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Abstract

Single-cell gene expression matrices require a cell type label for each cell for downstream
analysis. A cell type label refers to a heterogeneous group to which a cell belongs. Ma-
chine learning algorithms that aim to automate the assignment of cell type labels train on
reference datasets for which cell type labels are already defined. However, these methods
are prone to error due to possible preprocessing errors and the dynamic nature of cellular
states. Therefore, it is essential to measure the uncertainty associated with classifications.
Here, we hypothesize that conformal prediction may provide a principled approach for
this. We examine inductive conformal classifiers (ICPs) on the task of single-cell label
transfer. ICPs lead to well-calibrated models that quantify uncertainties well. Results are
motivating, and the uncertainties are intuitive and easy to interpret. We also consider
a confidence-credibility conformal predictions setup that accurately predicts single labels
with the desired error level. Such a model can also reject the classification of cell types
unobserved in the reference dataset. However, the presence of unknown cell types violates
the underlying assumption of a conformal predictor and is highly dependent on the quality
of batch correction. We envision more work in detecting unknown cell types and using
conformal predictions to evaluate batch correction methods.

Keywords: single-cell RNA-seq, single cell classification, conformal prediction

1. Introduction

Single-cell RNA sequencing (scRNA-seq) techniques measure RNA expression from indi-
vidual cells. The ability to analyze RNAs at a single cell level has allowed biologists to
identify new cell states and understand their dynamics and fate (Lähnemann et al., 2020).
scRNA-seq results in a count matrix with genes and numeric expression of those genes per
cell. In this count matrix, there are thousands of cells and many more genes (> 10000
variable genes). In order to analyze this resulting data, clustering tools such as Uniform
Manifold Approximation and Projection (UMAP) are used to identify the cell types based
on gene expression patterns. These groups are individually referred to as cell types. These
cell types can be characterized by their marker genes - the genes are abundantly expressed
only on cells belonging to specific cell types (Zhang et al., 2019). Therefore, it is possible
to identify cell type labels per cell. However, this process is time-consuming and requires
an expert. Further, identification based on the expression of the limited number of marker
genes also results in less accurate results. As a result, it is imperative to simplify the process
and utilize existing knowledge from already labeled datasets. We refer to this as single-cell
label transfer.
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When dealing with two single-cell datasets from two sources, we can term the already
labeled dataset as the reference and the dataset we are interested in labeling as the query.
While both datasets come from the same tissue and, as a result, share a large number of cell
types, the cells themselves may exhibit differences. These differences can either be biological
or technical (Tran et al., 2020; Hausmann et al., 2022). A biological difference is between
tissue states (disease vs. healthy) and must be observed. Therefore, a method to identify
cells based on reference is inherently subjected to this error and will likely be uncertain
for differentially distributed data points. The technical differences arise due to the use of
different technologies and sequencing libraries, different ways to prepare tissue samples,
etc. and can cause technical bias. Since our interest is in identifying cells in reference-based
query, it is vital to remove this technical bias. Several methods termed batch correction or
single-cell data integration methods have been proposed to perform this task (Korsunsky
et al., 2019; Lotfollahi et al., 2019; Hie et al., 2019; Hausmann et al., 2022). Batch correction
is a preprocessing step for many cell type classification methods. The objective is to obtain
a representation of original gene expressions of reference and query in a joint space where
the datasets are well integrated. Some batch correction methods such as Harmony and
Scanorama align clusters computed on principal components; the result is a joint PCA
co-embedding which can be used to identify cell types. Batch correction is not perfect
and can lead to errors, especially in cases of partial overlap between cell types present
between reference and query (Hie et al., 2019). We assume that both datasets share similar
distribution after correction with some noise depending on the batch correction method
used.

