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Distribution-free inference: questions

Why do we want “distribution-free” guarantees?

When we analyze data, we...

e Run a model/algorithm that is valid under certain assumptions

( parametric model / smoothness conditions / sparsity assumption / ... )

e But if the assumptions don’t hold, can we trust the output?

( parameter estimate / predicted value / error bound / hypothesis test / ... )
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Distribution-free inference: questions

Why do we want “distribution-free” guarantees?

When we analyze data, we...
e Run a model/algorithm that is valid under certain assumptions
( parametric model / smoothness conditions / sparsity assumption / ... )

e But if the assumptions don’t hold, can we trust the output?

( parameter estimate / predicted value / error bound / hypothesis test / ... )

e So, we run a test to check if the assumptions hold

( goodness of fit / overdispersion / calibration ... )

e But, what if this test is only guaranteed to detect violations,
under some other assumptions?
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Distribution-free inference: questions

Why do we want “distribution-free” guarantees?

When we analyze data, we...
e Run a model/algorithm that is valid under certain assumptions
( parametric model / smoothness conditions / sparsity assumption / ... )

e But if the assumptions don’t hold, can we trust the output?

( parameter estimate / predicted value / error bound / hypothesis test / ... )

e So, we run a test to check if the assumptions hold

( goodness of fit / overdispersion / calibration ... )

e But, what if this test is only guaranteed to detect violations,
under some other assumptions?

The goal of distribution-free inference is to provide guarantees

that are valid universally over all data distributions. By



Distribution-free inference: questions

What are inference questions we might want to ask, distribution-free?

e Prediction: the unobserved response Y will lie in [some range]

Effect size: the dependence between X and Y lies in [some range]

Independence: test if X & Y independent given [some confounders]

e Regression: the distribution of Y given X satisfies [some property]
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Distribution-free inference: questions

What are inference questions we might want to ask, distribution-free?

e Prediction: the unobserved response Y will lie in [some range] ‘

this/talk e Effect size: the dependence between X and Y lies in [some range]
e Independence: test if X & Y independent given [some confounders]

e Regression: the distribution of Y given X satisfies [some property]
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The prediction problem

Setting:
e Training data (X1, Y1),..., (Xn, Yn), test point (Xpt1, Yot1)
/! N
observed want to predict

e If fitted model 1 overfits to training data,

n

~ 1 =
[ Yo+1 = i(Xnr1)] > — D1V — (x|
i=1

even if training & test data are from the same distribution
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The prediction problem

Run algorithm A on the training data ~~ fitted model [z

Prediction interval for Y,.1:

(,A'(X,,H) = u(Xnpt+1) = (margin of error)

N\

Use training residuals? (“naive”)
Use a parametric model?
Use smoothness assumptions?

Use cross-validation?
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Using a holdout set

e Using any algorithm, fit model
= A ), Ko, Vo))
e Compute holdout residuals
Ri=|Yi—u(X))|, i=n/24+1,...,n
e Prediction interval:

o~

C(Xnt1) = pu(Xnt1) £ (the (1 — a)-quantile of R,/241, ..., Rn)
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Conformal prediction framework

Background on the conformal prediction (CP) framework:
key idea = statistical inference via exchangeability of the data

FroaPedictiveferece forRegrssion
Learning by Transduction

A. Gammerman, V. Vovk, V. Vapnik
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
{alex, vovk, vladinir)@dcs. rhbac. ac.uk

Gammerman, Vovk, Vapnik  Vovk, Gammerman, Shafer Lei, G'Sell, Rinaldo,
UAI 1998 2005 — see alrw.net Tibshirani, Wasserman
JASA 2018

7/63



Conformal prediction framework

What is exchangeability?

(Xla Y1)7 poog (Xn+17 Yn+1) & (Xa(l)v Ya(l))7 poog (XU(n+1)7 Ya(n+1))
have the same joint distribution for any permutation o

Equivalently:
Given an unordered data set, any ordering is equally likely
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Conformal prediction framework

What is exchangeability?

(Xla Y1)7 poog (Xn+1> Yn+1) & (Xa(l)v Ya(l))7 poog (Xa(n+1)7 Ya(n+1))
have the same joint distribution for any permutation o

Equivalently:
Given an unordered data set, any ordering is equally likely

Examples:

e (Xi,Yj)'s are i.i.d. from any distribution
e (Xi, Yi)'s sampled uniformly without replacement from any set

e Not an example: a stationary time series w/ dependence
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Split conformal prediction

Split conformal prediction interval (a.k.a. holdout):!

