Conformal Association Rule Mining (CARM)

Ilia Nouretdinov, James Gammerman, Centre for Reliable Machine Learning, Royal Holloway, University of London, Egham, Surrey, UK

Royal Holloway, University of London

i.r.nouretdinov@rhul.ac.uk

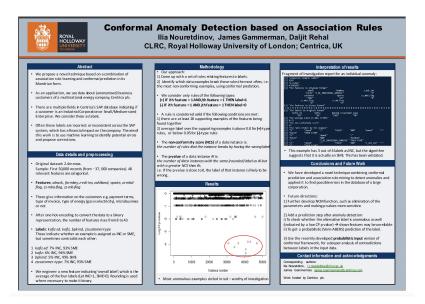
jgammerman@gmail.com

September 14, 2023

Introduction

- CARM is an integration of two frameworks: conformal prediction and association rule mining.
- It enables detection of errors within a set of binary labels, with the usual CP guarantees on validity.
- XAI angle
- As an extension, we analyse the errors using *probabilistic* prediction to suggest corrections.

Origin story: COPA 2019 poster



Association Rule Mining

- A rule-based ML method for discovering relationships between items in a dataset.
- ► E.g for supermarkets: {bread} → {butter}
- ▶ In general terms: {antecedent} → {consequent}
- In a ML setting, an example rule might be:

```
IF feature F = a THEN feature G = b
```

G could alternatively refer to a label.

Implication: Given a set of rules, errors can be identified as deviations from rules that hold true for most of the data

ARM concepts

- **Support**: the proportion of examples where the rule holds.
- Confidence: the conditional probability of the rule's consequent given its antecedent.
- Most common way to generate rules: *apriori algorithm*
 - Requires user-defined thresholds for minimum support and confidence

Apriori algorithm: lack of statistical rigor

- No notion of statistical significance
- Arbitrary choice of thresholds can lead to spurious and missed rules
- Solution: use a different approach to ARM...

Our approach to ARM

- As per Hamalainen et al. (2009)
- Idea: subject any possible rule to a binomial test
- Each example is treated as an independent Bernoulli trial, whose outcome is either 1 or 0
 - ▶ 1 means the rule $(F = a) \rightarrow (G = b)$ occurs
 - 0 means the rule doesn't occur
- H₀: no association between antecedent and consequent

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- Interpretation of p-values: the 'weight' of a given rule
 - a small value provides evidence against H₀

Non-conformity measure

- So we have...
 - A complete pool of rules with associated weights p_r
 - A set of examples Z which either comply with those rules or not
- So for a given example z ∈ Z, we have an expectation for its label based on each rule r (assuming the antecedent of r is true for z)
- If the expected label doesn't match the observed label, then z is an exception to that rule, i.e. non-conforming.
- Non-conformity score α for *z*:
 - linitialise α at 0, then add $-\log p_r$ for every broken rule
 - accumulates degree of non-conformity

Converting NCM to conformal p-values

- NB. Different kind of p-values!
- Input: The data sequence Z' = ((x₁, y₁),..., (x_N, y_N)), a non-conformity measure A, and a threshold ε.
- Non-conformity scores: For each data point i = 1,..., N, compute:

$$\alpha_i = \mathcal{A}\left((\mathbf{x}_i, \mathbf{y}_i), \mathbf{Z}' \setminus \{(\mathbf{x}_i, \mathbf{y}_i)\}\right)$$

p-value Calculation: Determine *p_N* using:

$$p_{N} = \frac{\left|\left\{j: y_{j} = y_{N}, \alpha_{j} \geq \alpha_{N}\right\}\right|}{\left|\left\{j: y_{j} = y_{N}\right\}\right|}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Error Detection: If p_N < ε, flag the example z_N as an error.

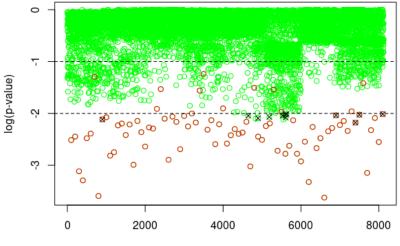
Validity

- All conformal predictors automatically come with the property of *validity*, i.e. the probability of incorrectly rejecting H₀ is at most ε.
- In our setting of error detection, ε becomes an upper bound on the probability of a false positive (false alarm).