These two sources of differences between a reference and a query single-cell dataset
make it necessary to be aware of the uncertainty associated with the method that transfers
knowledge from the reference to the query. In the case of single-cell label transfer, we
are interested in the transfer of discrete cell type labels, and as such, the use of machine
learning algorithms is natural. Here, we wanted to ask about the current state of identifying
uncertainty associated with methods in use. In our experiments, we refer to single-cell label
transfer as a two step process where we sequentially use batch correction and classification
algorithms. State-of-the-art single-cell classification methods such as scPred involve training
an SVM and setting a heuristic threshold on output probabilities to filter out potentially
wrong classifications (Alquicira-Hernandez et al., 2019). We argue that a heuristic-based
threshold method depends entirely on the output probabilities and does not consider the
likelihood of a data point to be from the dataset it was trained on. If we were to find cells
where our model is confused between two or more cell types, we again have to resort to
setting a threshold on the cell types other than the majority cell type label. It raises another
question, if we were to change our algorithms, will the same heuristic be valid? Hence,
this problem of choosing a probability threshold that is largely dataset- and classification
algorithm- dependent. A better approach is to identify uncertainties that consider how well
the test samples conform to what model was observed and which can work agnostically to
any classification algorithm.

Conformal prediction provides a natural approach to this problem. First, conformal
classification is model agnostic and provides certain theoretical guarantees. Conformal
classification has emerged as a method to measure distribution-free uncertainty in a range
of applications. In terms of bioinformatics applications, it has been widely used to avoid
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the use of toxic drugs (Eklund et al., 2015; Alvarsson et al., 2021). We describe conformal
classification in Section 2.1. In this work, we evaluate conformal classification on the task
of single-cell label transfer using six human scRNA-seq datasets and we present the results
in Section 3. We discuss those results and future directions in Section 4.

2. Methods

2.1. Inductive Conformal prediction (ICP)

The assumption of conformal prediction is the probabilistic exchangeability of data points.
Exchangeability is a weaker assumption than IID. (Probabilistic) Exchangeability refers to
likeliness of permutations of data order, i.e. for n data points (x1, y1), (x2, y2)..., (xn, yn),
all n! permutations are equally likely (Shafer and Vovk, 2008). Here we consider a variant
of conformal predictors, Inductive Conformal Predictors (ICP). We briefly describe the
procedure of an ICP setup.

Given a classifier h : x → y, where (x, y) is a training example, we need a nonconfor-
mity measure fnc which quantifies how likely an instance is to be from training examples.
Various non-conformity measures exist such as inverse probability function which relies on
the output probability of the h, and is given as, fnc(xi, j, h) = 1− (h(xi))j , where (h(xi))j
is the predicted probability of the data point xi to belong to class j.

To make predictions with ICP, we perform data split to measure non-conformities on
a held-out dataset. In particular, the training set is divided into two distinct datasets,
commonly referred to as proper training set and calibration set. Mondrian approach to cali-
bration can be adopted to ensure similar guarantees for all classes by having one calibration
set per class (Vovk et al., 2003).

After creating data splits, we train a machine learning model, which in this case is a clas-
sifier. Then, during calibration, the scores of non-conformity measures are evaluated using
predictions for all data points within the calibration set from the trained classifier. Since we
have access to the actual labels for each of these data points, non-conformity scores for the
true class can be calculated. During prediction time, for each data point, non-conformity
scores are computed for each class and assigned either one label, multiple labels, or no
label, depending on the non-conformal score of a class and the non-conformal measures
for all calibration data points within that class. On a new test instance, non-conformity
measure is evaluated. Thereafter, p-value, p(x,y), of an instance x for label y, can be given
by the proportion of instances observed in calibration set that are either equally or more
non-conforming when compared to this instance. At significance level ϵ, all labels yi satis-
fying p(x, yi) > ϵ are assigned to the test instance. In case, no calibration instance is less
likely to belong to any label than the test instance, the prediction results in an empty set.
These empty sets indicate an erroneous classification or test instance being from a different
distribution than all instances in the calibration set. Proportion of prediction sets of dif-
ferent sizes differ with the confidence levels. Further, since p-values cannot be considered
probabilites over a finite test set, we considered confidence-credibility framework to classify
at desired error rates. The confidence-credibility framework is described in Section 2.1.1.
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2.1.1. Confidence-credibility framework