C(Xop1) = A(Xns1) + Ql_a{R,,/M,...,R,,}
N

the [(1 — a)(n/2 + 1)]-th smallest value in the list

Theorem:

If (X1, Y1),...,(Xn+1, Yat1) are exchangeable (e.g., i.i.d.),
then for any algorithm A, the split conformal method satisfies

P{Ynﬂ e 6(Xn+1)} >1-a

1Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Split conformal prediction

Proof:
After conditioning on i, holdout + test data is exchangeable

= residuals R, /211,..., Rn, Rp1 are exchangeable

=P {Rn+1 < (the (1 — a)-quantile of R, /241, ..., R,,H)} >1—«
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Split conformal prediction

Proof:
After conditioning on i, holdout + test data is exchangeable

= residuals R, /211,..., Rn, Rp1 are exchangeable

=P {Rn+1 < (the (1 — a)-quantile of R, /241, ..., R,,+1)} >1—«

)
Rot1 < Qi-a{Rnj241,- -, Rn}

0

Yn—i—l € é':()<n—i-1)
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The nonconformity score

In the above construction,

CXpi1) = i(Xns1) £ [..] = { all y values with |y — i(Xpr1)] <[] }

2Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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The nonconformity score

In the above construction,

CXpi1) = i(Xns1) £ [..] = { all y values with |y — i(Xpr1)] <[] }

We can generalize to any score function:?
C(Xns1) = { all y values with $(Xps1,y) <[..] }

where S(x, y) measures “nonconformity” of the data point (x, y)

S may be called the “nonconformity score”, or the “conformity score”

2Vovl<, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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The nonconformity score

Split conformal with an arbitrary nonconformity score:

e Using data i =1,...,n/2, fit nonconformity score function S
e Compute S; = 5(X;,Y;) fori=n/2+1,...,n

e Prediction interval:
C(Xn+1) = {y 5 S(Xn+17y) S Ql—a{sn/2+1a 000y Sn}}
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The nonconformity score

Split conformal with an arbitrary nonconformity score:

e Using data i =1,...,n/2, fit nonconformity score function S
e Compute S; = 5(X;,Y;) fori=n/2+1,...,n
e Prediction interval:

C(Xnt1) = {¥ : S(Xnt1,¥) < Quoa{Sn/2s1s-- > Sa}}

Choose S(x,y) = |y — fi(x)| ~» C(Xns1) = fi(Xns1) £ [...] as before
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The nonconformity score: examples

If noise level varies with X, may want varying interval width:*

e = % o C(Xne1) = AlXne1) £ 5(Xos1) - Qra{}

(figure from Lei et al 2018)

3Lei et al 2018, Distribution-Free Predictive Inference for Regression
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The nonconformity score: examples

If the shape of distrib. of Y|X varies with X,
centering C(Xp+1) at fi(Xn+1) may not be optimal

Instead, can estimate conditional quantiles directly:*°

e Estimate g, /2, Gi_q/2 ON the training set
e Nonconformity score: S(x,y) = max{ga,2(X) =¥, ¥ — Gi—a/2(x)}
= 6(X,,+1) = [aa/Q(XnJrl)_Qlfa{“-}v al—a/Q(XnJrl)‘*‘Qlfa{m”

—— Predicted low and high quantiles
COR: prediction interval

-2

(figure from Romano et al 2019)
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The nonconformity score: examples

Or, the score can directly use the estimated distribution of Y|X:6

e Estimate the conditional CDF, I/-_\(y|x) on training set
e Nonconformity score: §(x,y) = },E(y|x) — 0.5|

= C(Xns1) ={y : F(y|Xps1) € 05+ Qi_o{..}}

& 4 estimated distribution of Yp.4[Xn.1

o

e

2 -

| equal area

o

O_ —

o T T T T T T
0 2 4 6 8 10

y

6 Chernozhukov et al 2019, Distributional conformal prediction 15/63



The nonconformity score: examples

An alternative:’

e Estimate the conditional density, f(y|x) on training set
e Nonconformity score = two-tailed test:
S(x.y) = —f(ylx)
= C(Xns1) = {y : FyXor1) > —Qu-a{..}}

8_ - estimated distribution of Y,,,4|Xq;1

o

=]

<]

o

O_ —

S} T T T T T T
0 2 4 6 8 10

y
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The nonconformity score: examples

Probabilistic conformal prediction—use a generative model:®

e Fit a generative model for Y| X, on the training data

A

e Given X;, draw samples \A/,-,l, ..., Yi K from the generative model

e Nonconformity score:

~

S(Xi,y) = min Kdistance(y, Vi)

)

= C(Xpy1) = {y : distance(y, Yni1.4) < Qi_af...} for any k}

8_ - ;’ generative model for Y,,,4|Xq41

o § ‘ /

IS 5

8 A 4 oo o se o o \; .......................

IS T T T T T T
0 2 4 6 8 10
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Categorical response variable

If the response Y is categorical, with values Y = {y1,..., yk}—
o Pi(x) estimates P{Y = yx | X = x} using training data
e A natural score function: §(X,yk) = —pr(x)

= C(Xns1) = {y : Pc(Xns1) = —Qi_o{...} for any k}

prediction set

prediction set

—
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Categorical response variable

A more efficient construction:®

e How far into the tail of the distribution, is the label Y?

