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The Problem

@ Hedging is the act of protecting an investment against unfavorable
moves in the market by trading a negatively correlated asset or
investment instrument.

@ Here we explore using prediction with expert advice algorithms to find
optimal hedge decisions given a pool of hedging strategies.
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Cylinder Hedging Model

@ We will be looking at a special case of a Financial Market Makers
(MMs) hedging strategy
@ The model has two main parameters:
@ A pair of long and short limits (typically specified in US dollars)
@ A hedge fraction specifying how much to hedge
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Cylinder Hedging Model

@ Directional indicators can improve on the models ability to hedge
effectively

Algorithm 1 Cylinder Hedging Model
Parameters: long/short Limit, Hedge fraction and Skew: L;, Ls, H, Hs, S}, Ss
Directional indicators Id;, t = 1,2, ...
fort=1,2,... do
if PositionS > Ly + (L; x S} x Id;) then
| Hedge Fraction, < H
end
if Position’ < Ly 4 (Ls x Ss x Id;) then
| Hedge Fraction, < H,
end
else
| Hedge Fraction; < 0
end

end
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Cylinder Hedging Model
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Prediction with Expert Advice Framework

@ Oneverystep t =1,2,..., the learner L produces a prediction v € T,
where [ is a known prediction space.

@ The nature produces a loss function \; : [ — R and the learner
suffers loss £; = A¢(7t)-

@ We measure the performance of L by the cumulative loss over T
steps given by

T
Losst(L£) = th .
t=1
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Prediction with Expert Advice Framework

@ Suppose that there are N experts £,, n=1,2,..., N, making
prediction in the same environment as L.

e We want the cumulative loss Losst (L) to be small compared to the
minimum of experts’ losses LossT(&,) = Z;’- s

Protocol 1 Prediction with Expert Advice Protocol
fort=1,2,... do
experts &, output predictions 7 € I', n =1,2,...,N
learner £ outputs a prediction v, € '
nature produces a function A\; : I' = R
experts &, suffer losses £} = \(7f), n=1,2,...,N
learner £ suffers loss £, = A\¢(v4)
end
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Weak Aggregating Algorithm

@ Let [ be a convex set so that for any v1,72,...,vv € I and
probabilities p1, p2,...,pn (pn > 0for n=1,2,..., N and
Z,’Yzl pn = 1) the convex combination v = Z,’Yzl PnYn is defined and
belongs to I'.
@ In order to obtain performance bounds for WAA, one needs to assume
convexity of loss functions A¢; this ensures the inequality
e <30y PRty
@ We will also need losses to be bounded. Let L € R be such that
max (] — min (7 <L
1,2,...,N

n=1,2,...,.N n=1,2,...,
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Weak Aggregating Algorithm

@ A learner following the WAA protocol with equal initial weights and a
learning rate 1; = c/+/t where ¢ = 2v/In N/L, can ensure the
following bound on loss:

Losst(L£) < Losst(&Ep) + LVTInN

forall T=1,2,... and all experts &,, n=1,2,..., N.
Algorithm 2 Weak Aggregating Algorithm

Parameters: Initial distribution ¢1,¢o,...,qn, gn > 0forn=1,2,... and 25:1 =1
Learning rates n; > 0,t =1,2,...
let Ly =0,n=1,2,...,N
fort=1,2,... do
calculate weights w}’ | = qne M n=1,2,....N

normalise the weights p} | = wy* ;/ Zf\il wig,n=12,...,N
read experts’ predictions 77 € I', n =1,2,..., N
output v, = S0 pi
read experts losses ¢}, n=1,2,..., N
update LY = L} | + ¢}, n=1,2,...,N

end
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Discounted Loss

@ Suppose that we are given coefficients ag, az, ... € (0,1]. Let the
cumulative discounted loss for a learner £ be given by

T T-1
LossT(£) = Z A(7e) <H as> = CYT—lLO/S_;_T/—l(‘C) +A(yr)
t=1 s=t

e If L is known in advance and all discounting factors are equal and less
than 1, one can take

2/20—a)inN

Ne=1= [

and ensure for equal weights g1 = g2 = ... = gy = 1/N the bound

In N

LossT(L) < Losst(&y) + L —a) (1)

forall T=1,2,... and all experts &,, n=1,2,... N.
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Discounted Loss

Algorithm 3 Weak Aggregating Algorithm with Discounting

Parameters: Initial distribution ¢1,¢2,...,qn, go > 0 for n =1,2,... and Zi\,le =1
Discounting factors a1, o, ... € (0,1].
Learning rates ny > 0,t=1,2,...
let Ly =0,n=1,2,...,N
fort=1,2,... do
calculate weights w}® | = que~ Ml p =12 N
normalise the weights p* | = w} ;/ Zfil wi,n=12... N
read experts’ predictions 7 € I', n=1,2,..., N
output v = 25:1 PEYE
read experts losses ¢, n=1,2,...,N
update L} = oy 1L} | + 47}, n=1,2,...,N
end
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WAA for Hedging

@ Our pool of experts are a set of cylinder models

@ A hedge decision is represented by v € [—1,0], where 7 = —1 implies
hedging out the entire client position and «; = 0 corresponds to a
decision not to hedge over trial t

@ It is natural to define loss in terms of the the MM's PnL resulting
from facilitating client orders

@ As PnL represents the MM's gain, we need to take its inverse when
defining the loss. We can therefore take the loss at time t to be

A(’Yt) = —PnL¢:
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WAA for Hedging Loss function

@ Here we will take a similar approach considering the loss function with
the coefficients v > 0 and v > 0:

u v .
Ay) =— <u+VPnL'y + Ty mm(PnL*y,O))

@ This allows a the learner to adjust their risk appetite adding more
focus on losses that profit and minimise drawdown
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Data Set

@ Real-world currency exchange price data and client order data based
on the trading behaviour of individuals opening positions with an FX
MM

e EUR/USD over a 41 month period (Feb 2014 - June 2017)
represented in hourly epochs
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Experts

@ Our pool of experts is the hedge fraction predictions from 100 unique
cylinder models.
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Results

EUR/USD PnL against Max Drawdown.Discount Key Red: 0%, Cyan:
2.5%, Purple: 5%, Black: 7.5%, Pink: 10%, Orange: 20%
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Conclusions

@ We have shown that the Weak Aggregating Algorithm (WAA) can be
used to combine the predictions from a pool of cylinder hedging
models to improve key performance metrics - namely the overall profit
(PnL) - whilst simultaneously not compromising on the smoothness of
returns by minimising drawdowns

@ We have further introduced a method for applying discounted loss to
the WAA
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