p-values obtained from a conformal classifier can not be used to guarantee an observed error
rate over a finite test dataset. In order to relate p-values to probabilities over this dataset,
we refer to what is known as confidence-credibility predictions (Papadopoulos, 2008). Here
the aim is to assign a single label to each sample in the test set with some confidence and
credibility. Confidence is given as 1 - (largest p-value). This is the highest confidence at
which the output is a single label. Credibility measures how likely a sample is to come from
training set. It is the lowest ϵ for which no label is assigned to the sample. It is defined as
the largest p-value.

In order to use this setup to predict a single label while expecting at most K errors on
the test set, we can use the following procedure as described in Linusson et al. (2018):

1. For each data point in the test set of size n, make predictions on a test sample i and
obtain a triplet (ŷi, γi, µj), where ŷi is the most likely single label, γ̂i is the confidence
for the label and µi is the credibility.

2. Set total number of errors tolerable on the test set, K, and obtain k̂i = n(1− γi).

3. Assign label ŷi to the test sample i, if k̂i ≤ K.

This procedure can be label-conditional to provide an expected maximum error for each
label.

3. Experiments and results

In this section, we detail datasets used, define our experimental setup and present our
results. In brief, for each experiment, we investigate calibration errors for ICPs to identify
if a model is well-calibrated. Secondly, we evaluate the distribution and patterns of single,
multi, and empty prediction sets. Finally, in order to make predictions, we make use of the
confidence-credibility setup and, as a comparison, provide its accuracy with base algorithm
(SVM) with threshold = 0.7 as used in Lotfollahi et al. (2022).

3.1. Datasets

We used six scRNA-seq datasets from human peripheral blood mononuclear cells (PBMCs)
and pancreas tissues from different sequencing technologies. The datasets are listed in Table
1.
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Tissue Dataset name Original Source Technology
PBMC PBMC 8k 10x Genomics 10x

PBMC 6k 10x Genomics 10x
Pancreas inDrop Baron et al. (2016) inDrop

SS2 Segerstolpe et al. (2016) Smart-seq 2
CEL-Seq 2 Muraro et al. (2016) CEL-Seq 2
Fluidigm C1 Lawlor et al. (2017) Fluidigm C1
CEL-seq Grün et al. (2016) CEL-Seq

Table 1: Details of datasets. The second column, Dataset name refers to the name of
dataset as used in this work.

We downloaded PBMC datasets directly from the website of 10x Genomics1 and we
manually labeled cell types for each dataset separately. To label PBMC datasets, we used
gene markers listed in Table 2 and tools from Scanpy (Wolf et al., 2018). In addition, we
obtained the count matrices of pancreas datasets from Hie et al. (2019) along with cell type
labels. Here, we restricted cell types to Bcells, Monocytes, CD4Tcells, CD8Tcells, and NK
cells for PBMCs and to Alpha, beta, gamma, delta, acinar, ductal, endothelial, stellate cells
for the pancreas.

cell type Genes
Bcells MS4A1, CD19
CD4Tcells IL7R, CD4
CD8Tcells CD8A
Monocytes LYZ, FCGR3A
NK GNLY, NKG7

Table 2: Marker genes used to define cell types in PBMCs.

3.2. Preprocessing, feature selection and classification

First, we subset the reference and query datasets with the genes present in both. Then, to
remove the low-quality cells, we filtered out genes expressed in less than 3 cells and cells
that express less than 200 genes. After that, we transformed the datasets to log2 (1+CPM),
where CPM refers to counts per million. Then we center the dataset using Mean-variance
scaling to have zero mean and unit variance. Finally, we subset the datasets to have 1,000
top highly variable genes (HVGs) and combine them. On the resulting data matrix, we
computed principal components (PCs). After initial preprocessing, the number of cell types
per dataset are provided in Tables 3 and 4.

