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The fuel of ML is clean, labeled data

60K images
10 classes

MNIST CIFAR 10

60K images
10 classes

CIFAR 100

60K images
100 classes

Imagenet

14M images
22K classes

time



Collecting clean, annotated data is hard and expensive

• 14M images, 22K classes
• 49K annotators
• 2 ½  years project
• $$$

Crowdsourcing



No 100% accurate annotations

• Analysis of 10 datasets that have been cited over 100,000 times
• 3.4% of incorrect labels on average
• 6% wrong labels in ImageNet



Various sources of errors [Carniero et al. ‘21] 

• Labeling in a rush

1. Dough (ImageNet label)
2. Pizza
3. Soup bowl
4. …

1. Bald eagle
2. Kite (ImageNet label)
3. Soup bowl
4. …

Pay less $$$ and get more Get more $$$
work fast/too much

company annotator



• Labeling in a rush
• Low-quality data, uncertainty

1. Airplane (CIFAR10 label)
2. Ship
3. Car
4. …

1. Truck
2. Cat (CIFAR10 label)
3. Dog
4. …

Various sources of errors [Carniero et al. ‘21] 



• Labeling in a rush
• Low-quality data, uncertainty
• Challenging problems

mammography brain MRI

Various sources of errors [Carniero et al. ‘21] 



Various sources of errors

• Labeling in a rush
• Low-quality data, uncertainty
• Challenging problems
• Difficult to hire experts

mammography brain MRI

company

“I hope this email finds you well”

expert

@



Various sources of errors

• Labeling in a rush
• Low-quality data, uncertainty
• Challenging problems
• Difficult to hire experts
• Subjective options, there is no consensus

mammography brain MRI



Various sources of errors

• Labeling in a rush
• Low-quality data, uncertainty
• Challenging problems
• Difficult to hire experts
• Subjective options, there is no consensus
• Sensor noise
• Data entry mistakes
• …

No 100% accurate labels

➙ noisy labels
Uncertainty is inevitable!

mammography brain MRI



Ultimate goal: reliable UQ under label noise

• Input: 𝑛 noisy training points 𝑋!, $𝑌! , … , 𝑋", $𝑌" and a test point 𝑋#$%#, ?
➙ exchangeable (e.g., i.i.d.) samples from unknown joint dist. 𝑃& '(

)*+%,

• 𝑋 ∈ 𝒳 : features

• $𝑌 ∈ 𝒴 : noisy label/response

• 𝑌 ∈ 𝒴 : ground-truth, clean label (unobserved)



Ultimate goal: reliable UQ under label noise

Wish to use any ML algorithm to construct a marginal distribution-free prediction set

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼  (e.g., 90%)

𝛼 ∈ 0,1  is a user-specified miscoverage rate
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Ultimate goal: reliable UQ under label noise

Wish to use any ML algorithm to construct a marginal distribution-free prediction set

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼  (e.g., 90%)

𝛼 ∈ 0,1  is a user-specified miscoverage rate

• Construct 𝐶)*+%, 𝑋#$%#  using the observed noisy data
• Guarentee that clean 𝑌#$%# is covered in 𝐶)*+%, 𝑋#$%#

• Input: 𝑛 noisy training points 𝑋!, $𝑌! , … , 𝑋", $𝑌" and a test point 𝑋#$%#, ?
➙ exchangeable (e.g., i.i.d.) samples from unknown joint dist. 𝑃& '(

)*+%,

• 𝑋 ∈ 𝒳 : features

• $𝑌 ∈ 𝒴 : noisy label/response

• 𝑌 ∈ 𝒴 : ground-truth, clean label (unobserved)

how and under what 
conditions is it possible?



Conformal prediction: notations



Conformal prediction [Vovk et al. ’99; Papadopoulos et al. ‘12, Lei et al. ’18; …]

• Input: pre-trained predictive model 1𝑓, and holdout calibration set 𝑋-, 𝑌- -.!
"

• Process
– Compute non-conformity scores 𝑠- = 𝑠 𝑋-, 𝑌- for all 𝑖 = 1,… , 𝑛

a measure of goodness-of-fit (the lower the better), e.g., 𝑠- = 1𝑓 𝑋- − 𝑌-
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*missing a small correction term



Conformal prediction [Vovk et al. ’99; Papadopoulos et al. ‘12, Lei et al. ’18; …]

• Input: pre-trained predictive model 1𝑓, and holdout calibration set 𝑋-, 𝑌- -.!
"

• Process
– Compute non-conformity scores 𝑠- = 𝑠 𝑋-, 𝑌- for all 𝑖 = 1,… , 𝑛

a measure of goodness-of-fit (the lower the better), e.g., 𝑠- = 1𝑓 𝑋- − 𝑌-
– Compute* 6𝑞/0$1) = the 1 − 𝛼 -empirical quantile of 𝑠- -.!"

