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Two Key Challenges in Conformal Prediction

1. Resource constraints
(compute & available data)

Computational budget: e.g.,
extensive model retraining

Data-availability demands:
e.g., sample-splitting (which
can harm model performance,
especially in low data regime)

2. Data shifts
Real world data are often not
exchangeable!

Common shifts between training &
test data distributions can break
standard conformal methods.

Our work (today and prior) is at the intersection of these challenges.
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Biomolecular Design Setting

Detailed description in Fannjiang, Bates, Angelopoulos, Listgarten, and
Jordan (2022)
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Background: Feedback Covariate Shift (FCS)

Standard conformal prediction “SCS” :

Zi =(Xi ,Yi ) i.i.d.∼ P train
X ×PY |X ,

i = 1, ...,n
(Xn+1,Yn+1)∼P test

X ×PY |X

Feedback covariate shift “FCS”(One-shot biomolecular design is an
instance; Fannjiang et al. (2022)):

Zi =(Xi ,Yi ) i.i.d.∼ P train
X ×PY |X ,

i = 1, ...,n
(Xn+1,Yn+1)∼P test

X ;Z1:n
↑

×PY |X
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Related Work: Efficiency Tradeoffs
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Proposed Work: Approximation of JAW-FCS
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Background: Jackknife+ Predictive Interval

Jackknife+ predictive interval (Barber, Candes, Ramdas, &
Tibshirani, 2021):

ĈJackknife+
n,α (x) =

[
Qα

( n∑
j=1

1
n+1δµ̂−j (x)−|Y j−µ̂− j (X j )|+ 1

n+1δ−∞
)
,

Q1−α
( n∑

j=1

1
n+1δµ̂−j (x)+|Y j−µ̂− j (X j )|+ 1

n+1δ∞
)]

Some notation:
δv := point mass at value v

µ̂− j := Leave-one-out (LOO) retrained model
=⇒ Requires training n distinct predictors
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Background: JAcknife+ Weighted for FCS

(Fitted) likelihood ratio
weights:

w(x;D)=
dPtest

X ;D (x)

dPtrain
X (x)

e.g.,
Ptest

X ;D (x) ∝ exp(λ · µ̂(x)))

Normalized weights:

w̃n+1, j (x)=

weights for LOO pt j and test pt n +1︷ ︸︸ ︷
w (x ; Z− j )w (X j ; Z− j )

n∑
j ′=1

[
w (x ; Z− j ′ )w (X j ′ ; Z− j ′ )

]+w (x ; Z1:n )2

︸ ︷︷ ︸
normalization constant

JAckknife+ Weighted for Feedback Covariate Shift or “JAW-FCS”
(Prinster, Liu, & Saria, 2023):

ĈJAW-FCS
n,α (x)=

[
Qα

( n∑
j=1

w̃n+1, j (x)δµ̂−j (x)−|Y j−µ̂− j (X j )|+w̃(n+1)2(x)δ−∞
)
,

Q1−α
( n∑

j=1
w̃n+1, j (x)δµ̂−j (x)+|Y j−µ̂− j (X j )|+w̃(n+1)2(x)δ∞

)]
Note: Often w(· ; Z− j ) and µ̂− j require the same LOO parameter est. θ̂−i
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Background: Influence Functions

Influence functions (Cook, 1977; Giordano, Jordan, & Broderick, 2019)
approximate model parameter changes due to removing (or reweighting) a
datapoint via a K -th order Taylor series.

θ̂IF-K
−i := θ̂+

K∑
k=1

1

k !
Dk

−i θ̂

Dk
−i θ̂ := kth order derivative of parameters θ̂ w.r.t. removing point i

Main computational cost: Computing inverse Hessian

Prior works using IFs with jackknife+:

Alaa and Van Der Schaar (2020) used higher order IFs to approximate the
Jackknife+, but assume i.i.d. data

Prinster, Liu, and Saria (2022) used higher orders to approximate the JAckknife+
Weighted for Standard Covariate Shift (JAW-SCS), but with different weights
than in FCS
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Proposed Method: JAWA-FCS

JAWA-FCS: JAcknife Weighted Approximation for Feedback Covariate
Shift (K -th order Influence Funcation)

ĈJAW-FCS
n,α (x)

=
[
Qα

( n∑
j=1

w̃IF−K
n+1, j (x)δµ̂IF−K

−j
(x)−|Y j−µ̂IF−K

− j (X j )|+w̃IF−K
(n+1)2(x)δ−∞

)
,

Q1−α
( n∑

j=1
w̃IF−K

n+1, j (x)δµ̂IF−K
−j

(x)+|Y j−µ̂IF−K
− j (X j )|+w̃IF−K

(n+1)2(x)δ∞
)]

Main idea: Approximating both the weights w(· ; Z− j ) and LOO
predictions µ̂− j using influence functions (IFs)
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Experiments: Flourescent Protein Design Task

Experimental details:
µ̂ : Small (25 hidden unit) neural network regressor with tanh activation function

0.5 L2 regularization parameter

n = 192 training samples

K = 3rd order influence function approximation

α= 0.1

20 experimental replicates

Runtime results: JAWA-FCS: <3 minutes JAW-FCS: 1 hour 24 minutes
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Limitations and Future Directions

Limitations and future directions:
Experiments only with small neural net µ̂ ⇒ See if results scale to
larger µ̂
Empirical contribution only ⇒ See how IF approximation error would
impact guarantees.
E.g., Giordano et al. (2019) give consistency conditions for LOO IF
approximation (but do not consider guarantees for prediction estimates
or coverage):

• θ̂ is local minimum of objective function
• Existence and boundedness of higher-order derivatives
• Objective is strongly convex in neighborhood of θ̂
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Today’s Contribution in Context (Visually)
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