Dataset B CD4T CD8T Monocytes NK Total
PBMC 6k 704 2,240 714 1,397 2,240 5,356
PBMC 8k 992 1,975 890 1,870 320 6,047

Table 3: Number of cell types for PBMCs datasets.

1. https://www.10xgenomics.com
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Dataset Alpha Beta Gamma Delta Acinar Ductal Endo. Stellate Total
inDrop 2,249 3,048 260 613 272 898 689 362 8,391
SS2 1,109 796 219 142 103 462 67 63 2,961
CEL-Seq 2 885 600 125 199 170 315 31 101 2,426
Fluidigm C1 241 300 12 21 6 27 12 13 632
CEL-Seq 220 341 21 66 162 402 37 22 1,271

Table 4: Number of cell types in pancreas datasets.

As described in Section 1, we can use batch correction methods before training a machine
learning classifier to remove technical bias. Here, we use Harmony (Korsunsky et al., 2019)
on 50 PCs for this purpose. Harmony first computes soft clusters for each cell on a PCA
embedding and then performs iterative correction of clusters to ensure that similar cells are
closely clustered. As it is beyond the scope here to describe Harmony in detail, we refer the
reader to the original publication for a detailed overview of Harmony. The final dataset,
thus, contains 50 PCs that are corrected using Harmony. In our experiments, we report
visualizations of UMAP embeddings to ensure sufficient data integration.

As an underlying algorithm, we use support vector machines (SVMs). SVMs have been
used in single-cell classification previously and have achieved state-of-the-art performance
(Alquicira-Hernandez et al., 2019). Further, a threshold can be set on output probabilities
to only make confident classifications. Previous methods have used thresholded SVM to
filter out potentially wrong predictions and have achieved good results (Alquicira-Hernandez
et al., 2019; Lotfollahi et al., 2022). Therefore, SVM is a natural choice for us to use with
conformal prediction for our task.

3.3. PBMCs

To begin with, we experiment on the two PBMC datasets. The counts per cell type are
similar between the two datasets, with CD4 being the most abundant cell type (Table 3).
We train on one of the two datasets and test on the other. Since the sources of training
and test sets are different in these experiments, this could lead to validation issues of CP.
To mitigate this, we first align training and test distributions using Harmony. Then, we
visualize PC- and UMAP- embeddings before and after batch correction with Harmony in
Figure 1. Visually, the datasets are well-integrated. Here, compared to Monocytes and B
cells, several overlapping CD8Tcells, CD4Tcells, and NK cells exist. This difference is likely
due to the biological similarities of CD4Tcells, CD8Tcells, and NK cells.
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Figure 1: PC- and UMAP-embeddings for Original (A) and Harmony corrected dataset
(B).

We evaluated the base algorithm, SVM, on both original and batch corrected datasets.
We consider two settings: experiment 1 - Training set: PBMC 6k, test set: PBMC 8k, and
experiment 2 - Training set: PBMC 8k, test set: PBMC 6k. The confusion matrices of
resulting models are given in Table 5. Without batch correction, relatively distinct cells,
Bcells, and Monocytes are well-classified. However, in both experiments, the accuracies for
CD8Tcells are almost 0 (experiment 1 - CD8Tcells: 0, and experiment 2 - CD8Tcells: 0.008).
Almost all CD8Tcells are identified as CD4Tcells. After batch correction, this is slightly
better (experiment 1 - CD8Tcells: 0.12, and experiment 2 - CD8Tcells: 0.17). There can
be two reasons for this poor performance on CD8Tcells. The first is the inherent difference
in cell types (this is unlikely as both datasets are from healthy individuals and cell types
are annotated using similar procedures), and the second is the improper batch correction.
It should also be noted that a hierarchical classification approach can also be considered in
this case to employ a two-step classification process where first, Monocytes and lymphocytes
are classified. Then lymphocytes are classified into Tcells, NK, and Bcells (Alquicira-
Hernandez et al., 2019). However, since we are interested in evaluating uncertainties, the
improvement in classification performance is out of the scope of this work. Our objective
lies in understanding whether ICP leads to similar performance as the underlying algorithm
and whether the resulting uncertainties make sense.
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(a) PBMC 6k to PBMC 8k

