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Motivation
 The need to detect Concept Drift(CD) with respect to a significance level, 

Inductive Conformal Martingale can provide valid guarantees.

 We propose a betting function that avoids the continuous reduction 
of the Martingale value.

 A computationally efficient betting function  with only a few  
parameters to tune.
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Concept Drift
 Given a data stream 𝑆 = (𝑥0, 𝑦0 , (𝑥1, 𝑦1), … }

 𝑥𝑖 is an input vector , 𝑦𝑖 the corresponding label

 If the set S can be divided in two sets generated by  different 
distributions:                                                                                                           
𝑆0,𝑡 = (𝑥0, 𝑦0 , … , (𝑥𝑡 , 𝑦𝑡)} and 𝑆𝑡+1,… = {(𝑥𝑡+1, 𝑦𝑡+1), … }

Then a Concept Drift occurred at timestamp 𝑡 + 1.

Consequently, a violation of the exchangeability occurred.
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Data Exchangeability
 Exchangeability: 

 Given an infinite sequence of random variables (𝑍1, 𝑍2, 𝑍3, … ) the joint 
distribution 𝑃(𝑍1, 𝑍2, 𝑍3, … ) is exchangeable if it is invariant under any 
permutation of those random variables.

 Testing if the data is exchangeable is equivalent to testing the data for 
being i.i.d.

 Test Exchangeability Martingale

 Is a sequence of random variables 𝑆1, 𝑆2, 𝑆3, … greater or equal to zero.

 They keep the conditional expectation 𝔼(𝑆𝑛+1|𝑆1, 𝑆2, 𝑆3, … 𝑆𝑛) = 𝑆𝑛.
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How a Martingale works
 Consider a fair game where a gambler with infinite wealth follows a 

strategy that is based on the distribution of the events in the game. The 
gain acquired by the gambler can be described by the value of a 
Martingale.

 Specifically Ville's inequality (Ville, 1939) indicates that the probability 
to have high profit(𝐶) would be small, ℙ ∃𝑛, 𝑆𝑛≥ 𝐶 ≤ 1/𝐶
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Conformal Martingales
 Is an exchangeability Martingale which is calculated as a function of p-

values:

 𝑆𝑛 = ς𝑖=1
𝑛 𝑓𝑖(𝑝𝑖), where 𝑓𝑖(𝑝𝑖)= 𝑓𝑖(𝑝𝑖| 𝑝1, 𝑝2,…, 𝑝𝑖−1) is the betting 

function.

 𝑆𝑛= 𝑆𝑛−1𝑓𝑛(𝑝𝑛).

 The exchangeability assumption is rejected with a significance level 

equal to 
1

𝑀
if the value of the 𝑆𝑛 is equal to M (Ville's inequality (Ville, 

1939))
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Pvalue Calculation 
 To find the pvalue of the example 𝑧𝑗 we calculate the sequence 

𝐻𝑗 = {𝑎𝑘+1, , … , 𝑎𝑗}

 Then 𝑝𝑗 =
𝑎𝑖 ∈ 𝐻𝑗 𝑎𝑖 > 𝑎𝑗 +𝑈𝑗| 𝑎𝑖 ∈ 𝐻𝑗 𝑎𝑖 = 𝑎𝑗 |

𝑗−𝑘

Where 𝑈𝑗 is a random number from the uniform distribution (0,1).
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Calculating Non-conformity scores
 Given a sequence of examples {𝑧1, 𝑧2, … }

where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) with 𝑥𝑖 an input vector and 𝑦𝑖 the corresponding 
label.

 The first 𝑘 examples {𝑧1, 𝑧2, … , 𝑧𝑘} will be used to train the underlying 
algorithm. 

 The examples {𝑧𝑘+1,…, 𝑧𝑛} arrive one by one and a numerical value is 
assigned to each example called nonconformity score denoted by 𝑎𝑗
and equal to 𝐴{𝑧𝑖 , {𝑧1, 𝑧2, … , 𝑧𝑘}} with 𝑖 ∈ {1, … , 𝑗}. 