S(x. i) Z Prr (x) - 1{Prr (x) = Pr(x)}

< <

; pred. se:t ; i
S S !
© , © , prediction set
o | © \
< | < 1
o ! o |
N ! N !
- J I - D‘
o : e —— o J[CC :
o o

y1 y2.  y3 y4 ¥5 y1

19/63
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Split vs full conformal prediction

All methods so far rely on data splitting:

e Training: use n/2 data points to develop a score function S
e Calibration: use n/2 data points to learn the distrib. of §(X, Y)

e Then we can predict §(Xn+1, Yni1) ~ can predict Y1
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Split vs full conformal prediction

All methods so far rely on data splitting:

e Training: use n/2 data points to develop a score function S
e Calibration: use n/2 data points to learn the distrib. of §(X, Y)

e Then we can predict §(X,,+1, Yni1) ~ can predict Y1

The drawback: sample splitting means that we only use n/2 data points
to fit the model / the score function
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Split vs full conformal prediction

Naive method Vs Holdout method
= training resid. ~ holdout resid.
X, e X =
'u( n+1) quantile M( "+1) quantile
fitted on n points N— fitted on n/2 points -
= more accurate too small = less accurate calibrated
(overfitted) (but wider)

IOVovk, Gammerman, Shafer 2005
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Split vs full conformal prediction

Naive method Vs Holdout method
PN training resid. ~ holdout resid.
p(Xp+1) =+ : (Xp+1) + ;
—— quantile —— quantile
fitted on n points N— fitted on n/2 points
= more accurate too small = less accurate calibrated
(overfitted) (but wider)

An alternative—the full conformal method:'°

e Models fitted on all n training samples (no data splitting)
e Guaranteed distribution-free predictive coverage

e High computational cost

IOVovk, Gammerman, Shafer 2005
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Split vs full conformal prediction

holdout method / split conformal / inductive conformal

Terminology: )
conformal / full conformal / transductive conformal
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Full conformal prediction

e Fit model to training+test data
ﬁ = A((X17 yl): c00p (XI'H yﬂ): (Xﬂ+17 Yn+1 ))

e Compute residuals

Ri = |Yi — a(Xi)| for i < n; Roy1 = Yay1 — B(Xos1)]

e Check if Rpy1 < [(1 — a) quantile of Ry,. .., Ra, R"H]
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Full conformal prediction

e Fit model to training+test data
ﬁ = A((X17 yl): c00p (XI'H Yn): (Xn+17 Yn+1 ))

e Compute residuals

Ri =|Y; — a(X)| for i < n; Roy1 = | Yor1 — f(Xot1)]

Check if Ruy1 < [(1 — a) quantile of Ry,. .., Ra, Rm]
N

If data points are exchangeable, and A treats data points symmetrically,

then Ry, ..., R,11 are exchangeable

= this event has > 1 — « probability
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Full conformal prediction

e Fit model to training+test data p
i=A((X1, Y1), .., (Xn, Ya), (Xot1, ¥hik/))

e Compute residuals

y
Ri = 1Yi = 5(Xi)| for i < ni Ry = | Wi/ — (Xnta)|

Check if Ruy1 < [(1 — a) quantile of Ry,. .., R, Rm]
N

If data points are exchangeable, and A treats data points symmetrically,

then Ry, ..., R,t1 are exchangeable

= this event has > 1 — « probability if we plug in y = Yni1
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Full conformal prediction

e Fit model to training+test data

= A(X1, Y1), - (Xn, Yn), (Xnt1,¥))
e Compute residuals
Ri=1Y; —p(X)l, i=1,...,n,  Rnp1 = |y — B(Xp1)l
.cmwwmﬂg[ufammmmdﬁ“”,mﬁwd
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Full conformal prediction

e Fit model to training+test data

= A(X1, Y1), - (Xn, Yn), (Xnt1,¥))
e Compute residuals
Ri=1Y; —p(X)l, i=1,...,n,  Rnp1 = |y — B(Xp1)l
.cmwwmﬂg[ufammmmdﬁ“”,mﬁﬂd

l y ~> {Yes, No} {
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Full conformal prediction

e Fit model to training+test data
Test value y € R = A((X1, Y1), - - -, (Xn, Yn), (Xnt1,¥))
\( e Compute residuals
Ri=1Y; —p(X)l, i=1,...,n,  Rnp1 = |y — B(Xp1)l
.cmwwmﬂg[ufammmmdﬁ“”,mﬁﬂd

l y ~> {Yes, No} {

v N\

if Yes: add y € 6(X,,+1) if No: discard y
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Full conformal prediction

e Fit model to training+test data
Test value y € R = A((X1, Y1), - - -, (Xn, Yn), (Xnt1,¥))
\( e Compute residuals
Ri=1Y; —p(X)l, i=1,...,n,  Rnp1 = |y — B(Xp1)l
.cmwwmﬂg[ufammmmdﬁ“”,mﬁﬂd

l y ~>{Yes,No} {

v N\

if Yes: add y € 6(X,,+1) if No: discard y

]P{Y,,+1 € 6(Xn+1)} = P {for test value y = Y, 1, answer is Yes} > 1 — «

24/63



Full conformal prediction

Validity guarantee for full conformal:*!

Theorem:

If (X1, Y1), .-y (Xns Ya), (Xns1, Yar1) are exchangeable (e.g., i.i.d.),
and the algorithm A treats data points symmetrically, then full CP satisfies

P{Y,,+1 c 5(X,,+1)} >1—a.

e Split conformal can be viewed as a special case.

HVovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Full conformal can be run with any score function on data sets:

((Xla.yl)a sy (Xn+17}’n+1)) = (517 ceey Sn+1)

S; = “nonconformity score” of data point i, relative to rest of the data
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Full conformal prediction

Full conformal can be run with any score function on data sets:

((Xla.yl)a sy (Xn+17}’n+1)) = (517 .. ~7Sn+1)

S; = “nonconformity score” of data point i, relative to rest of the data

e Regression: S; = |y; — fi(x;)| or Si = |yi — f(xi)|/a(xi)]

Quantile regr.: S; compares y; to Gy /2(xi) & G1_a/2(x;)
e Classification: S; = —p(yi|x;)

e & many more
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Full conformal: computational challenges

Full conformal prediction requires that the algorithm A is re-run:

e For each test value X1 of interest

e For every possible value of Y, 11 (e.g, all y € R)

Approaches:

e In practice — restrict to a grid of y values (but no theory)

e Specialized methods for specific algorithms e.g. Lasso'?

e Discretized CP — use a discretized version of A
to restore theoretical guarantees'?

12| ¢i 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

13Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Full conformal: computational challenges

A preliminary observation:*
It is valid to run CP on the interval [mini<i<, Yi, maxi<i<n Yi]
e With prob. > 1 — -25, including Y, doesn’t change the endpoints

2
n+1

e So, coverageis > 1—a —

14Chen, Wang, Ha, & B. 2016, Trimmed conformal prediction for high-dimensional models.
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Full conformal: computational challenges

Conformal prediction:

 E— . yGR

C(Xn+1)
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Full conformal: computational challenges

Conformal prediction:

 E— . yGR

o~

C(Xn+1)

Conformal prediction with rounding (informal version):

Y1 Y2 y3 Ya Y5 Y6

yekR
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Full conformal: computational challenges

Conformal prediction:

 E— . yGR

o~

C(Xn+1)

Conformal prediction with rounding (informal version):

Y1 Y2 y3 Ya Y5 Y6
@ @ @ yeR
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Full conformal: computational challenges

Conformal prediction:

~

C(Xn+1)

Conformal prediction with rounding (informal version):

n Y2 Y3 Ya Y5 Y6
—e & s e

C(Xni1)

yeR

yeR
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Full conformal: computational challenges

Conformal prediction:
— - yeR
C(Xp11)

Conformal prediction with rounding (informal version):

Y1 Y2 Y3 ya Y5 Yo
e @@ @ yeR
C(Xn+1)

Problems to solve:

e Theory to guarantee coverage rate 1 — a?

e Avoid wider intervals due to discretized grid? 2063



Full conformal: computational challenges

Why do we lose the coverage guarantee?

e If only fit 7 on (X1, Y1), .., (Xn, Ya), (Xot1,y) for y in a grid...
e Equivalent to: fit g on (X1, Y1),...,(Xs, Ya), (Xox1, [Yas1])

Yp+1 rounded to grid
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Full conformal: computational challenges

Why do we lose the coverage guarantee?

e If only fit 7 on (X1, Y1), .., (Xn, Ya), (Xot1,y) for y in a grid...
e Equivalent to: fit g on (X1, Y1),...,(Xs, Ya), (Xox1, [Yas1])

Yp+1 rounded to grid

To maintain exchangeability:
need to fit 72 on (X1, [Va), .., (Xa, [Yal), (Xot1, ¥ )

30/63



Full conformal: computational challenges

Discretizing the model to restore theoretical guarantees:'”

15Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Full conformal: computational challenges

Discretizing the model to restore theoretical guarantees:'”

e Run a discretized algorithm for model fitting:

(X, Y4) o (o) A oD, G S )

e Calculate residuals
Ri:‘yi_[ﬁ](xi)L =10 o it Rn+1:|y_[ﬁ](x)|

o Check if |Rpi1| < [(1 — a) quantile of Ry,..., R, R,,+1]

Computational cost: A only needs to be rerun for each y in the grid

15Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Cross-validation methods

Holdout methods vs  full conformal
(lose sample size) (high computational cost)
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Cross-validation methods

Holdout methods vs  full conformal
(lose sample size) (high computational cost)

To avoid this tradeoff, can we use cross-validation?

Split data into k folds, {1,...,n} = A;U---U Ak
For i € Ak, R,CV = |\/, — //Z*Ak(X/’)l < [i_p, is trained on data pts {1,..., n}\Ax
E(Xni1) = A1) + Qua{ REY,... RSV )
N

the [(1 — a)(n + 1)]-th smallest value in the list

— Computational cost: K + 1 regressions

— Problem: theory from holdout setting no longer holds
32/63



Cross-validation methods

Jackknife a.k.a. leave-one-out cross-validation (K = n)
Residuals R}-Oo =|Y; — [i—i(X;)| « f_; is trained on data pts {1, . .., n}\{i}

C(Xns1) = AlXo11) + Qua{ REO,..., REC)

lﬁsteinberger & Leeb 2018, Conditional predictive inference for high-dimensional stable algorithms
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Cross-validation methods

Jackknife a.k.a. leave-one-out cross-validation (K = n)
Residuals RILOO = |\/, — ﬁ_i(X,‘)| <— [i_; is trained on data pts {1, ..., n}\{i}

C(Xns1) = AlXo11) + Qua{ REO,..., REC)

— Predictive coverage under algorithmic stability assumption:'®

P{|f(Xnt1) = i-i(Xns1)| < €} > 1 —v

1GSteinberger & Leeb 2018, Conditional predictive inference for high-dimensional stable algorithms
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Jackknife4 & CV+

Jackknife4-:17
0t = [0 59, {530 5]