• Output: prediction set with 90% coverage

𝐶 𝑋#$%#, 6𝑞/0$1) = 𝑦 ∈ 𝒴: 𝑠 𝑋#$%#, 𝑦 ≤ 6𝑞/0$1)

Non-conformity Score

De
ns

ity

90% quantile

Sweep over all 𝑦 ∈ 𝒴 and return the guessed 𝑦‘s
whose score falls below 6𝑞/0$1)

2𝑞!"#$%

*missing a small correction term



Another way to view conformal prediction

• Given a set constructing function

𝐶 𝑥, 𝑞 = 𝑦 ∈ 𝒴 ∶ 𝑠 𝑥, 𝑦 ≤ 𝑞

• Find the 6𝑞/0$1) that achieves 90% coverage on the calibration set

Calibra>on parameter 𝑞
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2𝑞!"#$%

Emp. Coverage*(𝑞) = !
"
∑-.!" 1{𝑌- ∈ 𝐶 𝑋-, 𝑞 }-.!"

*missing a small correction term



Conformal prediction is valid under exchangeability

Theorem (Vovk et al. ’99; Papadopoulos et al. ’12; Lei et al. ’18; R., Patterson, Candes ’19, …)

If 𝑋!, 𝑌! , … , 𝑋", 𝑌" and 𝑋#$%#, 𝑌#$%# are exchangeable (or i.i.d.). Then, 

ℙ 𝑌#$%# ∈ 𝐶/0$1) 𝑋#$%#, 6𝑞/0$1) ≥ 1 − 𝛼  (e.g., 90%)

• Finite sample, dist. free guarantee!

• There is also an upper bound (guarantee is tight)

• Exchangeability is the only assumption



Conformal in action: the Washington Post election night model 

Technology is based on conformalized quantile regression [R., Patterson, Candes ’19]





Core idea: use reported counties to 
forecast unreported counties





Amazing software packages



Conformal in the cloud





Back to label noise…



Back to Label noise: what is the challenge?

Suppose we observe only the noisy labels

$𝑌 = 𝑔 𝑌, 𝑈 e.g., randomly flip the true label w.p. 𝜖

• 𝑔 is a corruption function; 𝑈 is random noise
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Suppose we observe only the noisy labels

$𝑌 = 𝑔 𝑌, 𝑈 e.g., randomly flip the true label w.p. 𝜖

• 𝑔 is a corruption function; 𝑈 is random noise

• It achieves valid cov. on noisy ℙ "𝑌!"#! ∈ 𝐶 𝑋!"#!, (𝑞$%&#' ≥ 1 − 𝛼

• Would it have valid cov. on clean?  ℙ 𝑌!"#! ∈ 𝐶 𝑋!"#!, (𝑞$%&#' ≥ 1 − 𝛼

Problem:
distribution shift!
𝑃&,(/0$1) ≠ 𝑃&, '(

)*+%,

Imagine we run conformal prediction on noisy data as if it is clean

𝐶 𝑥, 6𝑞)*+%, = 𝑦 ∈ 𝒴 ∶ 𝑠 𝑋#$%#, 𝑦 ≤ 6𝑞)*+%,

6𝑞)*+%, = 1 − 𝛼 -empirical quantile of 𝑠 𝑋-, $𝑌- -.!
"

Back to Label noise: what is the challenge?



Let’s see some evidence on label noise robustness

Adversarial thinking about distribution shift 
⇓

under-coverage

But is it really the case?



Classification: CIFAR10H image data

• Task: classify the object in an image (𝐾 = 10 classes)

• Clean CIFAR10H : clean labels 𝑌 are the majority vote of ≈ 50 annotators

• Noisy CIFAR10H : noisy labels $𝑌 are from a single annotator

• NNet classifier (resnet-18)

• Exact coverage when calibrated on clean labels (not surprising)

• Conservative but valid coverage when calibrated on noisy labels



Regression: aesthetic visual analysis

• Data: pairs of images and their annotated aesthetic score, in a range of 1-10

Ranked as “high-quality”
Aesthetic score = 9 

Ranked as “low-quality”
Aesthetic score = 2 

Subjective options, uncertainty, …

[Murray et al. ’12]



Regression: aesthetic visual analysis

• Data: pairs of images and their annotated aesthetic score, in a range of 1-10

• Task: predict the aesthetic score of a given image
– Clean 𝑌 = average score of ≈ 200 annotators
– Noisy $𝑌 = average score of ≈ 10 annotators

• NNet regressor (fine-tuned VGG-16 model)

• Training (≈ 35K images), calib. (≈ 8K), testing (≈ 8K)

• Exact coverage when calibrated on clean

• Conservative coverage when calibrated on noisy

• Noisy intervals are wider



Let’s gain intuition: when and why this happens?

