

Self-Learning using Venn-Abers Predictors

Côme Rodriguez, *Vitor Martin Bordini*, Sébastien Destercke and Benjamin Quost

Heudiasyc lab

September 14, 2023

Plan

- Introduction
- How do we produce credal labels? Venn-Abers predictors.
- How do we train on credal labels? Optimistic loss.
- Experiments
- Conclusion and Perspectives

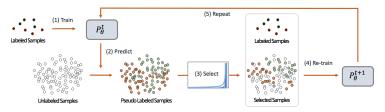
Human labelling problems

- Time-consuming.
- Need experts on some cases (e.g, medical applications).

A solution? Self Learning [1]

• A model creates its own labels to train itself.

• How ?



Hard labels

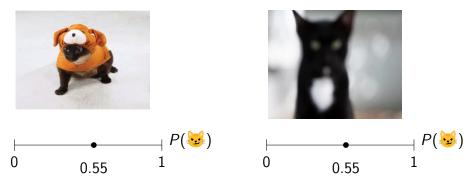
- Hard labels : one-hot encoding of each class.
- No uncertainty on prediction.
- Same label, different situations?

$$51\% \Rightarrow \uparrow ?$$

$$90\% extsf{ } o extsf{ } o extsf{ } ?$$

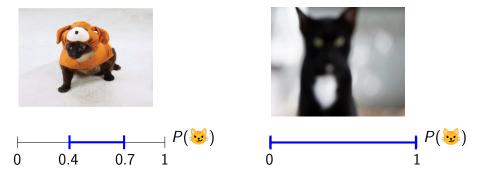
Soft labels

- Soft labels : a probability distribution.
- Uncertainty on prediction... Ambiguity?



Credal Sets

- Credal Sets : sets of probability distributions.
- Uncertainty on uncertainty.
- Complete ignorance.

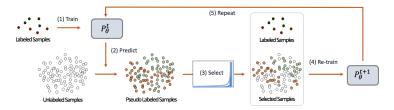


Calibration

- Model prediction reflects true probability?
- Conformal Prediction notion : $P(y \in \Gamma^{\delta}) \ge 1 \delta$.
- Venn-Abers notion : $P(y = 1 | h(x) = \alpha) = \alpha$.

Self-Learning from Credal Sets[1]

- A way to produce credal labels, ideally calibrated (Venn-Abers predictors).
- A way to integrate credal label in learning (optimistic loss).



Plan

- Introduction
- How do we produce credal labels? Venn-Abers predictors.
- How do we train on credal labels? Optimistic loss.
- Experiments
- Conclusion and Perspectives

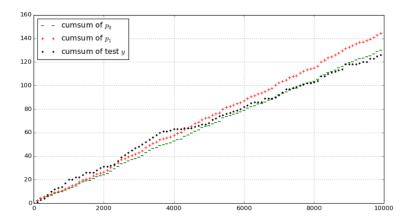
Inductive Venn-Abers Predictors (IVAP)

- Limited to binary problems.
- The algorithm builds a **calibrated credal set** $[p, \overline{p}]$.

The algorithm

- 1. Train a model on the training set $\mathcal{D}_{\mathcal{T}}$.
- 2. Compute scores $h(x_0), ..., h(x_k)$ on the calibration set \mathcal{D}_C .
- 3. Compute two isotonic regressions : one for $\{(h(x_0), y_0), ..., (h(x_k), y_k), h(x, 0)\}$ and other for $\{(h(x_0), y_0), ..., (h(x_k), y_k), (h(x), 1)\}$ to obtain functions $f_0(h(x))$ and $f_1(h(x))$ respectively.
- 4. The output is $[\underline{p}, \overline{p}] := [f_0(h(x)), f_1(h(x))]$

Graphical representation [2]



Plan

- Introduction
- How do we produce credal labels? Venn-Abers predictors.
- How do we train on credal labels? Optimistic loss.
- Experiments
- Conclusion and Perspectives

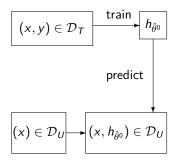
Loss function

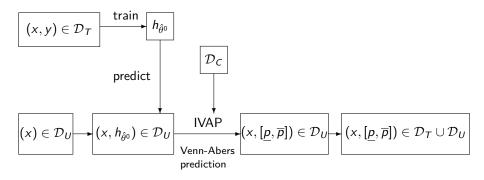
- Classical Loss is usually between two probabilities
- How do I adapt it to Credal Sets?

