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Neoadjuvant therapy: the gold-standard preoperative
treatment for breast cancer patients but...

Not all patients respond in the same way.
Only 20 - 30 % achieve complete response.

Patients experiencing ineffective neoadjuvant therapy incur in toxicity and side effects
without reaching the desired clinical benefit.

So we need tools to predict how a patient will respond to neoadjuvant therapies.

3o

Machine learning to the rescue!
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e Provide a non-invase protocol.

e No additional cost to those patients where MRI is part of their preoperative test.
e Limited predictive power.

Clinical and biomolecular predictors. J %
e Gathered through invasive biopsy tests. /&JQ% ‘
e Allow a better understanding of biological processes. /

e Better predictive power.

What if we could efficiently use each feature set?

Only in those cases in which the imaging features provide an uncertain prediction,

should a biopsy be performed.
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Uncertainty-Aware Sequential Approach

Let assume a set of patient triplets

(@™, 270 1), (2R, 2R, yn)

« Naive approach

Learn a predictive model using the whole set of features f(zMR! £BIO),
o Our proposal
Learn an inductive conformal predictor on top of a non-invasive MRI predictive model.

If the model is certain enough for an specific patient, compute a prediction using the non-
invasive model f(zMR!)

If not, compute a prediction with a biopsy-enriched invasive model f(wMR', :I;B'O).
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A fully anotated and anonymazed collection of 922 breast cancer patients admitted at Duke
University Hospital between January 1st, 2000 and March 23rd, 2014.

-~ e >
922 patients 312 patients 240 patients
n

Response to NAT Cancer re-stage Sample size
Pathological complete response %) 71 (29.6 %)
Early stage 1A or lIA 104 (44.3 %)
Locally advanced or metastasis stage From IIB to IV 65 (27.1 %)

e 521 MRI numerical features describing tumor and fibroglandular tissue characteristics.
12 clinical features describing tumor biology from biopsy.
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We tested three diferents algorithms: logistic regression, random forest and xgboost.

« Inverse Probability Error: A(y, f(z)) =1 — P (y;|z)

« Margin Error: A(y, f(z)) = 0.5 — P (y;|z)- ma2xy' s P (ylz)

Patients with |I'(z;)| = 1 will be retained within the 1st stage.

In order to produce prediction sets, we test two error rates: € € {0.1,0.2}

« 1st stage (conformal predictor)

Single rate (patients assessed through 1st model) : SN0 (2:)] = 1)
« Entire pipeline
F1 macro (unweighted per-class F1) : % (Flcgr + Flgs + Flia)

True Positive Rate (TPR) for each class.
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« F1-macro using a RF model (e = 0.1, marginal error).

RFMR RFMRILBIO Our approach Single rate
0.408 0.525 0.513 12.6 %

« TPR for locally advanced patients using a RF model (e = 0.2, marginal error).

RFMR RFMRILBIO Our approach Single rate
0.538 0.602 0.618 27.6 %

Even outperforming the model trained with the whole set of features!

« TPR for early stage patients using a xgboost model (¢ = 0.2, inverse probability error)

XGB\RI XGBMRILBIO Our approach Single rate
0.461 0.672 0.659 13.7 %
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Conclusions
« Machine learning has the potential to assess how a breast cancer patient will respond to
neoadjuvant therapies.

o Our conformal prediction-based approach helps identify patients whose prognosis is
uncertain using non-invasive protocols.

o These patients are refered to a second assessment with invasive test, providing a more
accurate prediction.

o Patients retained within the non-invasive model avoid unnecessary biopsies.

Future work

« Additional non-conformity measures (e.g., ordinal prediction sets).
o Other clinical applications in cost-variable problems.

o Limited data regime — cross-conformal prediction.
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