Empirical evidence: label noise ⟹ over-coverage



Contractive vs. dispersive noise
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Contractive vs. dispersive noise

Effect: under-coverage
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Formally: validity under dispersive noise

Theorem

If ℙ 𝑠 𝑋#$%#, $𝑌#$%# ≤ 𝑡 ≤ ℙ 𝑠 𝑋#$%#, 𝑌#$%# ≤ 𝑡 for all 𝑡, then

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼

• See paper for upper bound

Non-conformity score

De
ns

ity

Challenge: when does this assumption hold?

It’s a function of (1) the clean data dist., (2) the noise, 
(3) the model performance, and (4) the score we use

Visualizing the assumption



Regression



The ideal, oracle case

• Imagine we know the true conditional dist. of the clean data

lower 𝑥 = 0.05−th cond. quanmle of Y ∣ 𝑋 = 𝑥

upper 𝑥 = 0.95−th cond. quanmle of Y ∣ 𝑋 = 𝑥

90% coverage by definition

upper
quantile

lower
quantile



The ideal, oracle case : noisy vs. clean

• Imagine we know the true conditional dist.

• What is the effect of noise?   $𝑌 = 𝑌 + 𝑍,  the noise 𝑍 is symmetric around 0

The noisy interval contains the clean interval

higher coverage rate on clean
⇓

Noisy
upper
quantile

Noisy
lower
quantile

upper
quantile

lower
quantile



The ideal, oracle case : noisy vs. clean

• Imagine we know the true conditional dist. 

• What is the effect of noise?   $𝑌 = 𝑌 + 𝑍,  the noise 𝑍 is symmetric around 0

The noisy interval contains the clean interval

higher coverage rate on clean
⇓

𝑦

Conditional on 𝑋 = 𝑥

-2 0 2 4-1 1 3

Clean
Noisy

-3

90% coverage
on noisy

95% coverage
on clean

-4
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Conformalized quantile regression (CQR) [R., Patterson, Candes ’19]

• Given a model that estimates the \lower(𝑥) and ]upper(𝑥) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss [Koenker & Bassett ’78]

\lower(𝑥), ]upper(𝑥) = argmin
6,7

∑- 𝜌8!" 𝑌- − 𝑙 𝑋- + 𝜌8#$ 𝑌- − 𝑢 𝑋-



Conformalized quantile regression (CQR) [R., Patterson, Candes ’19]

• Given a model that estimates the \lower(𝑥) and ]upper(𝑥) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss

• CQR interval function: 𝐶)*+%, 𝑥, 𝑞 = \lower 𝑥 − 𝑞, ]upper 𝑥 + 𝑞

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data

𝑞 > 0

𝑞 > 0
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Conformalized quantile regression (CQR) [R., Patterson, Candes ’19]

• Given a model that estimates the \lower(𝑥) and ]upper(𝑥) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss

• CQR interval function: 𝐶)*+%, 𝑥, 𝑞 = \lower 𝑥 − 𝑞, ]upper 𝑥 + 𝑞

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data
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CQR is robust to dispersive noise

• Given a model that estimates the \lower(𝑥) and ]upper(𝑥) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss

• Interval function: 𝐶)*+%, 𝑥, 𝑞 = \lower 𝑥 − 𝑞, ]upper 𝑥 + 𝑞

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data

Noisy intervals achieve higher
coverage rate on clean
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Assumptions

(1) 𝑌 ∣ 𝑋 is symmetric & unimodal

(2) 𝑍 is symmetric around 0



CQR is robust to dispersive noise

Suppose that 𝑌 ∣ 𝑋 is symmetric and unimodal. Suppose further that noisy $𝑌 = 𝑌 + 𝑍
where 𝑍 is symmetric around 0. If \lower 𝑥 ≤ median 𝑥 ≤ ]upper(𝑥), then

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼

𝑦

Conditional on 𝑋 = 𝑥

-2 0 2 4-1 1 3

Clean
Noisy

-3

90% coverage
on noisy

96% coverage
on clean

-4
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+ Weak assumption on the model
− Strong assumption on the data



Relaxing the distributional assumption

We say that the density of 𝑌 ∣ 𝑋 = 𝑥 is peaked inside the interval 𝑞0*;$<, 𝑞=>>$<  if 
for all 𝑡 ≥ 0:

𝑓(∣&.@ 𝑞=>>$< + 𝑡 ≤ 𝑓(∣&.@ 𝑞=>>$< − 𝑡
𝑓(∣&.@ 𝑞0*;$< + 𝑡 ≥ 𝑓(∣&.@ 𝑞0*;$< − 𝑡

Clean
Noisy

𝑦

Conditional on 𝑋 = 𝑥

-2 0 2 4-1 1 3-3-4
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General robustness proposition

Suppose that $𝑌 = 𝑌 + 𝑍 where 𝑍 is symmetric around 0. If the density of 𝑌 ∣ 𝑋 = 𝑥 is 
peaked inside 𝐶)*+%, 𝑋#$%# , then

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼

Clean
Noisy

𝑦

Conditional on 𝑋 = 𝑥

-2 0 2 4-1 1 3-3-4
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Remark

+ Weaker assumptions on the data
− Stronger assumptions on the  

model



⊇ ⊇

Inclusion between results

Master 
Theorem

General 
regression 

result

Unimodal 
result



Multi-class classification



The noise setting

• Multi-class classification with 𝐾 classes

• Random flip corruption

$𝑌 = 𝑔A0+> 𝑌, 𝑈 = f𝑌 w. p 1 − 𝜀
𝑌B otherwise

𝑌B is drawn uniformly from 1,2, … , 𝐾

[Angluin & Laird ’88; Aslam & Decatur ’96; Ma et al. ‘18; Jenni & Favaro ’18; Yuan et al. ‘18]



The ideal, oracle case

• Imagine we know the true conditional class probabilities of the clean data

𝜋C 𝑥 = ℙ 𝑌 = 𝑦 ∣ 𝑋 = 𝑥

• How to construct a prediction set for 𝑌 ∣ 𝑋 ?
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𝐶+I$10 𝑥, 𝑞 = 0.9 = 1,2,3

90% coverage
on cleanClean 𝜋!



The ideal, oracle case: noisy vs. clean

• Imagine we know the true conditional class probabilities of the clean data

𝜋C 𝑥 = ℙ 𝑌 = 𝑦 ∣ 𝑋 = 𝑥

• What is the effect of noise = label is flipped w.p. 𝜖 ? m𝜋C 𝑥 = 1 − 𝜖 𝜋C 𝑥 + 𝜖
1
𝐾

𝐾 = 10, 𝜀 = 0.1,0.4
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The ideal, oracle case: noisy vs. clean

• Imagine we know the true conditional class probabilities of the clean data

𝜋C 𝑥 = ℙ 𝑌 = 𝑦 ∣ 𝑋 = 𝑥

• What is the effect of noise = label is flipped w.p. 𝜖 ?
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1. The noisy class probs. get closer to uniform as 𝜖 increases 
2. The orderings of the clean/noisy class probs. are identical

m𝜋C 𝑥 = 1 − 𝜖 𝜋C 𝑥 + 𝜖
1
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Oracle achieves conservative coverage on clean

• Constructing sets with threshold 𝑞)*+%, = 0.9;  run the procedure as if data is clean
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The noisy set contains 
all the labels of the clean
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Oracle achieves conservative coverage on clean

• Constructing sets with threshold 𝑞)*+%, = 0.9;  run the procedure as if data is clean

Clean 𝜋!
Noisy "𝜋!

90% coverage
on clean

90% coverage
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Ideal clean set 𝐶/0$1)
+I$10 𝑥 = 1,2,3

Noisy set 𝐶)*+%, 𝑥, 𝑞)*+%, = 0.9 = 1,2,3,4,5

The noisy set contains 
all the labels of the clean

⇓
higher coverage rate on clean
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Conformal APS [R., Sesia, Candes (’20)]

• Given a classifier 6𝜋C(𝑥) that estimates the conditional class probabilities
e.g., output of the softmax layer of a NNet

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data
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Conformal APS is robust to dispersive noise

• Given a classifier 6𝜋C(𝑥) that estimates the conditional class probabilities
e.g., output of the softmax layer of a NNet

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data

• Assumption: the classifier ranks the classes in the same order as the oracle ℙ( $𝑌 ∣ 𝑋)
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Robustness under dispersive noise

Assume a random flip noise model. If the classifier ranks the classes in the same order 
as the oracle ℙ $𝑌 𝑋 , then

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼

• See paper for upper bound

Calibrated (𝑞$%&#' that 
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Remark

+ Relatively weak assumptions on
the data

− Strong assumptions on the classifier
(correct rankings)



• The key requirement for general noise robustness (intuition):
the noise should (a) push the class probabilities closer to uniform while (b) preserving 
the class-probability ordering for all 𝑥 ∈ 𝒳
• Formally, assume for all 𝑖, 𝑗 ∈ 1,… , 𝑘

(a)    ℙ $𝑌 = 𝑖 ∣ 𝑋 = 𝑥 − !
] ≤ ℙ 𝑌 = 𝑖 ∣ 𝑋 = 𝑥 − !

