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we have good point-prediction model f(X) ≈ EY |X(Y )
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marginal prediction intervals (PI) are not efficient

X

Y
alpha=0.1, A=|f(X)-Y|

marginal: val=0.94, size=8.406, corr=-7.848
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locally-defined PI may be do better

X

Y
alpha=0.1, A=|f(X)-Y|

1 bins: val=0.88, size=5.603, corr=-7.419
3 bins: val=0.892, size=5.039, corr=-4.685
4 bins: val=0.87, size=5.733, corr=-4.935
5 bins: val=0.9, size=6.31, corr=-4.987
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locally-defined PI approximate the ideal conditional validity

Prob(Ytest ∈ C|Xtest) ≥ 1− α

how to define the bins? what if somewhere the calibration set

gets too small?

instead of partitioning the data, we localize the conformity func-

tion

A(Y, f(X)) → B(A,X) = φX(A)

6



to avoid overfitting, φX(A) has a globally defined functional form

predictions on different locations are evaluated differently, e.g.

A′ < A 6⇒ φX ′(A
′) < φX(A)

the PI now depend on the transformed calibration set

{Bn = φXn(|Yn − f(Xn)|)}Nn=1
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let QB be the (1− α)th sample quantile of {Bn = φXn(|f(Xn)−
Yn|)}Nn=1, i.e.

QB is such that |{Bn ≤ QB}Nn=1| = d(1− α)Ne

in the B-space, we have standard marginal PI

CB = {b ∈ R, b ≤ QB}

in the label space, CB becomes locally-adaptive

CB ∼ C = {y ∈ R, |y − f(Xtest)| ≤ φ−1
Xtest

(QB)}

= [f(Xtest)− φ−1
Xtest

(QB), f(Xtest) + φ−1
Xtest

(QB)]
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an example from the literature is the Locally Reweighted (LR)

CP algorithm

B = φX =
A

g2(X) + γ
, g(X) ≈ EA|X(A), γ > 0

intuitively, LR works because B is almost uniformely distributed

for all X

the label-space PI are

C = [f(Xtest)− φ−1
Xtest

(QB), f(Xtest) + φ−1
Xtest

(QB)]

which have locally-adaptive sizes

|C| = QB(g2(Xtest) + γ)
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the obtained PI are marginally valid by construction

X

Y
alpha=0.1, A=|f(X)-Y|

marginal: val=0.94, size=8.406, corr=-7.848
LR: val=0.94, size=5.405, corr=-7.273
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we extend the LR idea in two ways

1 - we let φX(A) be general monotonic functions of A

2 - we train φX to maximize the efficiency of the PI

i.e. we define a model class Φ = {φX(A, θ), X ∈ X , θ ∈ Rd} and

minimize the average size of the PI

`size(θ) = Eα,Xtest,Dcal

(
φ−1
Xtest

(QB, θ)
)
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for example, let

φX = Aσ(θ1(1− θ2X
2)), σ(t) =

1

1 + e−t

and search for the optimal θ = (θ1, θ2)

σ(θ1(1− θ2X
2)) does not need to be a model of the conditional

residuals

the obtained locally-adaptive PI are

C =

{
y ∈ R, |f(X)− y| ≤

QB
σ(θ1(1− θ2X2))

}
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again, the PI are marginally valid by construction

X

Y
alpha=0.1, A=|f(X)-Y|

marginal: val=0.94, size=8.406, corr=-7.848
LR: val=0.94, size=5.405, corr=-7.273
size: val=0.94, size=4.634, corr=-7.101
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we obtain θ by minimizing

`size(θ) ≈
∑
n6=n′

φ−1
Xn

(
φXn′

(An′, θ), θ)
)

=
∑
n 6=n′

An′
σ(θ1(1− θ2X

2
n′)

σ(θ1(1− θ2X2
n))

with gradient descent updates *

θ ← θ − η
∑
n 6=n′

dφ−1
Xn

(
φXn′

(An′, θ), θ
)

the derivatives of φ−1
X are obtained implicitly from

dθφ
−1
X (φX(A, θ)) = 0

and

∂B
(
φX

(
φ−1
X (B, θ), θ

))
= 1

*d(ψ ◦ ζ) = ∇ψ ◦ ζ + (ψ′ ◦ ζ)∇ζ
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how flexible is the scheme?

other possible model classes are

φX = A exp(g(X)), φX = logA+g(X), φX = σ(logA+g(X))

the models fulfil a domain-codomain assumption

φX : R+ → B, φ−1
X : B → R+ for all X

for example, φX = σ(A+g2(X)) is not allowed because logit(σ(A+

g2(X)) − g2(X ′) may be negative for some X,X ′ ∈ R and A =

|f(X)− Y |
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thank you!
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