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Human labelling problems

l Time-consuming.
l Need experts on some cases (e.g, medical applications).
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A solution ? Self Learning [1]

l A model creates its own labels to train itself.
l How ?

Self-Learning using Venn-Abers Predictors 4



Hard labels

l Hard labels : one-hot encoding of each class.
l No uncertainty on prediction.
l Same label, different situations ?

51% → ?

90% → ?
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Soft labels

l Soft labels : a probability distribution.
l Uncertainty on prediction... Ambiguity ?

P( )
0 10.55

P( )
0 10.55
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Credal Sets

l Credal Sets : sets of probability distributions.
l Uncertainty on uncertainty.
l Complete ignorance.

P( )
0 10.4 0.7

P( )
0 1
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Calibration

l Model prediction reflects true probability ?
l Conformal Prediction notion : P(y ∈ Γ𝛿) ≥ 1 − 𝛿.
l Venn-Abers notion : P(y = 1|h(x) = 𝛼) = 𝛼.
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Self-Learning from Credal Sets[1]

l A way to produce credal labels, ideally calibrated (Venn-Abers
predictors).

l A way to integrate credal label in learning (optimistic loss).
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Inductive Venn-Abers Predictors (IVAP)

l Limited to binary problems.
l The algorithm builds a calibrated credal set [p, p].
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The algorithm

1. Train a model on the training set 𝒟T .
2. Compute scores h(x0), ..., h(xk) on the calibration set 𝒟C .
3. Compute two isotonic regressions : one for

{(h(x0), y0), ..., (h(xk), yk), h(x , 0)} and other for
{(h(x0), y0), ..., (h(xk), yk), (h(x), 1)} to obtain functions
f0(h(x)) and f1(h(x)) respectively.

4. The output is [p, p] := [f0(h(x)), f1(h(x))]
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Graphical representation [2]
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Loss function

l Classical Loss is usually between two probabilities
l How do I adapt it to Credal Sets ?

l Optimistic approach : take the minimum over all values in the
set,i.e, ℒmin(K , h𝜃(x)) = minp∈K ℒ(p, h𝜃(x)).

l Usually an easier problem to solve than taking the maximum,
for example.
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Our approach
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Setup

l Probability model : Neural Network (1 hidden layer) since it is
poorly calibrated.

l Three different strategies : Self-Learning with hard
labels(SL),soft labels (SLSL) and Venn-Abers (SLVA)

Dataset number of neurons (hidden layer) 𝜆

Breastcancer 5 0.01
Digits 10 0.01

Australian 4 0.005
Banknote 2 0.01

Heart disease 5 0.005
Adult 10 0.001
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Performance

l Performance of SLVA is better in most cases.

a a30
(mean over iterations) (accuracy at 30 iterations)

Dataset SL SLSL SLVA SL SLSL SLVA

Breastcancer 0.953 0.951 0.959 0.961 0.962 0.968
Digits 0.851 0.817 0.838 0.882 0.838 0.876
Australian 0.815 0.789 0.827 0.857 0.851 0.859
Banknote 0.907 0.881 0.926 0.980 0.976 0.986
Heart disease 0.775 0.768 0.782 0.815 0.820 0.818
Adult 0.578 0.653 0.741 0.578 0.713 0.745
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Results

l Faster convergence for SLVA.
Adult Australian
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Conclusion

l Self-learning is promising, but can be biased.
l Adding uncertainty into our prediction leads to better

performance because the model tends to be less biased.
l IVAP also guarantees a calibrated result.
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Perspectives

l Venn-Abers is limited to binary problems, how to overcome
that ? Venn Predictors,

l Optimization problem no longer on a interval, but on a
polytope on the ℛ|Y | space.

p̂0 1
p̂

p1 p2

p3

Multi-classBinary
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