature space that captures the main
features of the curves. Finally, the problem of trajectory data classification reduces to the
problem of curve classification. We will demonstrate the details in Section 3.1.
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3. Theory Analysis

3.1. Functional data analysis

In this section, we will give a sketches description of functional data analysis. The use
of classical models for the raw observation facts face several difficulties: as the inputs are
discretized functions, they are generally represented by high-dimensional vectors whose
coordinate are highly dependent. As a consequence, many traditional statistical methods
will lead to ill-posed problems, both from a theoretical point of view and on a practical one.
More details of the anatomy of functional data analysis can be found (Ramsay et al., 2009)
and (Kokoszka and Reimherr, 2017), which have established the state-of-the-art instruction.

A common approach to functional data analysis is mapping the raw data into feature
space that compresses the main features of the curves. The simplest data set encountered
with functional data analysis is a sample of the form

X,() ER,n=1,2,...,N,t=1,...,T, (1)

where N is the number of curves and T is the observation duration.
For the simplified, the developments of this paper in working with functional data onto
the form (1) are to express them by means of a basis expansion

M
Xo(t) =) eamBm(t),1 <n <N, (2)

m=1

where B,, is some standard collection of basis functions, like the B-splines, the wavelets, or
the Fourier basis functions and ¢y, are the estimated coefficients. Expansion (2) reflects
the intuition that the observation facts are smooth functions that share the same shape
properties, and so can be approximated as linear combinations of some M basis shapes
B,,, with M being typically small than the number of observed time duration, 7. If the
observation duration T of curves is very large, as far T' = 1000s in this paper, expansion (2)
serves the practical purpose of replacing the original scalar data X, (t) by a smaller collection
of the coefficients ¢,,,,. For each curve X, (t) is represented by the column vector ¢, =
[Ca1sCn2, -+ cnnr]t of dimension M. Additional one of the most useful tools of functional
data analysis is the estimation of principal component analysis. In expansion (2), the basis
function B,, is fixed. The idea of the functional principal component expansion is to find
function 0; such that the smoothing function X, (t) = Z%:l CnmBm/(t) is represented as

M p
Xn<t) = Z Cntm(t) = Z€nj@j(t)7 (3)
m=1

J=1

with the number of component p much smaller than M in (3). The estimated functional
principal components, EFPC’s 9;, are computed from the observed function X, Xo,..., Xy
after converted them into functional objects.

In classification setting, the each curve X, (¢) is represented by EFPC’s vector €, =
[€n1, €n2y v €np| T, While p being typically small than the number of basis M. We will build
pattern recognition algorithms based functional data and develop the uncertainty quantity
of the prediction.
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3.2. Support Vector Machines

We give, in this section, a very brief presentation of SVMs that is needed for the classifi-

cation task. We refer the reader to Vapnik (1995, 1998, 2006) for a more comprehensive

presentation. In this section, we will assume, for simplicity, that our classification prob-

lem is binary, and the possible labels are —1 and 1. Our goal is to classify data into two

predefined classes when the training data are nonseparable (Cortes and Vapnik, 1995).
Let the set of training set

(xlvyl)a ey (I’l,yl),iﬁ S Rnay € {_L 1}3

be such that it cannot be separated without error by a hyperplane. Our goal is to construct
the hyperplane that makes the smallest number of error. To get a formal setting of this
problem we introduce the nonnegative variables

£, &

Thus, we will minimize the functional

l
b)=> &, (4)
i=1
subject to the constraints
yi((w,2) +b) 21 =&, >0,i=1,...,1, (5)
and the constraint
(w, w) < h. (6)

where the VC dimension A of the set of hyperplanes. z is the image apace of input z with
the operator z = Fzx.
To solve this optimization problem we find the saddle point of the Lagrangian

l l
L(w,b,a,ﬁ,v):Z&—%v((w,w)—h)—z (yl(w W)+b _1+£l Z/Bzgza 7
i=1 i=1

(the minimum with respect to w, b, §; and the maximum with respect to nonnegative multi-
pliers «, 3;,7). The parameters that minimize the Lagrangian must satisfy the conditions

l

OL(w,b, o, B,7) e —

S _vw—;azyzzz—(),
oL (wba,ﬂ’y

2% Zyzaz—o
aL(wabya’/g77)

=1—-a; —B;=0.
7% G
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From these conditions one derives

!
1

w=— 5 QGYiZis (8)
7=

l
=1
a; + G = 1. (10)