 The NCS is based on the underlying algorithm and when a new 
example arrives a new NCS is assigned to each example.
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Nonconformity Measure
 Underlying Algorithm

 Tree Classifier, Random Forest

 NCM

 For each example 𝑧𝑗 classifier will output the posterior probability ෦𝑝𝑗

For each label 𝑦𝑗, therefore we define the NCM: 𝒂𝒋 = −෦𝒑𝒋
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Existing Betting Functions
 Histogram Estimator

 We take a fix number of bins 𝑘, this will partition the [0,1] into 

𝐵1 = [0,
1

𝑘
), 𝐵2 = [

1

𝑘
,
2

𝑘
),…, 𝐵𝑘 = [

𝑘−1

𝑘
, 1)

 When a pvalue 𝑝𝑛 ∈ 𝐵𝑗 then the density estimator will be equal to  

𝑓𝑛 𝑝𝑛 =
𝑛𝑗.𝑘

𝑛−1
, where 𝑛𝑗 is the number of p-values belonging to 𝐵𝑗

 Kernel estimator


𝑓𝑛 𝑥 =

1

𝑛ℎ
σ𝑖=𝑖
𝑛 𝐾(

𝑥−𝑥𝑖

ℎ
)

Where h is the bandwidth and K(z)=
1

2𝜋
𝑒−

𝑧2

2
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Proposed Betting Function
 Theorem: When the distribution of the p-values is uniform, for any 

betting function other than f= 1 then 𝑆∞ = 0.

 Our betting function is built on top of any betting function 𝑓𝑛.

 Consider two players. Player one uses 𝑓𝑛 and player two uses the cautious 
betting function.

 Cautious Betting Function: ℎ𝑛= ൞
1 𝑖𝑓

𝑆1𝑛−1

𝑚𝑖𝑛𝑆1𝑛−𝑘
≤ 𝜀

𝑓𝑛 𝑖𝑓
𝑆1𝑛−1

𝑚𝑖𝑛𝑆1𝑛−𝑘
> 𝜀

 𝑊𝑖𝑡ℎ 𝑆1𝑛−𝑘 = ς𝑖=1
𝑛 𝑓𝑖(𝑝𝑖) , 𝜀 > 0 𝑘 ∈ {𝑛 − 𝑤,… , 𝑛 − 1} and w is an 

integer

12



CD detection with ICM

Now if the final value of the Martingale 𝑆𝑛−𝑘 exceeds 10 or 100 then we can reject the exchangeability 
assumption at a significance level equal to 10% and 1% respectively, thus an alarm is raised for CD 
detection.
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Experiments and results - Datasets

 1 simulation for the STAGGER case

 30 simulations for the SEA,ELEC dataset

Dataset Number 
of 
Instances

Number of 
Variables

Number 
of labels

Number of 
concepts

Chunk 
size

Training 
set size

RECOVERY 
TIME 
DATASET

100100 1 numeric             
(ranging from 0 
to 1) 

2 2 10000
90000

100

STAGGER 1000000 3 categorical              
(3 values)

2 4 10000 200

SEA 1000000 3 numeric             
(ranging from 0 
to 10) 

2 4 250000 1000

ELEC 45312 8 numeric 2 unknown unknown 300

AIRLINES 539383 7 numeric 2 unknown unknown 200
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Experiments and results – Experimental 
Setting

 For algorithm 1 δ={0.01}

 To calculate the histogram estimator we have used the last 1000 
observations.

 To calculate the kernel estimator we have used the p-values of the last 500 
observations for the recovery dataset and for the rest  datasets the p-
values of the last 100 observations.

 For the Cautious betting function we have used a 𝑊 = 5000 and 𝜀 = 100
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Experiments and results – Performance 
Measures

 Accuracy: Average accuracy of the classifier (excluding the training 
set).

 Mean delay: Average number of observations before detecting a CD 
after it has occurred.

 True alarm rate(TAR): Average rate of CDs that have been correctly 
detected per chunk.

 False alarm rate(FAR): Average rate of CDs erroneously detected per 
chunk.

 Number of CDs detected: Total number of CDs detected in a real-
world dataset.

16



Experiments and results – Recovery Time 
dataset log Martingale growth
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Experiments and results – Recovery Time 
dataset
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Experiments and results - STAGGER
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Experiments and results - SEA
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Experiments and results - Elec
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Experiments and results - AIRLINES
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Experiments and results – Comparison 
with two state of the art algorithms
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Conclusions
 We propose a new BF called Cautious.

 It addresses the problem that Martingale get values close to zero.

 It improves existing betting functions especially when the change occurs 
after a big-time interval.

 Experiments show that it can detect cases which the other two betting 
functions failed.

 The proposed approach has similar accuracy to the two state of the art 
algorithms
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Future Directions
 Combine the Cautious betting function with more than one uniformity 

test.

 Employ strategies for selecting representative training set
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Thank you!!!
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