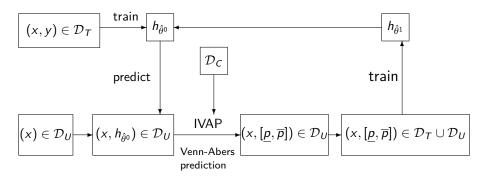
Loss function

- Classical Loss is usually between two probabilities
- How do I adapt it to Credal Sets?
- Optimistic approach : take the minimum over all values in the set, i.e, $\mathcal{L}_{min}(K, h_{\theta}(x)) = \min_{p \in K} \mathcal{L}(p, h_{\theta}(x))$.
- Usually an easier problem to solve than taking the maximum, for example.

$$(x,y) \in \mathcal{D}_{\mathcal{T}} \xrightarrow{\text{train}} h_{\hat{\theta}^0}$$







Plan

- Introduction
- How do we produce credal labels? Venn-Abers predictors.
- How do we train on credal labels? Optimistic loss.
- Experiments
- Conclusion and Perspectives

Setup

- Probability model : Neural Network (1 hidden layer) since it is poorly calibrated.
- Three different strategies : Self-Learning with hard labels(SL),soft labels (SLSL) and Venn-Abers (SLVA)

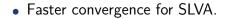
Dataset	number of neurons (hidden layer)	λ
Breastcancer	5	0.01
Digits	10	0.01
Australian	4	0.005
Banknote	2	0.01
Heart disease	5	0.005
Adult	10	0.001

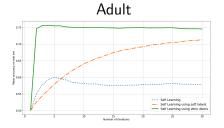
Performance

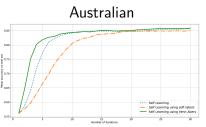
• Performance of SLVA is better in most cases.

	a (mean over iterations)			<i>a</i> ₃₀ (accuracy at 30 iterations)		
Dataset	`SL	SLSL	SLVÁ	` SL	SLSL	SLVA
Breastcancer Digits Australian Banknote Heart disease Adult	0.953 0.851 0.815 0.907 0.775 0.578	0.951 0.817 0.789 0.881 0.768 0.653	0.959 0.838 0.827 0.926 0.782 0.741	0.961 0.882 0.857 0.980 0.815 0.578	0.962 0.838 0.851 0.976 0.820 0.713	0.968 0.876 0.859 0.986 0.818 0.745

Results







Plan

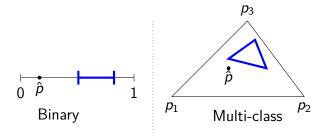
- Introduction
- How do we produce credal labels? Venn-Abers predictors.
- How do we train on credal labels? Optimistic loss.
- Experiments
- Conclusion and Perspectives

Conclusion

- Self-learning is promising, but can be biased.
- Adding uncertainty into our prediction leads to better performance because the model tends to be less biased.
- IVAP also guarantees a calibrated result.

Perspectives

- Venn-Abers is limited to binary problems, how to overcome that? Venn Predictors,
- Optimization problem no longer on a interval, but on a polytope on the R^{|Y|} space.



References

- Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V. : Curriculum labeling : Revisiting pseudo-labeling for semi-supervised learning. In : Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 6912–6920 (2021)
- [2] Tocaccelli, P. : Tutorial on venn-abers prediction. Conformal and Probabilistic Prediction with Applications (Jun 2017), https://cml.rhul. ac.uk/copa2017/presentations/VennTutorialCOPA2017.pdf