Compare to jackknife:

~

C(Xny1) = [Qa{ﬁ(XnH) = R,-LOO}, Qlfa{ﬁ(X,,H) n RiLOOH

17Bv, Candes, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+
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Jackknife+ & CV+

1i(Xn41) £ REO© fi-1(Xn41) + REOC

|
J
|

I
i(Xoi1) RSO0 fi_a(Xas1) £ REOO

*

fi(Xni1) £ REOC
e

ﬁ(Xn+1) + RIrTOO

|

|

|

|

|

|

|

|

|

|

|

|

|

|
3

Jackknife Jackknife+
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Jackknife+ & CV+

Extension to K-fold CV+:'8

~

C(Xnt1) = [Qa{ﬁfAk(XnJrl) = R,-CV}, Qlfa{ﬁfAk(anLl) + RiCVH

Closely related to the cross-conformal prediction method'?:%°

188., Candes, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+
19y/ovk 2015, Cross-conformal predictors

20\/ovk et al 2018, Cross-conformal predictive distributions
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Jackknife+ & CV+

Theorem: For any distrib. P and any A, jackknife+ satisfies

IP’{Y,,+1 e 6(X,,+1)} >1-2a.

(If also assume algorithmic stability, then > 1 — a — o(1))

21, Candes, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

22\/ovk et al 2018, Cross-conformal predictive distributions /
37/63



Jackknife+ & CV+

Theorem: For any distrib. P and any A, jackknife+ satisfies

P { Yoi1 € f(x,,ﬂ)} >1— 2a.

(If also assume algorithmic stability, then > 1 — a — o(1))

Theorem: For any distrib. P and any A, K-fold CV+ satisfies

1-2a—1/K*

C >
P{Y"H © C(X"“)} - {1 _2a - 2K/n®

v~ >1—20—+/2/n.

21B  Candes, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

22\/ovk et al 2018, Cross-conformal predictive distributions
37/63



Jackknife+ & CV+

Proof idea: embed jackknife+ into a larger exchangeable problem
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Jackknife+ & CV+

Proof idea: embed jackknife+ into a larger exchangeable problem

e Exchangeable data {(Xi, Y1),...,(Xot1, Yot1)}
o ("3") leave-two-out regressions: fi_y; ;3 for 1<i,j<n+1

e We can observe n of these, i.e., ﬁ,{,-’,,ﬂ} =p_jfor1<i<n
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Cross-conformal

For a general score function — can use cross-conformal prediction:?3:2*

e Fit score function 5(X) on k-th data set {(Xi,Y:)ie{l,....,n}\Ax}
e For i€ Ay define S = 5((X;, Y))
e Prediction set

6(X,,+1) = {y : §k(i)(Xn+1,y) < SV for at least a(n + 1) many i’s}
e Coverage guarantees as for jackknife+ / CV+

2\/ovk 2015, Cross-conformal predictors

2%\/ovk et al 2018, Cross-conformal predictive distributions
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Generalizing CP to other definitions of risk

CP methods bound IF’{Y,,H ¢ 6(xn+1)} —E [1{\@+1 ¢ €(Xn+1)}}

zero/one loss

25Angelopolcvus et al 2021, Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
26Bates et al 2021, Distribution-Free, Risk-Controlling Prediction Sets 40/63



Generalizing CP to other definitions of risk

CP methods bound IP{Y,,H ¢ 6(xn+1)} —E [1{\/"+1 ¢ €(Xn+1)}}

zero/one loss

Idea — use CP-type approach to control other definitions of risk:*>:%°

e Example: FDR for flagging out-of-distribution data points
e Example: false pos./neg. rates if Y = a set of labels

e Example: accuracy rate for selecting pixels within an image

(figures from Bates et al 2021)

25Angelopolous et al 2021, Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control

20Bates et al 2021, Distribution-Free, Risk-Controlling Prediction Sets 40/63



Limitations of distribution-free prediction

The guarantee for conformal prediction / holdout methods:
IP’{Y,,+1 € 6(xn+1)} >1-a

a

w.r.t. distribution of (X1, Y1),...,(Xn+1, Yn+1) (assumed to be exchangeable)

Limitations:

e The guarantee is on average over the training data
e The guarantee is on average over the test point X1

e And, what if the data is not exchangeable?
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The PAC framework

’ Limitation 1: The guarantee is on average over the training data

All guarantees so far:

training

l1—«
data

P{Yn+1 S 6(Xn+1)} =E (P Yn+1 S 6(Xn+1) |

2Vovk 2012, Conditional validity of inductive conformal predictors 42/63
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All guarantees so far:

~ ~ trainin
JP’{YHH € C(XnH)} =E lp{vm € C(Xns1) ’ datag H >1-a

The PAC (Probably Approximately Correct) framework:

IF’{IP{Y,,HE C(Xpir) ”:'a"t':g }Zl—a } >1-6
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The PAC framework

’ Limitation 1: The guarantee is on average over the training data

All guarantees so far:

~ ~ training
P{YnH € C(Xn+1)} =E lp{vnﬂ € C(Xns1) ’ o H >1-a
The PAC (Probably Approximately Correct) framework:

training }Zl—a } >1-5
data

e Split conformal satisfies PAC with no additional assumptions®’

]P’{ P { Yor1 € C(Xni1)

e No PAC guarantee is possible for full conformal or jackknife+
(unless we make further assumptions)?®

2Vovk 2012, Conditional validity of inductive conformal predictors 42/63

28Bian & B. 2021, Training-conditional coverage for distribution-free predictive inference



Conditional prediction

‘ Limitation 2: The guarantee is on average over the test point X,

Is it possible to provide prediction that's valid conditional on X, .1, i.e.,

]P’{Y,,H € C(Xns1) ’ xnﬂ} >1—a?

