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Introduction

We have worked with many different applications in various businesses, here we
will look at one application and go through it in more detail.

Fuel pilot




Cognitivity

Automation levels
for

No shared data decision-making

: Al develops business ideas
Human make all decisions

and decides which ones to use

Connected data Al develops
Supporting human new business ideas
decision-making

Al decision-making

Al supported human X
monitored by humans

decision-making



Setting prices - introduction

e Explain the problem

e QOur approach

e Explain the problem we solved - business decision was to understand when
automated price levels could be set and when it needed to be done manually.

e Try different approaches

e Evaluation in money and nothing else

e Next steps - prediction a price range and determine how to pick a relevant
price



Setting prices for ferry tickets

e Stena Line’s network
More than 25000 trips
per year

Shared capacity
Seasonal changes
Regional differences
Different types of ships oo T el
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Different types of ships and capacity
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Other capacity considerations and revenue streams




Price optimization system at the outset
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Prices loaded manually through Excel sheets!!!



Manual work with individual departures
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Expected Marginal Seat Revenue (EMSR)

EMSR rank
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Clustering
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Price optimization system with EMSR optimization

Revenue: 49820 Curr FC: 57040 Adjusted FC: 57040 Change:  EMSRFC: 56480 EMSR dev{ESll LY rev: 73130 LY dev: SN Guests FC: 165 /230
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Departure outcome predictions
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Dashboard that was monitored by humans
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End of month revenue prediction

SCPS probabilistic EOM revenue prediction - Aug 2019
Prof VIadimir Vovk SCPS median EOM forecast
3 EOM revenue
Current revenue
XGB point EOM forecast
SCPD 90% EOM revenue confidence

SCPS probabilistic EOM revenue prediction - Oct 2019

Dr lvan Petej

of Alex Gammerman
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SCPD 90% EOM revenue confidence
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SCPS probabilistic EOM revenue prediction - Dec 2019

EOM revenue

—— SCPS median EOM forecast
—— EOM revenue
— Current revenue
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Daily time series revenue prediction
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1e7 Total revenue for sailings in Sep 2019 - 60 days to eom

total to D2EOM
actual to EOM

LSTM predicted
median SCPS

SCPS 90% confidence

1e7 Total revenue for sailings in Sep 2019 - 60 days to eom

total to D2EOM
actual to EOM

LSTM predicted
median SCPS

SCPS 90% confidence

revenue (SEK)
revenue (SEK)

50 40 30 20
days to end of month (D2EOM)

150 100
days to end of month (D2EOM)




Additional identification of research problems

When do we have to retrain models?

LR etrain or not retrain: Conformal test martingales for change-point detectionjig

UIE valuation of updating strategies for conformal predictive systems in the presence of extreme

mlHugo Werner, Lars

Carlsson, Ernst Ahlberg, Henrik Bostrom


https://proceedings.mlr.press/v152/vovk21b.html
https://proceedings.mlr.press/v152/werner21a.html
https://proceedings.mlr.press/v152/werner21a.html
https://proceedings.mlr.press/v128/werner20a.html

Change point detection
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Cognitivity

Automation levels
for

No shared data decision-making

: Al develops business ideas
Human make all decisions

and decides which ones to use

Connected data Al develops
Supporting human new business ideas
decision-making

Al decision-making

Al supported human X
monitored by humans

decision-making



Conclusions

Get a foot in the door, build confidence

|[dentify areas of improvement

Select a suitable “toy” problem to explore other approaches

Team up with the best

Get back on your feet and suggest improvements based on revenue

Now the organization is confident in you and you can start to automate
manual work and free up time for the organization to come up with new ideas
on improvements



Take care!



