# Calibration of Natural Language Understanding Models with Venn–ABERS Predictors

# Patrizio Giovannotti



centrica



# NLU vs NLP

Traditional Natural Language Processing

- *N*-grams
- Syntax / Grammars
- POS tagging
- Tokenization
- Information retrieval
- Manually built resources

Natural Language Understanding

- Meaning of a phrase
- Focused on supervised learning

Areas:

- Paraphrase detection
- Language Inference
- Sentiment analysis
- Linguistic acceptability

#### Uncertainty in NLU: why?



#### Calibration

Input 
$$X \in \mathcal{X}$$
  
Label  $Y \in \mathcal{Y} = \{1, \dots, K\}$ 

prediction  $\hat{Y}$  with prob.  $\hat{P}$ 

$$\mathbb{P}(\hat{Y}=Y \mid \hat{P}=p) = p$$
 $orall p \in [0,1]$ 

Example:

Out of all predictions with probability P=0.75, about 75% must be correct

## Sharpness

- On a balanced test dataset, a classifier always predicting 1 with P=0.5 would still be well calibrated
- Term mainly used in forecasting
  - Implies narrow confidence intervals

Alternatively:

- A model is sharp if probability estimates are adjusted for each instance
- The distribution of probabilities generated is uniform over [0,1]

# State-of-the-art in NLU: Transformers

- Born as sequence-to-sequence modellers for machine translation (2017)
- BERT (2018) is based on a transformer encoder
- Many variations, constantly growing in size and performance
- They can come already pre-trained

- They output a "score" for each label
- The score is usually turned into probability via softmax



Calibration and sharpness of a RoBERTa model trained on Quora Question Pairs



# Venn–ABERS predictors (1)

- Multiprobabilistic predictors
- Built on top of any existing scoring algorithm
- Perfectly calibrated (if data is exchangeable)

- Inputs (x, y)
- Algorithm outputs score *s*(*x*)
- Find function *g* : *g*(*s*(*x*)) is a calibrated probability
- *g* is calculated by isotonic regression



#### Venn–ABERS predictors (2)

- Test input (x, y)
- Fit  $g_0$  for y=0 and  $g_1$  for y=1
- Obtain two probabilities,  $p_0$  and  $p_1$

Want only one probability?

$$p=rac{p_1}{1-p_0+p_1}$$



Toccaceli, Paolo, et al. "Excape Wp1. Probabilistic Prediction." (2016).



| Quora Question Pairs            |                                              |   |
|---------------------------------|----------------------------------------------|---|
| How is air traffic controlled?  | How do you become an air traffic controller? | 0 |
| How should I make myself brave? | How can I be more brave?                     | 1 |

#### Stanford Sentiment Treebank

| Steven Spielberg brings us another masterpiece.                                              | 0.986 |
|----------------------------------------------------------------------------------------------|-------|
| Ultimately feels empty and unsatisfying, like swallowing a Communion wafer without the wine. | 0.111 |

| Linguistic Acceptability Corpus |   |  |
|---------------------------------|---|--|
| The building is tall and wide.  | 0 |  |
| The building is tall and tall.  | 1 |  |



| Boolean Questions                                                                                                                                                                                                       |                                                                          |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---|
| Air Force One The Air Force usually<br>does not have fighter aircraft escort<br>the presidential aircraft over the<br>United States but it has occurred, for<br>example during the attack on the<br>World Trade Center. | Does Air Force One travel with fighter escort?                           | 0 |
| Calcium carbide Calcium carbide is<br>a chemical compound with the<br>chemical formula of CaC. Its main use<br>industrially is in the production of<br>acetylene and calcium cyanamide.                                 | calcium carbide cac2 is the raw material for the production of acetylene | 1 |

#### Pretrained models



# Training setup

• Dataset splits:

|            | $\mathbf{Q}\mathbf{Q}\mathbf{P}$ | BoolQ     | CoLA      | $\mathbf{SST}$ |
|------------|----------------------------------|-----------|-----------|----------------|
| Train      | $323,\!416$                      | $9,\!427$ | $7,\!468$ | 8,544          |
| Validation | $40,\!430$                       | $1,\!635$ | $1,\!063$ | $1,\!101$      |
| Test       | $40,\!430$                       | $1,\!635$ | $1,\!063$ | $2,\!210$      |