( Motivation—the marginal guarantee doesn’t exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

29Vovk 2012, Conditional validity of inductive conformal predictors

301 e & Wasserman 2014, Distribution-free prediction bands for nonparametric regression 43/63



Conditional prediction

‘ Limitation 2: The guarantee is on average over the test point X,

Is it possible to provide prediction that's valid conditional on X, .1, i.e.,

IP’{Y,,H € C(Xns1) ’ Xnﬂ} >1—a?

( Motivation—the marginal guarantee doesn’t exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

This is impossible for nonatomic X (i.e., Px(x) = 0 for all x € X):?:3°

Theorem: If X is nonatomic,
E [Iength(C(XnH)) = oo for any C that's valid distribution-free
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Conditional prediction

‘ Limitation 2: The guarantee is on average over the test point X,

Is it possible to provide prediction that's valid conditional on X, .1, i.e.,
IP’{Y,,H € C(Xns1) ] xnﬂ} >1—a?

( Motivation—the marginal guarantee doesn’t exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

This is impossible for nonatomic X (i.e., Px(x) = 0 for all x € X):?:3°

Theorem: If X is nonatomic,
E [Iength(C(XnH)) = oo for any C that's valid distribution-free

expected length when data 5 P coverage must hold when data i any distribution

29Vovk 2012, Conditional validity of inductive conformal predictors

30| ¢j & Wasserman 2014, Distribution-free prediction bands for nonparametric regression 43/63



Conditional prediction

Can we relax the notion of conditionally valid coverage,
to obtain a nontrivial C?

(1 — o, §)-conditional coverage:** for any P & any X with Px(X) > 6,
P { Yot € C(Xns1) ] Xoi1 € x} >1—awrt datais P.

31B., Candes, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
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Conditional prediction

Can we relax the notion of conditionally valid coverage,
to obtain a nontrivial C?

(1 — a, 6)-conditional coverage:®' for any P & any X with Px(X) > 6,
P { Yot € C(Xns1) ] Xoi1 € x} >1—awrt datais P.

Theorem: for nonatomic Px, if C satisfies (1 — a, d)-conditional cov.,
then

E [l th(é\(X ))} > min. length of any oracle method
en 1 =
< m with 1 — ad coverage for P
LN

trivially achieves (1 — «, §)-conditional cov.
(and must be very wide)

31B., Candes, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
44/63



Conditional prediction

Conditional on bins: partition X = X; U --- U Xk,
& require ]P{Yn+1 € (.A'(XHH) ‘ Xpi1 € Xk} > 1 — « for each k3233

e For each k, data points {(X;, Y;) : X; € X} are exchangeable
~~ run CP separately for each k to guarantee bin-conditional cov.

e Note — the model 1 can still be fitted on the entire data set!

An application — fairness with respect to subpopulations*

32\/ovk 2012, Conditional validity of inductive conformal predictors
33 ei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

34Romano, B., Sabatti, Candeés 2019, With malice toward none: assessing uncertainty via equalized coverage
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Conditional prediction

Extension — distributional conformal prediction®®

e Estimate the conditional distribution of Y/|X ~ ,E(y|x)

e Nonconformity score §(x,y) = |I/-:(y|x) —0.5]

— CP is valid with any score = finite-sample marginal cov.

— If F satisfies consistency = asymptotic conditional cov.

35Chernozhukov et al 2019, Distributional conformal prediction
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Conditional prediction

Extension — a localized form of the prediction guarantee:*°

Construct 6(Xn+1) using a kernel around the test point,
e.g., only the nearest neighbors of X1

36Guan 2020, Conformal prediction with localization
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Conditional prediction

Extension — a localized form of the prediction guarantee:*°

Construct 6(Xn+1) using a kernel around the test point,
e.g., only the nearest neighbors of X1

Define weights w; = w(X;, X,11), then

C(Xpy1) = {y : §(X,,+1,y) < Ql_a{S,- with weight W,-}}
N

adjust o to maintain coverage

~~ achieves marginal coverage, and asymptotic conditional coverage

36Guan 2020, Conformal prediction with localization
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Settings beyond exchangeability

Limitation 3: what if data is not exchangeable?

Conformal prediction (or holdout method) assumes:
training & test data are from the same distribution

48/63



Settings beyond exchangeability

Limitation 3: what if data is not exchangeable?