Before batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.88 0.11 0 0.01 0
CD4Tcells 0 0.99 0 0.01 0
CD8Tcells 0 0.99 0 0.01 0
Monocytes 0 0.04 0 0.96 0
NK 0 0.52 0 0.21 0.27

After batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.99 0.01 0 0 0
CD4Tcells 0 0.97 0.02 0.01 0
CD8Tcells 0 0.88 0.12 0 0
Monocytes 0 0.02 0 0.98 0
NK 0 0.04 0.15 0.02 0.79

(b) PBMC 8k to PBMC 6k

Before batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.88 0.08 0 0.04 0
CD4Tcells 0 0.97 0.02 0.01 0
CD8Tcells 0 0.91 0.01 0.01 0.07
Monocytes 0 0 0 1 0
NK 0 0.11 0 0.04 0.85

After batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.98 0.01 0 0.01 0
CD4Tcells 0 0.88 0.1 0.02 0
CD8Tcells 0 0.44 0.17 0 0.39
Monocytes 0 0 0 1 0
NK 0 0.04 0.01 0 0.95

Table 5: Confusion matrices for experiments - 1 (Training set: PBMC 6k, Test set: BMC
8k) and 2 (Training set: PBMC 8k, Test set: BMC 6k) before (a) and after batch
correction (b).

Next, we classified the same datasets with ICP and evaluated the quality of the cali-
bration. Figure 2 shows the error rates on calibration set across significance levels. For
the Mondrian approach, while for the non-Mondrian approach, the error rates differ widely
between cell types. This is understandable as the number of samples differs per cell type
(Tables 3). In contrast, for the Mondrian approach, errors on the calibration set are uniform
across cell types. Next, we evaluated the performance of ICP in comparison with SVM and
SVM with a threshold. Results are given in Table 6 for ICP at significance = 0.025. The
choice of 0.025 is arbitrary and is chosen to provide sufficient confidence. Here, for ICP, we
include all predictions, regardless of the size of the prediction set. We compare both aver-
ages as well as overall accuracies. Average accuracy favors all cell types equally, regardless
of size of the cell type cluster. Accuracies ICP are slightly better than the others.
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Figure 2: Error rates on calibration set for non-mondrian (a) and mondrian approach (b).
First row shows the results for experiment 1 and section row shows the results
for experiment 2.

Method Test set Average accuracy Overall accuracy
SVM PBMC 8k 0.771 0.844
SVM PBMC 6k 0.616 0.834
SVM (thr 0.7) PBMC 8k 0.842 0.868
SVM (thr 0.7) PBMC 6k 0.742 0.863
ICP (With SVM) PBMC 8k 0.935 0.854
ICP (With SVM) PBMC 6k 0.790 0.868

Table 6: Comparison of SVM, SVM with threshold = 0.7 and ICP. For ICP, significance, ϵ
= 0.025 and all prediction sets are considered. Average accuracy refers to average
of per cell type accuracy and overall accuracy refers to accuracy across all cell
types.)

While ICP gives better average accuracy, it should be noted that to evaluate the results
properly, we must consider both prediction set sizes and errors over the finite test set. To
accomplish this, we first looked at the error rate per cell type over the test set (Figure
3). For experiment 1 (Test set: PBMC 8k), the error rates for CD8Tcells and NK are
higher, while for experiment 2 (Test set: PBMC 6k), the error rates for CD8Tcells are
higher than error rates for other cell types. This is in line with the errors observed from the
underlying algorithm. Since the error rate can be due to misclassification, i.e. prediction
set doesn’t include the ground truth cell type or no classification, i.e. empty prediction set.
To assess this, we computed the ZeroC (fraction of prediction sets of size 0), OneC (fraction
of prediction sets of size 1), and MultiC (fraction of prediction sets of size greater than
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1), and we show them at different significance levels in Figure 4. For both experiments,
across all cell types, the errors can be attributed to high ZeroC. In experiment 1, for both
CD8Tcells and NK cells, ZeroC is higher even at low significance levels, indicating errors
due to empty prediction sets. For experiment 2, this is only observed for CD8Tcells cells.