Substituting (8) into the Lagrangian and taking into account (9,10), we obtain the functional

l

!
Wi(a) = Zai —h Z viyjoiag(zi, 25), (11)

i=1 i,j=1

subject to the constraint

!
> yiai =0, (12)
=1

and the constraints

0<wo;<1li=1,...,L

3.3. Conformal prediction

We give, in this section, a brief introduction to the main idea about conformal prediction.
In clarifying the origin of the conformal prediction, the more details see Vovk et al. (2005);
Gammerman and Vovk (2006); Shafer and Vovk (2008). The successive sequence pairs

RBlye--5 2l

are assumed to be generated independently from the same probability distribution, and
zi = (x;,y;) are called examples. Each example z; consists of an object x; and its label y;.
We are also given a new candidate example x;41 and our task is to predict the classification
yi+1 of this candidate example. Our standard assumption is that all the problems we are
interested in are the general I.I.D. and we know a prior of the set of all possible labels
Y1,...,Y.. Now suppose we can test how likely it is that a successive sequence of classified
examples was randomness; in other words how typical the sequence is respected to the I.1.D.
model. From the point of view of the algorithmic theory of randomness, we can make a
confidence set prediction for the label ;41 of the new object x;41 given training set z1, ..., 2
if the algorithmic randomness deficiency is small for only one possible extension

(Zl) ceey Rl ($l+1)y))7y S Ylv cee 7YVC)

we can then output the corresponding y as a confident set prediction. The reference to
the algorithmic theory of randomness can consult Kolmogorov (1963); Martin-Lof (1966);
Kolmogorov (1968, 1983); Li and Vitdnyi (2008). In the spirit of Martin-Lof (1966), a
function p : Z* — [0,1] is a test for randomness with respect to the I.I.D. model if
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1. Vn € N,V§ € [0,1] and for all probability distribution P on Z,

PY{ze Z":p(z) <} <6, (13)

2. p is semi-computable above.

In the statistics community, this randomness test definition is generally equivalent to the
notion of p-values. Therefore, we can obtain a randomness test measure of a successive
sequence by using the computed p-value of label Y;,j = 1,...,c and denote it by p(Y}).

As shown in Section 3.2 and Vovk et al. (2005), any conformal prediction is exactly
valid, that means will produce independent p-values p(Y;) distributed uniformly in [0, 1].
The proof of the theorem can be found in Vovk et al. (2005).

In practice, if the p-value of a given label is under the significance level, say 0.05, this
means that the sequence

((x1,y1)s -5 (@1, 1), (141, Y5)),

would reject the null hypothesis, say the sequence was drawn I.I.D. model. To compute
how different each example to the successive sequence is from with all other examples, we
use a family of functions A4, : Z"Y x Z - R,n = 1,2, ..., which assign a numerical score
of each example z;,

Odi:An((zl,...,Zi_1,2i+1,...,Zl),zi), (14)

which indicate how different it is from the examples of the classified (z1, ..., zi—1, Zit1, .- -, 21);
such families of measure functions are called nonconformity measures function. For a new
test object x;11, as we know the prior of label Y},j = 1,..., ¢, we can compute the pre-
diction values under each labels with the aid of some learning algorithm, which we call the
underlying algorithm D,

Y; ,
Yii1=D(@1),j=1,...,c (15)

After that, we can measure how different the new prediction yﬁl is from the examples in
the training sequences by ranking their dissimilarity, such as

#li=1,... 0,1+1:a07 > a7}

p(Y;) = i L2 j=1,. (16)

When we obtain the p-value, p(Y;),7 = 1,...,¢, of prediction of the new object z;y1, em-
bedding the prediction label with the largest p—value with credibility, and output confidence
to this prediction one minus the second-largest p-value.

For Inductive Conformal Prediction, in this paper, we consider SVMs and other learner
as the underlying algorithm of ICP. The empirical data z; = (z;,¥),i = 1,2,...,g, it is

first randomly split into two sets, training set Ziraining = {21,..., 2} and test set Ziest
= {z141,...,24}. The training set is further divided into the proper training set Zproper
= {z1,...,2m} and calibration set Zcalibration = {#m+1,---,21}. The learning model is

trained on the proper training set Zproper With default parameters and then nonconformity
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Figure 3: The general flow of the proposed algorithm.

scores, p-values, and conformal predictors will be computed upon calibration and test tests,
respectively.

For an example of calibration sets zpy,1; € Zcalibration, algorithms outputs probability
values yl}zl and its nonconformity score is computed by Eq. (14). For the test examples,
the predicted probabilities are transducted by underlying algorithm and the nonconformity
scores and p-values are calculated by Eq. (14) and Eq. (16) respectively.