Conformal prediction (or holdout method) assumes:
training & test data are from the same distribution

Possible violations:

e Train & test data are from different distributions (transfer learning)
e Data distribution changes over time (drift / changepoints)

e Dependence (over time / spatial location / network / etc)

48/63



Weighted conformal prediction

The covariate shift setting:

e Marginal distribution of X is different in training vs. test data
(e.g., some subpopulations are over- or under-represented in
the training data)

e But, distribution of Y|X is the same
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Weighted conformal prediction

The covariate shift setting:

e Marginal distribution of X is different in training vs. test data
(e.g., some subpopulations are over- or under-represented in
the training data)

e But, distribution of Y|X is the same

train train test test
P :'DX XPy‘X, P :’DX XPy|X

49/63



Weighted conformal prediction

known fn.
~ = .
Assuming we know the shift (i.e., dP¥™(x) < w(x) - dP¥*"(x)),

conformal can adjust for the shift with weighted exchangeability®”

37Tibshirani, B., Ramdas, & Candés 2019, Conformal prediction under covariate shift

38Hu & Lei 2020, A distribution-free test of covariate shift using conformal prediction
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Weighted conformal prediction

known fn.
Assuming we know the shift (i.e., dP$"(x) & w(x) - dP{"(x)),
conformal can adjust for the shift with weighted exchangeability®”*°

Given n+ 1 data points...

e With (unweighted) exchangeability,
each one is equally likely to be the test point
~ Rpr1 < Qi—af{Ri1,..., Ros1} with prob. 1 — «

e With weighted exchangeability, the distribution is nonuniform:
P {(x, y) is the test point} o w(x)

~~ need to compute a weighted quantile: Ql_a{R,- with weight w;}

37'I'ibshirani, B., Ramdas, & Candés 2019, Conformal prediction under covariate shift

38Hu & Lei 2020, A distribution-free test of covariate shift using conformal prediction
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Weighted conformal prediction

Application: survival analysis & censored data®’

e “Clean” data (X, Y;) = (features, survival time)
e Censored observations (X;, \N’,) where Y; = min{GC;, Y;}

e Main idea: choose a cutoff ¢y so that “usually” Y; < ¢,
& keep only data with C; > ¢ (i.e., most Y's are not censored)

39Candés, Lei, Ren 2021, Conformalized survival analysis
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Weighted conformal prediction

Application: survival analysis & censored data®’

e “Clean” data (X, Y;) = (features, survival time)
e Censored observations (X;, \N’,) where Y; = min{GC;, Y;}

e Main idea: choose a cutoff ¢y so that “usually” Y; < ¢,
& keep only data with C; > ¢ (i.e., most Y's are not censored)

— On this data set, can use CP to predict survival time Y
— But, this may be a different distribution

(population with C; > ¢y # general population)
— If distrib. of C|X known,

can use weighted CP to correct for distribution shift

39Cand\es, Lei, Ren 2021, Conformalized survival analysis

51/63



Weighted conformal prediction

Application: estimating individual treatment effects*’

e Data (X, T;, ;) = (features, treatment group = 0 or 1, outcome)
e ITE; = (value of Y;, if T; = 1) — (value of Y}, if T; =0)
e Challenge: treatment assignment may depend on X

e Main idea: if propensity score P{T =1 | X = x} is known,
can use weighted CP to adjust for X|T =1 versus X|T =0

40| ¢i & Candes 2020, Conformal inference of counterfactuals and individual treatment effects
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Weighted conformal prediction

An extension: the design problem (active learning)*!

e Training data (X;, Y;) ~ P
o Test data X411 ~ ISX, where I5X depends on training data

e Can use an extension of weighted CP for valid predictive inference

41Fannjiang et al 2022, Conformal prediction for the design problem
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Weighted conformal prediction

A related problem — label shift (for categorical Y / classification)*’

e Marginal distribution of Y is different in training vs. test data
(e.g., some subpopulations are over- or under-represented in
the training data)

e But, distribution of X|Y is the same
Ptrain _ Pgain % PX|Y; Ptest — P{sst X 'DX\Y

If the label shift is known,
can use weighted exchangeability to guarantee coverage

42Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift
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Weighted conformal prediction

Covariate shift & label shift methods — both assume 92 is known

dPtraln

If the distribution shift is unknown, but can be bounded:**

construct C that is valid assuming D¢ (Ptest||ptrain) < p

a
f-divergence (e.g., KL-divergence)

43Cauchois et al 2020, Robust Validation: Confident Predictions Even When Distributions Shift
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Online / streaming / time series data

Conformal prediction can also be applied to an online setting...

e If data points are iid,
conformal p-values are valid (and L) at each time ¢t
= can use conformal to predict / to test for changepoints**

e Can bound cumulative error under arbitrary distribution drift*>:4°

e |f data points form a time series,
CP achieves asymptotic coverage under some assumptions*’

MVovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
45Gibbs & Candes 2021, Adaptive conformal inference under distribution shift
40Feldman et al 2022, Conformalized Online Learning: Online Calibration Without a Holdout Set

4TXu & Xie 2021, Conformal prediction interval for dynamic time-series
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Robustness & nonsymmetric algorithms

Theory for CP relies on:

1. (X1, Y1), (Xn, Ya), (Xas1, Yar1) are exchangeable (e.g., i.i.d.)

2. Regression algorithm A treats input data points symmetrically
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Robustness & nonsymmetric algorithms

Theory for CP relies on:

1. (X1, Y1), (Xn, Ya), (Xas1, Yar1) are exchangeable (e.g., i.i.d.)

