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A Need for Explanation

• Bryce Goodman and Seth Flaxman, 2016,”European Union regulations on 
algorithmic decision-making and a ‘right to explanation’”: 

“The law will also effectively create a ‘right to explanation,’ whereby a user 
can ask for an explanation of an algorithmic decision that was made about 
them.”
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A Need for Explanation

• Interpretable (white-box) models, in many cases, come with a substantial loss 
of predictive performance 

• Post-hoc explanation techniques, e.g., SHAP and LIME come with no 
guarantees on the fidelity

• Explanation techniques are computationally expensive
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Computational Cost of Explanations

• Influential explanation methods, e.g. SHAP, involve approximating Shapley values 

•  LIME involves creating local (white-box) surrogate models

• Many methods analyze the behavior of a black-box model by running iterations on 

multiple input data points
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Approaches for Efficient Explanation Methods

• TreeSHAP for a tree-based model

• L2E, Learning to Explain, approximates the explainer using neural network for 

text classification tasks

• FastSHAP learns to approximate the Shapley values 

• Hierarchical Shap, h-Shap, for image classification
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Approaches for Efficient Explanation Methods

• All the mentioned approaches come without any validity guarantees!
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The Main Contributions

• An approach for approximating score-based explanations accompanied with 

validity guarantees

• A set of non-conformity measures designed for explanations approximation

• A large-scale empirical investigation on 30 publicly available datasets
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The Proposed Method

• The explanation method (A) is a function (A : f (x, t; Θ) = y) that can be approximated

• The approximation model (A ̃ ) learns a mapping from (x; t) to y

• Since the target y is a vector with a score per feature, the problem can be formulated as a 

regression problem

• Can be solved as a multi-target regression or as a set of single-target regression problems
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The Proposed Method

1. The black box (B) produces predictions tdev on a development dataset (Xdev) 

2. The explanation method (A) generates explanations (Ydev)

3. Each data point (x) is augmented with its predicted outcome (x′= x ∪ t)

4. The augmented development set X′dev with the explanations Ydev form:

Zdev ={(x′1, y1), (x′2, y2), ..., (x′n, yn)}

5. A ̃ is learned by fitting the regression model on Zdev
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The Proposed Method (Validity Guarantees)

• A calibration dataset Xcal is augmented with the class labels acquired from B to obtain X′cal

• A ̃ generates scores for all the data points in the calibration set Xcal (predict Y ̃cal)

• Using the ground truth Ycal obtained from A, a non-conformity score αf
j is computed for each 

feature f for each example xj in Xcal

• Let αf
ε be the score of feature f at a significance level ε, at prediction time:
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The Proposed  Difficulty Estimates

1. Minimum distance to the distributions

Compute the Mahalanobis distance between a data point and each distribution:

Then the minimum distance is used as a difficulty estimate:
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The Proposed  Difficulty Estimates

2. Average distance to the distributions:

3. The prediction confidence

For multi-class problems:

For binary classification:
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Experimental Setup
● The experiments were conducted on 30 public datasets available on Openml.org

● The data was split into training, development, calibration, and test subsets

○ 40% training, 20% development, 20% calibration, and 20% test

● The black-box models were generated using the XGBoost algorithm

● The underlying explainer is TreeSHAP

● The regression models:

○ XGBoost for one-regressor per feature, and MLP for multi-target regression
13



Experimental Results

1. Execution Time
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Experimental Results

2. Predictive Efficiency (Interval Size)

15



Explanation Examples
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Concluding Remarks
● We proposed a computationally efficient method to approximate score-based explanation 

techniques while providing validity guarantees on the generated explanations

● We proposed difficulty estimates targeting explanations

● We have presented results from a large-scale empirical evaluation, comparing the proposed 

approaches with respect to the computational efficiency as well as the predictive efficiency

● Investigate better difficulty estimates designed to save the computational cost
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Future Work



Thank You!
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