Figure 3: Error rates on test set for experiment 1 (a) and experiment 2 (b).

Figure 4: ZeroC, OneC and MultiC for experiment 1 (a) and experiment 2 (b).

Since errors are mainly attributed to empty prediction sets, we looked at the confidence-
credibility predictions. Figure 5 shows the confidence and credibility scores on the UMAP
embeddings for both experiments. CD8Tcells largely seem to be less credible. Therefore, we
provide the average credibility per cell type in Table 7. We observed much lower credibility
for CD8Tcells (0.143) and NK cells (0.28) in experiment 1 and for CD8Tcells (0.164) in
experiment 2. This is in line with the error rates on the test set (Figure 3).

10



Uncertainty Estimation for Single-cell Label Transfer

Figure 5: Confidence and credibility visualized on UMAP embeddings on test sets for ex-
periment 1 (a) and experiment 2 (b).

Test set cell type Average credibility
PBMC 8k Bcells 0.417
PBMC 8k CD4Tcells 0.415
PBMC 8k CD8Tcells 0.143
PBMC 8k NK 0.280
PBMC 8k Monocytes 0.419
PBMC 6k Bcells 0.60
PBMC 6k CD4Tcells 0.482
PBMC 6k CD8Tcells 0.164
PBMC 6k NK 0.56
PBMC 6k Monocytes 0.45

Table 7: Average credibility per cell type for experiments 1 and 2.

Using these confidence and credibility scores, we fix k at 0.025 (as a fraction of the size
of the test set) and consider a label-conditional variant of the confidence-credibility setup
defined in 2.1.1. k = 0.025 was chosen as at this level model classifies over 50% of all
cells. We compare classification rates (i.e. Proportion of cells that are assigned a cell type
label) and accuracy per cell type between CC-ICP (confidence-credibility setup of ICP) and
SVM with a threshold of 0.7. The results for experiments 1 and 2 are given respectively in
Tables 8 and 9. While SVM with threshold provides more classifications, the classifications
are largely similar across cell types. For CC-ICP, only a limited CD8Tcells are classified
(experiment 1: 0.11 and experiment 2: 0.466). However, the observed error rate is higher
than the expected maximum error. To further evaluate this, we compute fractions of cells
that are classified per cell type and show them over UMAP embeddings in Figure 6. As the
expected error rate increases, more cells are classified. Experiments 1 and 2 are classified
at substantially different rates. However, the accuracy of the classified cells shows no such
behavior. This is expected as K balances the trade-off between the number of classifications
and the expected error.
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Method Cell type Classification rate Accuracy
SVM (thr 0.7) Bcells 0.982 1
SVM (thr 0.7) CD4Tcells 0.956 0.988
SVM (thr 0.7) CD8Tcells 0.808 0.068
SVM (thr 0.7) NK 0.94 0.987
SVM (thr 0.7) Monocytes 0.968 0.975
CC-ICP Bcells 0.968 0.99
CC-ICP CD4Tcells 0.564 0.98
CC-ICP CD8Tcells 0.11 0.946
CC-ICP NK 0.638 0.931
CC-ICP Monocytes 0.649 0.99

Table 8: Comparison of classification rates and accuracy for SVM with threshold 0.7 and
confidence-credibility conformal predictions (CC-ICP) for experiment 1.

Method Cell type Classification rate Accuracy
SVM (thr 0.7) Bcells 0.974 0.99
SVM (thr 0.7) CD4Tcells 0.859 0.897
SVM (thr 0.7) CD8Tcells 0.757 0.146
SVM (thr 0.7) NK 0.94 0.987
SVM (thr 0.7) Monocytes 0.82 0.98
CC-ICP Bcells 0.717 0.99
CC-ICP CD4Tcells 0.656 0.911
CC-ICP CD8Tcells 0.466 0.589
CC-ICP NK 0.94 0.985
CC-ICP Monocytes 0.768 0.948

Table 9: Comparison of classification rates and accuracy for SVM with threshold 0.7 and
confidence-credibility conformal predictions (CC-ICP) for experiment 2.

