

Conformal Prediction with Partially Labeled Data

Alireza Javanmardi Yusuf Sale Paul Hofman Eyke Hüllermeier

Institute of Informatics, LMU Munich, Germany

Munich Center for Machine Learning (MCML), Germany

Standard Setting of Multi-class Classification

- Instance space: \mathcal{X}
- Label space: $\mathcal{Y} = \{1, \dots, K\}$
- Training data: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n \in (\mathcal{X} \times \mathcal{Y})^n$
- A model is sought that minimizes the empirical risk, i.e.,

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, h(x_i))$$

where \mathcal{H} is a hypothesis space and $L: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$ is a loss function.

Partial Label Learning (PLL)

- Instance space: \mathcal{X}
- Label space: $\mathcal{Y} = \{1, \dots, K\}$
- $\blacksquare \text{ Training data: } \mathcal{O} = \left\{ \left(x_i, S_i \right) \right\}_{i=1}^n \in \left(\mathcal{X} \times 2^{\mathcal{Y}} \right)^n$
- **Assumption:** $y_i \in S_i, \forall x_i$
- A model is sought that minimizes the empirical risk, i.e.,

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L_O(S_i, h(x_i))$$

where \mathcal{H} is a hypothesis space and $L_O(S, \hat{y}) = \min_{y \in S} L(y, \hat{y})$ is an extension of the loss L.

Our Goal

In PLL:

- Training data: ambiguous (imprecise)
- Induced model: precise
- Goal: to reflect this ambiguity in the predictions
- How: by extending the (split) conformal prediction framework for partially labeled data

Conformalized Multi-class Classification

Validity

Theorem 1 (Validity¹)

If the data points in $\mathcal{D}_{calib} \cup (x_{test}, y_{test})$ are exchangeable, then

$$\mathbb{P}\Big(y_{test} \in \mathcal{T}(x_{test})\Big) \geq 1 - \epsilon.$$

¹Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*. Springer, 2005.

7/18

First Proposal: "Max" approach

 $\blacksquare \ \mathcal{O}_{\mathsf{calib}}'$: the precise counterpart of $\mathcal{O}_{\mathsf{calib}}$

Theorem 2 (Validity of "Max" approach)

If the data points in $\mathcal{O}'_{calib} \cup (x_{test}, y_{test})$ are exchangeable, then the prediction set constructed with the "Max" approach is valid.

Second Proposal: : "Mean" approach

Theorem 3 (Validity of "Mean" approach)

If the data points in $\mathcal{O}'_{calib} \cup (x_{test}, y_{test})$ are exchangeable and $\hat{f}_{PLL}(x_j)_{y_j} \ge \frac{1}{|S_j|}, \forall j \in \mathcal{O}_{calib}$, then the prediction set constructed with the "Mean" approach is valid.

Third Proposal: "All" approach

$$\blacksquare \ \mathcal{E}' := \left\{ 1 - \hat{f}_{\mathsf{PLL}}(x_j)_{y_j} : j \in \mathcal{O}'_{\mathsf{calib}} \right\}$$

q': the $\lceil (1 + |\mathcal{E}'|)(1 - \epsilon) \rceil$ smallest value of \mathcal{E}'

Theorem 4 (Validity of "All" approach) For any $\epsilon \leq \min\left(\frac{1}{4}, \frac{|\mathcal{O}_{calib}| + |\mathcal{Y}|}{|\mathcal{Y}| \cdot (1 + |\mathcal{O}_{calib}|)}\right)$, if the points in $\mathcal{O}'_{calib} \cup \{(x_{test}, y_{test})\}$ are exchangeable and $q' \leq 0.5$, then the prediction set constructed with the "All" approach is valid.

Description of the benchmark datasets

		FashionMNIST	KMNIST	MNIST
	Num. of classes	10	10	10
Avg. CSS ²	Instance-dependent contamination	2.32	2.49	2.25
	Random contamination (p=0.7)	7.30	7.30	7.30

²candidate set sizes

Baseline Approach

Taking minimum nonconformity score per calibration instance:

Alireza Javanmardi Conformal Pred

Conformal Prediction with Partially Labeled Data

Numerical Experiments

Performance comparison of different calibration approaches on benchmark datasets with random contamination (p = 0.7):

Efficiency: average cardinality of prediction sets

Alireza Javanmardi Conformal Prediction with Partially Labeled Data

Numerical Experiments

Performance comparison of different calibration approaches on benchmark datasets with **instance-dependent contamination**:

Conclusion and Future Work

- We connect two popular machine learning frameworks: conformal prediction and partial label learning.
- We theoretically show that the prediction sets constructed by the proposed approaches are valid.

Possible future work:

- There is room for developing novel approaches that could yield more efficient results while preserving the validity.
- It is worth exploring nonconformity scores other than the one used in this work.

