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Standard Setting of Multi-class Classification

3

■ Instance space: X

■ Label space: Y = {1, . . . , K}

■ Training data: D =
{

(xi , yi)
}n

i=1 ∈ (X × Y)n

■ A model is sought that minimizes the empirical risk, i.e.,

ĥ = argmin
h∈H

1
n

n∑
i=1

L
(
yi , h(xi)

)
where H is a hypothesis space and L : Y × Y −→ R is a loss function.
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Partial Label Learning (PLL)

{3,9}

■ Instance space: X

■ Label space: Y = {1, . . . , K}

■ Training data: O =
{

(xi , Si)
}n

i=1 ∈ (X × 2Y)n

■ Assumption: yi ∈ Si , ∀xi

■ A model is sought that minimizes the empirical risk, i.e.,

ĥ = argmin
h∈H

1
n

n∑
i=1

LO
(
Si , h(xi)

)
where H is a hypothesis space and LO(S, ŷ) = miny∈S L(y , ŷ) is an extension of the loss L.
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Our Goal

■ In PLL:

• Training data: ambiguous (imprecise)

• Induced model: precise

■ Goal: to reflect this ambiguity in the predictions

■ How: by extending the (split) conformal prediction framework for partially labeled data
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Conformalized Multi-class Classification

3
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Supervised Learning Alg.

(a) Training

q3

7

9

Class

Class

Class

Nonconformity 
Scores

(b) Calibration

Class

Prediction Set

= {2,7}
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Validity

Theorem 1 (Validity1)
If the data points in Dcalib ∪ (xtest , ytest) are exchangeable, then

P
(
ytest ∈ T (xtest)

)
≥ 1 − ϵ.

1Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world. Springer,
2005.
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Conformal Prediction for Partial Label Learning

{2,7}
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Partial Label Learning Alg.
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Conformal Prediction for Partial Label Learning

First Proposal: "Max" approach

q
Class

Class

Class

Nonconformity 
Scores

Max
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{1,7}
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Conformal Prediction for Partial Label Learning

■ O′
calib: the precise counterpart of Ocalib

Theorem 2 (Validity of "Max" approach)
If the data points in O′

calib ∪ (xtest , ytest) are exchangeable, then the prediction set
constructed with the "Max" approach is valid.
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Conformal Prediction for Partial Label Learning

Second Proposal: : "Mean" approach

q
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Conformal Prediction for Partial Label Learning

Theorem 3 (Validity of "Mean" approach)

If the data points in O′
calib ∪ (xtest , ytest) are exchangeable and f̂PLL(xj)yj ≥ 1

|Sj |
, ∀j ∈ Ocalib,

then the prediction set constructed with the "Mean" approach is valid.
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Conformal Prediction for Partial Label Learning

Third Proposal: "All" approach

q
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Class

Class

Nonconformity 
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Conformal Prediction for Partial Label Learning

■ E ′ :=
{

1 − f̂PLL(xj)yj : j ∈ O′
calib

}
■ q′: the ⌈(1 + |E ′|)(1 − ϵ)⌉ smallest value of E ′

Theorem 4 (Validity of "All" approach)

For any ϵ ≤ min
(1

4 ,
|Ocalib| + |Y|

|Y| · (1 + |Ocalib|)

)
, if the points in O′

calib ∪ {(xtest , ytest)} are

exchangeable and q′ ≤ 0.5, then the prediction set constructed with the "All" approach is
valid.
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Numerical Experiments

Description of the benchmark datasets

FashionMNIST KMNIST MNIST

Num. of classes 10 10 10

Avg. CSS2 Instance-dependent contamination 2.32 2.49 2.25
Random contamination (p=0.7) 7.30 7.30 7.30

2candidate set sizes
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Numerical Experiments

Baseline Approach

Taking minimum nonconformity score per calibration instance:

q
Class

Class

Class

Nonconformity 
Scores

Min
{5,8,9}
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{1,7}

Alireza Javanmardi Conformal Prediction with Partially Labeled Data 15/18



Numerical Experiments

Performance comparison of different calibration approaches on benchmark datasets with
random contamination (p = 0.7):
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■ Efficiency: average cardinality of prediction sets
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Numerical Experiments

Performance comparison of different calibration approaches on benchmark datasets with
instance-dependent contamination:
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Conclusion and Future Work

■ We connect two popular machine learning frameworks:
conformal prediction and partial label learning.

■ We theoretically show that the prediction sets constructed
by the proposed approaches are valid.

Possible future work:
■ There is room for developing novel approaches that could

yield more efficient results while preserving the validity.
■ It is worth exploring nonconformity scores other than

the one used in this work.

@AlirezaJVNMRDI

Let's follow each 
other

Alireza Javanmardi Conformal Prediction with Partially Labeled Data 18/18


	Standard Setting of Multi-class Classification
	Partial Label Learning (PLL)
	Our Goal
	Conformalized Multi-class Classification
	Validity
	Conformal Prediction for Partial Label Learning
	Numerical Experiments
	Conclusion and Future Work
	Appendix