Datasets & pre-processing

- 1. Mushrooms. Label: edible or posionous
- 2. Wine Quality. Label: red or white
- 3. Adult Income. Label: salary greater/less than \$50K
- Introduced known errors into the labels for 1% of examples
- Remaining features converted to binary form by one-hot encoding

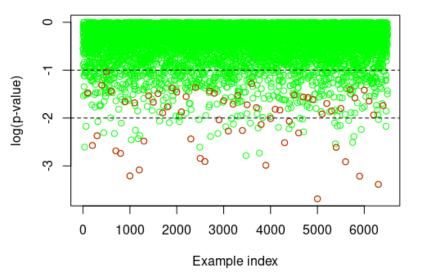
CARM *p*-values (log scale) - Mushrooms



Example index

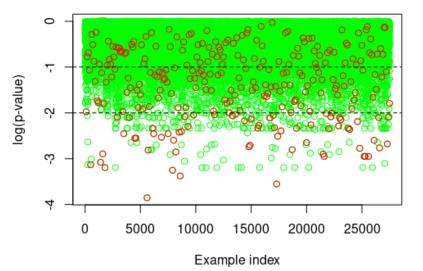
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�??

CARM p-values (log scale) - Wine



・ロ・・ 日本・ ・ 日本・ ・ E э 13/19

CARM p-values (log scale) - Adult



・ロト ・ 日 ト ・ ヨ ト ・ 14/19

Evaluation of CARM

Dataset	<i>p</i> < 0.1%	<i>p</i> < 1%	<i>p</i> < 10%
Mushrooms	100%	87%	10%
Wine	100%	37%	10%
Adult Income	29%	23%	6%

Precision at three *p*-value thresholds

Recall at three *p*-value thresholds

Dataset	<i>p</i> < 0.1%	<i>p</i> < 1%	<i>p</i> < 10%
Mushrooms	9%	87%	100%
Wine	8%	37%	100%
Adult Income	2%	23%	62%

Example report

Index in data	6600		
Observed label	1 (= edible)		
p-value	0.000237		
Broken rules	(listed if significant at the threshold 10^{-9})	Confidence	
One-feature rules	IF cap-shape = k THEN $Y = 0$	0.72	
	IF cap-surface = y THEN $Y = 0$	0.54	
	IF bruises = f THEN $Y = 0$	0.69	
	IF odor = y THEN $Y = 0$	0.99	
	IF gill-spacing = c THEN $Y = 0$	0.56	
	IF gill-size = n THEN $Y = 0$	0.88	
	IF gill-color = b THEN $Y = 0$	0.99	
	IF stalk-root = ? THEN $Y = 0$	0.71	
	IF stalk-surface-above-ring = k THEN Y = 0	0.93	
	IF stalk-surface-below-ring = k THEN $Y = 0$	0.93	
	IF stalk-color-above-ring = p THEN $Y = 0$	0.69	
	IF ring-type = e THEN $Y = 0$	0.63	
	IF spore-print-color = w THEN $Y = 0$	0.75	
	IF population = v THEN $Y = 0$	0.70	
	IF habitat = p THEN $Y = 0$	0.88	
Two-feature rules	IF gill-attachment = f AND ring-number = o THEN Y = 0	0.47	
	IF veil-color = w AND ring-number = 0 THEN $Y = 0$	0.47	

Probabilistic Prediction

- When a data example is identified as an error, it is important to conduct a thorough investigation that includes also a suggested correction for it.
- For this purpose, we can employ the Venn-ABERS (VA) framework.
- VA works in same assumptions as CP.
- Like CP, VA framework can be linked to an underlying method as well.
- The difference is in output: where CP produces *p*-values, VA outputs *lower* and *upper probabilities*.

CARM & VA results for 10 most suspicious examples

Index	Label.	p-value	VA probs	VA prediction	True label	Comment
6600	1	0.00024	0.0074-0.0078	0	0	1 corrected to 0
800	0	0.00026	0.990-0.991	1	1	0 corrected to 1
6200	1	0.00048	0.0074 - 0.0078	0	0	1 corrected to 0
400	0	0.00051	0.990 - 0.991	1	1	0 corrected to 1
7700	1	0.00071	0.0074 - 0.0078	0	0	1 corrected to 0
300	0	0.00077	0.990 - 0.991	1	1	0 corrected to 1
4700	1	0.00095	0.00780 - 0.98	0	0	1 corrected to 0
1700	0	0.001	0.990 - 0.991	1	1	0 corrected to 1
6000	1	0.0012	0.00737 - 0.00780	0	0	1 corrected to 0
2600	0	0.0013	0.990 - 0.991	1	1	0 corrected to 1

- p-values for alternative labels are all close to 1, i.e. no longer suspicious.
- VA predictions indicate high confidence in alternative labels.

Conclusions and further work

- Demonstrated integration of modified ARM with the CP framework for *explainable* error detection in data labels.
- Validity property limits false alarms during error detection.
- Association rules enhances interpretability and serve as basis for probabilistic analysis using Venn-ABERS

Further work:

- Exploration of more complex rules.
- Extension of the methodology for multi-class labels
- Extension of methodology to correcting features, not just labels