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we have good point-prediction model f(X) =~ Ey|X(Y)
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marginal prediction intervals (PI) are not efficient

alpha=0.1, A=|f(X)-Y]|

---- marginal: val=0.94, size=8.406, corr=-7.848
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locally-defined PI may be do better

alpha=0.1, A=|f(X)-Y]|

: val=0.88, size=5.603, corr=-7.419
: val=0.892, size=5.039, corr=-4.685
: val=0.87, size=5.733, corr=-4.935

1 val=0.9, size=6.31, corr=-4.987

X



locally-defined PI approximate the ideal conditional validity

PrOb(Y;&est S C|Xtest> >1l—-«

how to define the bins? what if somewhere the calibration set
gets too small?

instead of partitioning the data, we localize the conformity func-
tion

AY, f(X)) — B(AX)=¢x(A)



to avoid overfitting, ¢ x(A) has a globally defined functional form

predictions on different locations are evaluated differently, e.q.

A'<A A dxi(A) < ox(A)

the PI now depend on the transformed calibration set

{Bn=dx,(|Yn— fF(Xn)DI_;



let Qp be the (1 — a)th sample quantile of {Bp = ¢x, (|f(Xn) —
VoDV, ie.
n n=1"

Qp issuch that |{Bn<Qp} _i|=[(1—-a)N]

in the B-space, we have standard marginal PI

Cp={beR,b<Qp}

in the label space, Cp becomes locally-adaptive

Cp ~ C={yeR|y—f(Xtes)| < ¢, (QB)}
= [f (Xtest) — ¢xr.(QB), F Xtest) + ¢x,._(QB)]



an example from the literature is the Locally Reweighted (LR)
CP algorithm

A
g2(X) 4+

B=¢x = g(X) = Eyx(A), ~+>0

intuitively, LR works because B is almost uniformely distributed
for all X

the label-space PI are

C = [f (Xpest) — ¢x;. (QB) F(Xtest) + by, (QB)]

which have locally-adaptive sizes

|C’ — QB(QQ(Xtest) + )



the obtained PI are marginally valid by construction

alpha=0.1, A=|f(X)-Y|

---- marginal: val=0.94, size=8.406, corr=-7.848
---- LR: val=0.94, size=5.405, corr=-7.273

10



we extend the LR idea in two ways
1 - we let ¢px(A) be general monotonic functions of A
2 - we train ¢x to maximize the efficiency of the PI

i.e. we define a model class ® = {¢x(A4,0),X € X,0 € R} and
minimize the average size of the PI

lsize(0) = Ea Xy, Do (¥, (@B, 0))
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for example, let
1

dx = Ac(01(1 — 0,X7)), o(t) = 14 ot

and search for the optimal 0 = (61, 05)

a(01(1 —65X2)) does not need to be a model of the conditional
residuals

the obtained locally-adaptive PI are

B Qp
C = {y ER,[f(X) —y| < o(61(1 — 02X2))}
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again, the PI are marginally valid by construction

alpha=0.1, A=|f(X)-Y]|

---- marginal: val=0.94, size=8.406, corr=-7.848
---- LR: val=0.94, size=5.405, corr=-7.273
size: val=0.94, size=4.634, corr=-7.101 e
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we obtain 6 by minimizing

a(01(1 — 62X7)

leize(0) ~ Y ¢ (6x ,(A4,,0),0)) = > A,
n#En/ n#n/
with gradient descent updates [f

0 0—n > dpyt (¢Xn,(An,, 0), 9)
n#n'

o(01(1 — 02X3%))

the derivatives of ¢)_<1 are obtained implicitly from

dgd ' (¢x(A,0)) =0
and

Op (¢x (6x'(B.0),0)) =1

‘d(¥p o) =Vipo(+ (¢'0)V(
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how flexible is the scheme?

other possible model classes are

dpx = Aexp(g(X)), o¢x =100A+g(X), ¢x =o0c(logA+g(X))

the models fulfil a domain-codomain assumption

¢»x Ry — B, qb;(l:B—ﬂR%_'_ for all X

for example, ¢x = o(A4g¢2(X)) is not allowed because logit(c( A+
g?(X)) — ¢g2(X’) may be negative for some X, X' € R and A =

[f(X) =Y
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thank you!
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