3.4. Pancreas

In this section, we focus on a single-cell label transfer setting in which information from
multiple sources are utilized to increase available information. Here, we are interested in
evaluating conformal prediction when reference and query consist of various datasets. On
the one hand, this setting is more informative, but it can also be challenging due to increased
sources of errors. Therefore, we consider a reference-query pancreas SS2 and inDrop form
query, and the remaining pancreas datasets form reference (Table 4).

Similar to experiments on PBMCs, first, we looked at the quality of batch correction
(Figure 7). Qualitatively, datasets once again seem well-integrated. Similar to our experi-
ments on PBMCs, we next looked at the calibration error rates, test error rates, the sizes of
prediction sets, and confidence and credibilities. We present these results together in Figure
8 for brevity. Here, there is no clear outlier looking directly at the test error rates and the
sizes of prediction sets. The comparisons with other algorithms is given in Table 10 and
average credibility per cell type is given in Table 11. As before, ICP, with all prediction sets
considered, performs better than SVM and SVM with a threshold (thr). For Stellate cells,
the average credibility is lowest (0.274), followed by alpha cells (0.312). We next looked at
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Figure 6: Classification and error rates for experiment 1 (a) and experiment 2 (b) for dif-
ferent values of K. K is given as a fraction of the size of test set.

classification rate and accuracies at different values of K (Figure 9). Here, the accuracy
average per cell type is shown and is much closer to the expected error rate.

Figure 7: PC- and UMAP-embeddings for Original (a) and Harmony corrected pancreas
dataset (b).
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Figure 8: For pancreas dataset, a: Error rates on calibration set for non-Mondrian and
Mondrian approaches. b: Error rates on test set. c: Sizes of prediction sets per
cell type. d: Confidence and credibility visualized on UMAP embeddings on test
set.

Method Average accuracy Overall accuracy
SVM 0.771 0.857
SVM (thr 0.7) 0.862 0.935
ICP (With SVM) 0.928 0.934

Table 10: Comparison of SVM, SVM with threshold = 0.7 and ICP. For ICP, significance
ϵ = 0.025, and all prediction sets are considered. Average accuracy refers to
average of per cell type accuracy and overall accuracy refers to accuracy across
all cell types.
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Cell type Average credibility
Acinar 0.508
Alpha 0.312
Beta 0.421
Delta 0.488
Ductal 0.488
Endothelial 0.473
Gamma 0.531
Stellate 0.274

Table 11: Average credibility per cell type

Figure 9: Classification and error rates for experiment on pancreas datasets for different K.
K is given as a fraction of the size of test set.

3.5. Classification of unknown cell types

Next, we wanted to investigate ICP predictions for detecting unknown cell types, i.e. cell
types that are not observed in the training and calibration sets. While this setting violates
the underlying assumption of conformal prediction, we still wanted to evaluate whether the
resulting assignments for these unknown cells make sense, at least concerning the clustering,
and whether the classification rates for these unknown cell types are lower compared to cell
types observed in the reference. We removed each cell type from the training set while
making no changes to the test set. For fair evaluation, we performed batch correction
separately for each removal. This is essential as the presence of unknown cell types can affect
the performance of batch correction algorithms (Korsunsky et al., 2019). We compared
assignments for the unknown cell type with average assignments on known cell types (i.e.
cell types observed in training and test sets). The results are given in Table 12. The
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results are different across cell types; however, the assignments on unknown cell types are
considerably lower than those on the known cell types.