- Scores averaged over 5 training trials for all datasets, except QQP
- 3 epochs

### Expected Calibration Error (ECE)

- Divide predictions in *M* bins of equal width
- $B_m$  contains examples with confidence ranging in  $\left(\frac{m-1}{M}, \frac{m}{M}\right)$

$$ext{ECE} = rac{1}{n} \sum_{m=1}^M |B_m| \cdot |p(B_m) - \hat{p}(B_m)|$$

average estimated probability for predictions in bin

# F1 score (macro)

For a label k



Macro F1: average over all k labels







|         |                 | $\mathbf{Q}\mathbf{Q}\mathbf{P}$            | $\operatorname{BoolQ}$                       | CoLA                                        | $\mathbf{SST}$ |
|---------|-----------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------|
| ALBERT  | default<br>IVAP | $7.23 \\ 0.52$                              | $7.38 \\ 3.32$                               | $\begin{array}{c} 10.30\\ 3.14 \end{array}$ | $7.29 \\ 3.38$ |
| BERT    | default<br>IVAP | $7.46\\0.44$                                | $\begin{array}{c} 12.94 \\ 3.35 \end{array}$ | $\begin{array}{c} 10.16\\ 3.09 \end{array}$ | $7.15 \\ 2.76$ |
| DeBERTa | default<br>IVAP | $\begin{array}{c} 6.18\\ 0.48\end{array}$   | $\begin{array}{c} 10.79\\ 3.14\end{array}$   | $\begin{array}{c} 10.25\\ 2.47\end{array}$  | $4.20 \\ 2.39$ |
| RoBERTa | default<br>IVAP | $\begin{array}{c} 6.74 \\ 0.49 \end{array}$ | $\begin{array}{c} 10.27\\ 2.79\end{array}$   | $\begin{array}{c} 10.48\\ 2.92 \end{array}$ | $3.95 \\ 2.99$ |

Expected calibration error (in %) for default and IVAP models.



Distribution of expected calibration errors over all datasets, models and trials.

#### Sharpness: RoBERTa on QQP





Venn-ABERS

### Sharpness: BERT on BoolQ





Venn-ABERS

#### Sharpness: DeBERTa on SST





Venn-ABERS

Default

|         |                 | $\mathbf{Q}\mathbf{Q}\mathbf{P}$            | $\operatorname{BoolQ}$ | CoLA                                      | SST                                         |
|---------|-----------------|---------------------------------------------|------------------------|-------------------------------------------|---------------------------------------------|
| ALBERT  | default<br>IVAP | $\begin{array}{c} 0.90 \\ 0.90 \end{array}$ | $0.70 \\ 0.68$         | $0.79 \\ 0.77$                            | $\begin{array}{c} 0.87\\ 0.86 \end{array}$  |
| BERT    | default<br>IVAP | $\begin{array}{c} 0.90 \\ 0.90 \end{array}$ | $0.69 \\ 0.69$         | $\begin{array}{c} 0.80\\ 0.78\end{array}$ | $\begin{array}{c} 0.87\\ 0.86 \end{array}$  |
| DeBERTa | default<br>IVAP | $\begin{array}{c} 0.91 \\ 0.91 \end{array}$ | $0.77 \\ 0.76$         | $\begin{array}{c} 0.84\\ 0.83\end{array}$ | $0.89 \\ 0.89$                              |
| RoBERTa | default<br>IVAP | $\begin{array}{c} 0.91 \\ 0.90 \end{array}$ | $0.77 \\ 0.75$         | $\begin{array}{c} 0.81\\ 0.82\end{array}$ | $\begin{array}{c} 0.89 \\ 0.90 \end{array}$ |

Classification performance: F1 scores for default and IVAP models.



Trend of expected calibration error versus  $F_1$  score for all models and datasets.

### Sentiment reconstruction

- Some task are less "binary" than others
- SST originally had real numbers as labels
- Our models were trained on the "binarized" dataset
- Can we reconstruct the **degree** of positive sentiment from binary labels alone?

|         |                 | RMSE                                        | $R^2$                                       |
|---------|-----------------|---------------------------------------------|---------------------------------------------|
| ALBERT  | default<br>IVAP | $\begin{array}{c} 0.28\\ 0.22\end{array}$   | $-0.22 \\ 0.25$                             |
| BERT    | default<br>IVAP | $0.29 \\ 0.23$                              | -0.27<br>0.23                               |
| DeBERTa | default<br>IVAP | $\begin{array}{c} 0.25\\ 0.23\end{array}$   | $\begin{array}{c} 0.01 \\ 0.20 \end{array}$ |
| RoBERTa | default<br>IVAP | $\begin{array}{c} 0.26 \\ 0.22 \end{array}$ | $-0.05 \\ 0.25$                             |

Well-calibrated predictions are more aligned to human judgement



## Discussion + Future Work

- Venn–ABERS predictors can be successfully applied to transformer models to obtain well-calibrated NLU predictions
  - Especially on a large dataset
  - Calibrated models retained the predictive power of the originals
- Venn–ABERS appeared to be sharper

- Extend to multiclass case
- Compare to other calibration techniques (temperature scaling)

## Conclusion

- The need for reliable NLU models will continue to grow as cutting-edge research is turned into products for large audiences
  users need to know when to trust a certain output
- A system with the ability of assessing its own uncertainty will always feel more "intelligent" than a blindly overconfident one
- This reinforces the need for accurate calibration on the path towards a better AI

Code available at <a href="https://github.com/patpizio/vennabers-for-nlu">https://github.com/patpizio/vennabers-for-nlu</a>