As we are mainly interested in the confidence levels of 99%, 95%, 90%, and 80%, we
can compare the value of p-value under the different confidence levels, and obtain the
probabilistic guarantee classification. From all of the descriptions above, we summarize the
general steps of the proposed algorithm a flow graphic as the Figure 3.

4. Results

Here we detail the experimental results of conformal prediction on the hypersonic flight
vehicle trajectories data sets, in which the dynamic model was introduced in Section 2. We
simulate 2400 trajectories for each maneuver model, constructing functional data analysis
object of B-spline basis function, the number of estimated principle components p are
computed from the observed functions X1, Xo, ..., X after converting them into functional
objects. Finally, we split the feature data into the proper training data, calibration data,
and test data according to 2:1:1, and build classification algorithms based on the proper
training data in feature space.

We compute the nonconformity «; of each example z; = (z;,y;) in successive sequence
(#1,...,2) with the underlying algorithms, such as SVMs, Boosting and Neural Networks.
The underlying algorithm creates a prediction decision rule D(;, . ., which maps any un-
labeled candidate example x; 11 to a prediction label ;1. As during the training processes,
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the decision rule is built to the examples in the given sequences, the prediction labeled
Ui = D(z;), which tell us how analogous z; is from the rest of the examples in the sequence,
the higher the output ¢; corresponding to the label, the more conforming the example.
Therefore, this dissimilarity «; can be measured as inverse probability (Aleksandrova and
Chertov, 2021),

oy = _gi’ (17)

which gives us a measure of the nonconformity of example z;. Our experiments on these
data sets were performed using the SVMs model, with the default parameter, such as
regularization parameter C'=1.0, radial basis function kernel, and RBF kernel coefficient
~v=0.1. Here we report the accuracy percentage of SVMs with the conformal prediction
(SVMs-CP) and compare them to the ones of its underlying algorithm as well as those
other learning methods, such as decision tree (DT), boosting, neural network (NN), naive
Bayes (NB), and other classical statistics models, such as logistic regression (LR) and linear
discriminant analysis (LDA). All of these experiments are implements with an open-source
Python package scikit — learn based on the default parameters settings. The addition of
the results that we compare the prediction performance under the different basis functions
at functional data analysis, such as adding the Fourier basis function. Table 1 lists the
results, which show that the prediction methods have the improvement to the classical
statistics model and there is a less significant performance for the B-spline and the Fourier
basis function.

For practice, along with the accuracy, we also check the quality of its p-values by an-
alyzing the results for the 99%, 95%, 90%, and 80% confidence levels. For the purpose of
reporting the results, we separate its output into four categories:

1. > 1(%): The percentage that the prediction set with more than one labels.
2. = 1(%): The percentage that the prediction set only one label.

3. B(%): The percentage that the prediction set is empty set.

4. Accuracy(%): The percentage of correct classification.

Our main concern here will be the number of outputs that belong to the first category, that
the prediction set with more than one label, we want this number to be relatively small
since there are the indicates for which the conformal prediction is not certain in only one
label at the specified confidence level 1 — €. In addition to the percentage of examples of
each category, we also report the prediction set only one label and the number of accuracy
made by conformal prediction in underlying algorithms. Finally, we report all the cases
where the prediction set was empty, we want this number to be converged on zero since
there is supported evidence that the underlying algorithm makes nonsense for classification
tasks. All the information is listed in Table 2. If the empirical accuracy is approximate
to the theory suggestion, which is defined by confidence level 1 — €, we conclude that the
prediction is validity.

To confirm the validity of confidence measures, we check the empirical distribution
of each category p-value for different underlying algorithms, as shown in Figure 4. The

10



CONFORMAL PREDICTION FOR HYPERSONIC FLIGHT VEHICLE CLASSIFICATION

Table 1: Accuracy rate comparison of the SVMs-CP with traditional algorithms.

Underlying algorithm ‘ Accuracy (%)

‘ B-spline  Fourier

SVMs 74.71 74.71
DT 75.37 72.05
Boosting 73.38 74.38
NN 72.55 74.04

NB 58.74 57.07

LR 46.59 46.92

LDA 46.59 46.92

results support the evidence that the proposed probabilistic guarantee method is valid.
The demonstration of uncertainty measures are the list in Table 3, the first column is
sample index, the rest are each category p-value, true label, conformal prediction label
(CP-Label), confidence, and credibility uncertainty measure respectively. Surely that we
can produce the instance-wise uncertainty measures for the SVMs algorithm and exact
more information about each example than a simple prediction, which usually just takes
the mean square measure for test examples. Table 4 illustration selected test examples
from the HF'V data set, and show the prediction set at a user-specified significance level. It
contains information on the p-values of labels (-1 and 1), significance levels, and true labels
respectively.