Unknow cell type Assignment on Unknown Average assignments on known
Alpha 0.08 0.42
Delta 0.59 0.64
Beta 0.68 0.82
Ductal 0.514 0.762
Acinar 0.501 0.761
Gamma 0.455 0.636
Endothelial 0.445 0.748
Stellate 0.379 0.705

Table 12: Classification of unknown cell types. Each row indicate an experiment where
the cell type listed in the column ”Unknown cell type” were removed from the
training set.

3.6. Conformal prediction and Quality of batch correction

Lastly, we wanted to see if the higher error rate for particular cell types is due to the quality
of batch correction. It should be noted that there is no ”best” batch correction algorithm,
and the quality of correction may differ from one dataset to other. Further, to evaluate
batch correction, access to accurate cell type annotations in both the reference and query is
needed. We argue that there is a relation between batch correction quality and uncertainties
of conformal predictions. To evaluate this, we considered two other batch correction algo-
rithms, namely Scanorama (Korsunsky et al., 2019) and scGen (Lotfollahi et al., 2019), and
performed batch correction on PBMC datasets. We computed homogeneity scores (Rosen-
berg and Hirschberg, 2007) which measures the purity of clusters. High overlap between
two cell type clusters would thus result in lower homogeneity. Scanorama gave the highest
homogeneity score (0.812), and we considered corrected PCs from Scanorama for our exper-
iment. We considered the training dataset: PBMC 8k and the test dataset: PBMC 6k. We
observed a more consistent error rate over test set at different significance levels in Figure
10 and a more uniform average credibility per cell type (Table 14) compared to what we
observed in Table 12 using Harmony. We envision further evaluations across other datasets
and using more batch correction algorithms. However, this provides an insight into why
the observed error rates could be higher for conformal prediction. It also evaluates data
integration algorithms in relation to the label transfer task.
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Method Homogeneity score
Harmony 0.613
Scanorama 0.812
scGen 0.795

Table 13: Homogeneity scores for Harmony, Scanorama and scGen for correction of PBMC
datasets.

Figure 10: Results with using ICP on Scanorama corrected dataset: a: Error rates on the
calibration set using non-mondrian and mondrian approaches. (b) Error rates
on test set.

Cell type Average credibility
Bcells 0.587
CD4Tcells 0.460
CD8Tcells 0.440
Monocytes 0.498
NK 0.487

Table 14: Average credibility per cell type using ICP on Scanorama corrected datasets.
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4. Discussion

We have presented a use case of conformal classification in single-cell label transfer. In
both PBMC and pancreas datasets, conformal classifiers were well-calibrated. However,
due to poor batch correction, the data may not be well integrated, and therefore may
not wholly follow the exchangeability criterion. Consequently, we utilized the confidence-
credibility framework and identified regions of uncertainty accurately. This setup allowed to
classify cell types with desired error rates. Interestingly, these regions correspond to regions
with cell type overlap and poor integration, such as CD8Tcells in the PBMC dataset and
stellate cells in the pancreas datasets. These uncertainty patterns are informative as they
reveal the uncertain nature of classification for those clusters and characterize cell clusters
that an expert must look into. Further, we could repurpose ICP to predict unknown cell
types. However, further evaluations using various cell types and tissues are needed to make
conclusions. Nevertheless, ICP may help minimize errors on unknown cells, and these
clusters may be identified by investigating uncertainty patterns.

We observed a relationship between the observed error of conformal classification and
the quality of batch correction. We expect an ideal batch correction method to remove
the technical bias and cluster similar cell types together. Hence, the difference between
expected and observed error rates under the confidence-credibility setup may quantify batch
correction quality specifically for the task of label transfer. Further, in genomics, tasks
such as prediction of gene-gene regulatory networks, spatial deconvolution, gene expression
reconstruction, and imputation are of high relevance and may benefit from the theory of
conformal prediction to quantify uncertainties.

Lastly, we would like to mention possible future directions motivated by the experiments
described here. In this work, we did not consider any normalization method for restricting
prediction sets, which is a natural next step. Moreover, we would be interested in utilizing
conformal anomaly detection to detect unknown and rare cell types.
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