2. Regression algorithm A treats input data points symmetrically

Challenges in practice:

1. (X1, Y1)y .oy (Xay Ya), (Xnt1, Yas1) may be nonexchangeable
(e.g., distribution drift, dependence over time, ...)

2. May want to choose A that treats data nonsymmetrically
(e.g., weighted regression, autoregressive model, ...)

57/63



Robustness & nonsymmetric algorithms

Nonexchangeable conformal prediction (nexCP):*®

Draw a random index K with P{K = i} = w;, then:

e Fit model to training+test data
ﬁ = A((le Y1)7 sooy (X"+17y)7 sy (Xnv Yn)v (XK, YK))

e Compute residuals
Ri = 1Yi — @(Xi)| for i < n; Ros1 = |y — B(Xns1)]

o Check if R < Qlfo‘{R,' with weight W,'}

A

fixed weights w; > 0, e.g., wi < wp < ... for distrib. drift

C(Xn41) = {all y € R for which the above holds}

48B., Candes, Ramdas, Tibshirani 2022, Conformal prediction beyond exchangeability
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Robustness & nonsymmetric algorithms

Nonexchangeable conformal prediction (nexCP):*®

Draw a random index K with P{K = i} = w;, then:

e Fit model to training+test data
ﬁ = A((le Y1)7 sooy (X"+17y)7 sy (Xnv Yn)v (XK, YK))

e Compute residuals
Ri = |Yi = a(Xi)| for i < n; Ros1 = |y — fi(Xas1)]

o Check if R < Qlfo‘{R,' with weight W,'}

A

fixed weights w; > 0, e.g., wi < wp < ... for distrib. drift

C(Xn41) = {all y € R for which the above holds}

e Theory: coverage > 1 —a — >, w; - dyy(data, dataswap i & n+1)

48B., Candes, Ramdas, Tibshirani 2022, Conformal prediction beyond exchangeability
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Beyond the prediction problem

What are inference questions we might want to ask, distribution-free?

e Prediction: the unobserved response Y, 1 will lie in [some range]
o Effect size: the dependence between X and Y lies in [some range]
e Independence: test if X & Y independent given [some confounders]

e Regression: the distribution of Y given X satisfies [some property]

49Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure
50Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
51B. 2020, Is distribution-free inference possible for binary regression? 59/63

52| ee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between
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o Effect size: the dependence between X and Y lies in [some range]

e Independence: test if X & Y independent given [some confounders]

e Regression: the distribution of Y given X satisfies [some property]

a

mostly impossible (if X is continuous), or trivial (if X is discrete with bounded # values)
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Beyond the prediction problem

What are inference questions we might want to ask, distribution-free?

e Prediction: the unobserved response Y, 1 will lie in [some range]

o Effect size: the dependence between X and Y lies in [some range]

e Independence: test if X & Y independent given [some confounders]

e Regression: the distribution of Y given X satisfies [some property]

a

mostly impossible (if X is continuous), or trivial (if X is discrete with bounded # values)

e Hardness results for testing independence®

e Hardness results for inference on E[Y | X]°°:51:52

49Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure
50\ovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
51B. 2020, Is distribution-free inference possible for binary regression? 59/63

52| ee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between



Calibration

Calibration = an alternative definition of validity for a predictor

e Perfect calibration: E[Y | f(X)] = f(X) almost surely
e Approx. calibration:>* [E[Y | f(X)] — f(X)| < ew/ prob. >1—«

53Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Distribution-free calibration is possible
only if the set of output values is < countably infinite:>*
e Let error level o be fixed, and let sample size n — oo
e A sequence of functions f, is asymptotically calibrated if €, = op(1)
e |f there exists an asymptotically calibrated sequence f,, then

lim sup |{possible values of f,(X)}| < countably infinite

n—oo

54Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Distribution-free calibration is possible
only if the set of output values is < countably infinite:>*

e Let error level o be fixed, and let sample size n — oo
e A sequence of functions f, is asymptotically calibrated if €, = op(1)
e |f there exists an asymptotically calibrated sequence f,, then

lim sup |{possible values of f,(X)}| < countably infinite

n—oo

If £(X) takes finitely many values... an example procedure:

e Usedata/=1,...,3 to partition into bins X1 U---U Xk
(eg Xk = {x: 55t <h(x) < ¥})

e Use holdout set i = 5 +1,...,nto estimate E[Y | X € X\]

54Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
61/63



Summary

Distribution-free prediction means that we can:

e Start with any algorithm / modeling procedure...

e ..and then calibrate it to have valid predictive coverage
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Summary

Distribution-free prediction means that we can:

e Start with any algorithm / modeling procedure...

e ..and then calibrate it to have valid predictive coverage

The framework relies on assuming:

e Data is exchangeable (e.g., i.i.d. data)
e Or, data has a bounded deviation from exchangeability

e Or, a known deviation from exchangeability (e.g., covariate shift)
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Open questions

e How to detect or adapt to violations of exchangeability?

Computationally efficient versions of conformal / jackknife+,
when model alg. is expensive / when Y is multidimensional / etc

e Can we use the data to guide choices (e.g., score function 5(x, y)),
without the need for an additional split of the training data?

Finite-sample guarantees for approximate local/conditional validity?

Beyond prediction — can we find weaker definitions of validity
(for testing conditional indep. / for inference on regression / etc)
for which distribution-free inference is possible?
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