11
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Table 2: Results of the B-spline basis function of conformal prediction for HF'V data sets.
Algorithm  1-¢  Accuracy(%) =1(%) >1(%) 0(%)

99% 99.66 18.14  81.86 0.00

95% 94.16 40.10  59.90 0.00
SVMs 90% 90.65 52.25  47.75 0.00
80% 81.70 79.03 2097 0.00

99% 99.67 2745  72.54 0.00

DT 95% 96.17 44.93  55.07 0.00
90% 92.20 57.90  42.10 0.00

80% 82.68 82.03  18.00 0.00

99% 99.83 8.49 91.51 0.00
Boostin 95% 96.88 25.96  70.04 0.00
& 90% 91.50 49.25  50.75 0.00
80% 82.89 76.71  23.29 0.00

99% 100 7.82 92.17 0.00

NN 95% 95.32 34.44  65.56 0.00
90% 92.12 46.42  53.58 0.00

80% 80.50 81.70  18.30 0.00

99% 99.49 4.50 95.50 0.00

NB 95% 96.00 15.14  84.85 0.00
90% 92.66 24.63  75.37 0.00

80% 80.56 47.59 5241 0.00

99% 99.67 4.66 95.34 0.00

LR 95% 94.31 1531  84.69 0.00
90% 89.17 22.96  77.04 0.00

80% 78.80 39.10  60.89 0.00

99% 99.67 4.66 95.34 0.00
LDA 95% 94.31 15.31  84.69 0.00
90% 89.17 2296 77.04 0.00

80% 78.80 39.10  60.89 0.00

12



CONFORMAL PREDICTION FOR HYPERSONIC FLIGHT VEHICLE CLASSIFICATION

1.01 1.04
0.81 0.8
2 8
e e
= 0.6 C 0.6
g g
@ @
S04+ S 0.4
g 9]
< <
0.24 0.2
0.01 0.0
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Significance level & [B : Significance level €
SVM oosting
1.09 1.01
0.8 0.8
[ ]
I e
= 0.64 C 0.6
e g
[} ]
S 0.4 S 0.4
© o
< <
0.2 0.2
0.01 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
[MLP} Significance level € [NB] Significance level &
1.04 1.0
0.8 0.8
2 L
© ©
L 0.61 - 0.6
g £
@ 3]
S04y T 0.4
o <
< <
0.2 0.2
0.0 0.0
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

[LR] Significance level € [LDA] Significance level €

Figure 4: The empirical distribution of each category p-values for different underlying al-
gorithms.
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Table 3: The demonstration results of conformal prediction method underlying SVMs al-

gorithm.
# -1 1 True Lable CP-Label Confidence Credibility
0 0.872483 0.613115 -1 -1 0.386885 0.872483
1 0.845638 0.619672 -1 -1 0.380328 0.845638
2 0.184564 0.960656 1 1 0.815436 0.960656
3 0.825503 0.655738 -1 -1 0.344262 0.825503
4 0.755034 0.718033 -1 -1 0.281967 0.755034
5 0.446309 0.849180 1 1 0.553691 0.849180
6 0.580537 0.777049 1 1 0.419463 0.777049
7 0.711409 0.724590 1 1 0.288591 0.724590
8 0.963087 0.419672 -1 -1 0.580328 0.963087
9 0.436242 0.852459 1 1 0.563758 0.852459
10 0.718121 0.721311 -1 1 0.281879 0.721311
11 0.718121 0.721311 -1 1 0.281879 0.721311
12 0.718121 0.721311 -1 1 0.281879 0.721311

14
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5. Conclusions

This paper presents a probabilistic guarantee method of hypersonic flight vehicle classifica-
tion problem and produces instance-wise uncertainty measures with confidence and cred-
ibility for each test example under the distribution-free framework. First, we introduce
the functional data analysis methods and mapping the raw observation facts into feature
space, and then build the SVMs method to achieve the classification results. Moreover,
we introduce conformal prediction methods to produce the uncertainty quantity of the al-
gorithm outputs. All the measurement results are based on the underlying algorithm and
data distribution assumptions are not required. The proposed method accompanies each of
their predictions with probabilistic guarantee valid measures of confidence.

For the functional data analysis, we also produce two basis functions, B-spline and the
Fourier basis function, and compare the classification performance, that there is less sig-
nificant prediction accuracy improvement. Different from the traditional simple prediction
method, our new method provides the instance-wise uncertainty measure for any underlying
algorithms in any specified significance levels. In addition, that the aim of the proposed
methods is not just to compare the accuracy with simple prediction but more information
with each example.
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