

Mondrian Predictive Systems for Censored Data

Henrik Boström¹ Henrik Linusson^{1,2} Anders Vesterberg³

 $^1{\rm KTH}$ Royal Institute of Technology, Sweden

²Ekkono Solutions AB, Sweden

³Scania CV AB, Sweden

September 14, 2023

- Conformal predictive systems
- Time-to-event prediction
- Handling censored data
- Empirical investigation
- Concluding remarks

Conformal predictive systems

Conformal predictive systems transform point predictions into cumulative distribution functions (conformal predictive distributions), which provide p-values for given target values and target values for given p-values.

Conformal predictive distributions come with a *validity* guarantee; the p-value for the true target is distributed uniformly on [0, 1].

KTH

Conformal predictive systems

- A split conformal predictive system can be constructed as follows:
 - 1. randomly divide the training data into two disjoint subsets; the proper training set and the calibration set
 - 2. train the underlying model h using the proper training set
 - 3. calculate scores α_1,\ldots,α_q for the calibration set, where

$$\alpha_i = \frac{y_i - h(\mathbf{x}_i)}{\sigma_i}$$

4. let $\alpha_{(1)}, \ldots, \alpha_{(q)}$ be the scores sorted in ascending order 5. for a test object \mathbf{x} with difficulty σ :

let
$$C_{(i)} = h(\mathbf{x}) + \alpha_{(i)}\sigma$$
 for $i \in \{1, ..., q\}$
let $C_{(0)} = -\infty$ and $C_{(q+1)} = \infty$
output the conformal predictive distribution:

$$Q(y) = \begin{cases} \frac{n+\tau}{q+1} & \text{if } y \in \left(C_{(n)}, C_{(n+1)}\right) \text{ for } n \in \{0, ..., q\}\\ \frac{n'-1+(n''-n'+2)\tau}{q+1} & \text{if } y = C_{(n)} \text{ for } n \in \{1, ..., q\} \end{cases}$$

Mondrian predictive systems

Time-to-event prediction

- Well-calibrated probabilities are needed for effective decision-making, e.g., when balancing the maintenance cost against the cost of failure on the road.
- Events may not (yet) have been observed for all of the examples, which means that the time-to-event is not always known, e.g., breakdown may have occurred only for some but not all vehicles in a fleet.
- Removing examples for which the event has not occurred or adjusting such examples by imputing target values are not guaranteed to maintain validity of the conformal predictive systems.

Given

- a set of objects $X = \{ \pmb{x}_1, \dots, \pmb{x}_q \}$
- a set of values $Y = \{y_1, \ldots, y_q\}$
- a set of binary (event) indicators $E = \{e_1, \ldots, e_q\}$, where $e_i = 1$ if and only if y_i is not censored¹
- a test object x,

generate a conformal predictive distribution Q, such that $Q(y) \sim U(0,1)$, where y is the true target for x

¹the censoring value for the object x_i is greater than the true target

Idea: Use the Kaplan-Meier Estimator (KME)

Assuming that the censoring values are independent of the true targets:

$$\hat{S}(t) = \prod_{k=0}^{t} \left(1 - \frac{|\{y_j \in Y : e_j = 1 \land y_j = y_k\}|}{|\{y_j \in Y : y_j \ge y_k\}|} \right)$$

The above assumption does however not imply that non-conformity scores computed from censoring values are independent of non-conformity scores computed from the true targets.

To keep the independence, we in addition assume that:

$$h(\mathbf{x}_i) = 0$$

$$\sigma_i = 1$$

Hence, the non-conformity scores become:

$$\alpha_i = y_i$$

Mondrian predictive systems for censored data

- Split the calibration set into k Mondrian categories,
 e.g., by binning the predicted values of the underlying model
- ► Form a CDF using the KME for each Mondrian category
- For a test object, find the category and return the corresponding CDF

Dataset: serum free light chain (FLC)

- 7874 instances
- 8 features
- Target: time to death
 - synthetic censoring (50%)
 - actual censoring (72%)
- 75% used for training 25% for testing

- The Kaplan-Meier estimator (KME); no hyperparameters
- Random Survival Forests (RSF); default settings for all hyperparameters except for n_estimators = 500
- Censored Quantile Regression Forests (QRF); default settings for the individual regression trees, n_estimators = 500 and k = 200 (no. of neighbors)
- Conformal Predictive Systems (CPS); using a RandomForestRegressor generated with default settings for all hyperparameters except for n_estimators = 500, and half of the training set for calibration, 25 bins

CDFs for 50 random test objects

Distribution of p-values for true targets

Runtimes and Kolmogorov-Smirnov test

	Training time	Testing time	KS-test
KME	0.00	0.02	7.70e-01
\mathbf{RSF}	43.37	4.49	$6.95 \text{e}{-} 174$
\mathbf{QRF}	1.39	0.82	2.33e-09
\mathbf{CPS}	0.56	0.07	3.06e-01

	Error	Mean time-point	Median time-point
KME	0.0153	48.0	48
RSF	0.0390	402.0	186
\mathbf{QRF}	0.0039	12.3	5
\mathbf{CPS}	0.0094	78.6	14

a) 99% confidence

	Error	Mean time-point	Median time-point
KME	0.0523	487.0	487
\mathbf{RSF}	0.0676	1344.6	1110
\mathbf{QRF}	0.0444	510.5	461
\mathbf{CPS}	0.0449	710.9	532

b) 95% confidence

	Error	Mean time-point	Median time-point
KME	0.1027	1195.0	1195
RSF	0.1362	2318.3	2165
\mathbf{QRF}	0.0893	1352.8	1370
CPS	0.0977	1621.7	1764

c) 90% confidence

Non-synthetic censoring

	C-index	Mean TTE	Median TTE	Training time	Testing time
KME	0.5000	4998.0	4998	0.00	0.00
\mathbf{RSF}	0.7234	4554.6	4998	36.58	2.83
\mathbf{QRF}	0.5804	4655.4	4715	1.38	0.56
CPS	0.6379	4241.7	4486	0.58	0.05

- An approach to handling censored data using Mondrian predictive systems has been proposed
- The approach has been shown empirically to be valid, in contrast to random survival forests and censored quantile regression forests
- The approach is currently constrained to generate one CDF for each Mondrian category; future work includes relaxing this constraint