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Setting

• We assume instances x ∈ X with associated ground-truth p∗(· | x) ∈ P(Y)
for categorical targets (classes) Y = {y1, ..., yK }

• In practice, only realization y ∈ Y of random variable Y ∼ p∗(· | x) given
as training information in Dlabeled

• Here, we consider a semi-supervised learning setting with unlabeled data
without labels in Dunlabeled

• Goal: Learn probabilistic classifier p̂ : X 7→ P(Y)
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Self-Training

Labeled data 𝒟labeled

Unlabeled data 𝒟unlabeled

ModelTrain set 𝒟train

Predict 
pseudo-label

• Typically, pseudo-labels are in the form of single prob. distributions [Lee13]

□ E.g., degenerate distributions py with py (y | x) = 1 and py (y ′ | x) = 0
for y ̸= y ′, where y := argmaxy∈Y p̂(y | x) [SBC+20]

□ Single distribution is incapable in reflecting uncertainty properly,
additional uncertainty-awareness means are required [RDRS21]

□ Too extreme distributions py may lead to biased and overconfident
classifiers p̂ [LH21b]
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Credal Label Learning

• Credal labeling [LH21b]: Use credal sets (sets of
probability distributions) Q ⊆ P(Y) as supervision

□ Supposed to cover p∗ with high probability
□ Relieve from committing to single target

distribution

• Learning from set-valued targets by (optimistic) superset learning [HC15]:

L∗(Q, p̂) := min
p∈Q

L(p, p̂)

□ No prediction p̂ ∈ Q is penalized (relaxation, data disambiguation)
□ With L = DKL and credal sets as depicted, L∗ has convex closed-form

expression (efficient optimization)
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Credal Self-Supervised Learning [LH21a]

• Credal self-supervised learning (CSSL) [LH21a]
maintains credal sets as (pseudo-)supervision for
all unlabeled instances

□ Ad-hoc set construction based on the model
confidence

□ More cautious yet uncertainty-aware learning
behavior

• However, the credal set quality is solely subject to the model confidence

□ No objective validity guarantee

⇒ (Inductive) Conformal prediction (CP) to the rescue [VGS05]:
Quantifying the uncertainty of p̂(x) with (marginal) validity guarantees

□ Separated calibration data Dcalib from the original labeled set Dlabeled
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Conformal Credal Labeling

• [CM22] suggest to interpret p-values πx for p̂(x) as possibilities

□ Intuitively, πx(y ′) ∈ [0, 1] upper bounds p∗(y ′) for all y ′ ∈ Y
□ Needs to be normalized such that maxy ′∈Y πx(y ′) = 1
□ Then, it is guaranteed for the true outcome y assoc. with x:

Pr(πx(y) ≤ δ) ≤ δ

• Conformal credal sets Qπx in accordance with
conformal possibilites πx can be constructed by
Qπx =

{
p ∈ P(Y) | ∀ Y ⊆ Y :

∑
y∈Y

p(y) ≤ max
y∈Y

πx(y)
}

• Learning from conformal credal labels via
L∗(Qπx , p̂) := min

p∈Qπx
DKL(p || p̂)

requires more sophisticated optimization algorithm
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Generalized Credal Learning

Algorithm Generalized Credal Learning Loss
Require: Predicted distribution p̂ ∈ P(Y), (normalized) possibility distribution

π : Y −→ [0, 1]
if p̂ ∈ Qπ then return DKL(p̂ || p̂) = 0
Initialize set of unassigned classes Y = Y
while Y is not empty do

Determine y∗ ∈ Y with highest π(y∗), such that the probabilities

p̄(y) =

π(y∗) −
∑

y ′ /∈Y
pr (y ′)

 · p̂(y)∑
y ′∈Y ′ p̂(y ′)

for all y ∈ Y ′ := {y ∈ Y | π(y) ≤ π(y∗)} do not violate any possibility
constraints for classes y ′ : π(y ′) ≤ π(y∗)
Assign pr (y) = p̄(y) for all y ∈ Y ′

Y = Y \ Y ′

end while
return DKL(pr || p̂)
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Conformal Credal Self-Supervised Learning (C2S2L)

Batch-wise loss calculation:

CR

Labeled batch ℬ𝑙 Unlabeled batch ℬ𝑢

Calibration split 𝒟calibƸ𝑝 𝒙

ICP

Ƹ𝑝 𝒜𝑤 𝒙
Ƹ𝑝 𝒜𝑠 𝒙

Credal set 𝒬𝜋ℒ∗(𝒬𝜋, Ƹ𝑝)𝐷𝐾𝐿(𝑝𝑦|| Ƹ𝑝)

𝒙 𝑝𝑦 𝒜𝑠 𝒙 𝒜𝑤 𝒙

CR = Consistency Regularization
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Results

• Superior generalization performance
compared to CSSL, especially in later
phases of the training

□ Although calibration data for CP is
separated from Dlabeled

• Higher quality of pseudo-supervision in
C2S2L compared to CSSL

□ Smaller credal set sizes
□ Improved validity in terms of

1(π(y) ≤ δ) for true outcomes y of
the unlabeled instances
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Conclusion & Outlook

• Conformal prediction can be used to achieve model-agnostic guarantees in
self-training

□ Combination of superset learning with conformal prediction appears
promising in this regard

□ But how about conditional validity? Can we achieve (at least by an
approximation) it?

• Generalized credal label learning allows to learn from arbitrary credal sets
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