]

(b)    ℙ $𝑌 = 𝑖 ∣ 𝑋 = 𝑥 ≤ ℙ $𝑌 = 𝑗 ∣ 𝑋 = 𝑥 ⇔ ℙ 𝑌 = 𝑖 ∣ 𝑋 = 𝑥 ≤ ℙ 𝑌 = 𝑗 ∣ 𝑋 = 𝑥

• Then,

ℙ 𝑌#$%# ∈ 𝐶)*+%, 𝑋#$%# ≥ 1 − 𝛼

General noise setting



Inclusion between results

⊇ ⊇
Master 

Theorem

General 
classification 

result

Random flip 
result



Risk control: moving beyond the miscoverage loss



Multi-label classification

• 𝑋 ∈ 𝒳 : an image

• 𝑌 ∈ 𝒴 : clean labels, e.g., {car, dog, house}

• $𝑌 ∈ 𝒴 : noisy labels, e.g., {truck, cat, house}

• Random-flip noise model

• Varying #objects across different images

• High dim. 𝒀
➙ want less stringent notion of error than miscoverage = 1 𝑌#$%# ∉ 𝐶)*+%, 𝑋#$%#

[Angelopoulos & Bates et al. ’21; Angelopoulos et al. ’21, ‘22]

Credit: DALL-E 2

$𝑌 𝑗 = f
𝑌 j , w. p. 1 − 𝜀,
1 − 𝑌 j , otherwise



Conformal risk control: prediction sets with controlled risk

• Goal (multi-label class.): construct prediction sets with a controlled false negative rate

false negative proportion (FNP) loss:
Risk

Loss

𝐿^_` 𝑦, 𝐶)*+%, 𝑥 = 1 −
𝑦 ∩ 𝐶)*+%, 𝑥

𝑦
= 1 −

# of lables covered
total # of labels

𝔼 𝐿^_` 𝑌#$%#, 𝐶)*+%, 𝑋#$%# ≤ 𝛼 (e.g., 10%)

[Angelopoulos et al. ’21; Angelopoulos et al. ’21, ‘22]



Conformal risk control: FNR for multi-label classification

• Given a classifier 6𝜋C(𝑥) that estimates the conditional class probabilities

• Set function: 𝐶)*+%, 𝑥, 𝑞 = {𝑦 ∶ 6𝜋C 𝑥 ≥ 1 − 𝑞}

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data
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[Angelopoulos et al. ’21]
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Conformal risk control: FNR for multi-label classification

• Given a classifier 6𝜋C(𝑥) that estimates the conditional class probabilities

• Set function: 𝐶)*+%, 𝑥, 𝑞 = {𝑦 ∶ 6𝜋C 𝑥 ≥ 1 − 𝑞}

• Calibrate the threshold 6𝑞)*+%, on the noisy calibration data
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[Angelopoulos et al. ’21]

Under what assumptions this holds?

Monotonicity: 𝑞! ≥ 𝑞a ⇒ 𝐶 𝑥, 𝑞a ⊆ 𝐶 𝑥, 𝑞!𝐶)*+%, 𝑥, 𝑞)*+%, = 1,2,3



Conformal risk control is robust to label noise

Assume a random flip noise model. Assume also that

1. The classifier ranks the classes in the same order as the oracle ℙ $𝑌 = 𝑦 ∣ 𝑋 = 𝑥
2. The clean labels are conditionally independent: 𝑌[𝑖] ⊥ 𝑌[𝑗] ∣ 𝑋 = 𝑥 for all pairs 𝑖, 𝑗

⟹ 𝔼 𝐿^_` 𝑌#$%# , 𝐶)*+%, 𝑋#$%# ≤ 𝛼

Remark

Robustness can be guaranteed even if
1. the noise does not have the same  

magnitude across all labels
2. the labels are dependent21 3
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Experiment: MS COCO image data [Lin et al. ’14]

• Task: classify the objects in an image (𝐾 = 80 classes)

• Clean COCO : clean 𝑌 are original labels

• Noisy COCO : we collected 117 noisy $𝑌 from single annotators (calibration set)

• NNet classifier (TResNet) [Ridnik et al. ’20]

• Exact control on noisy labels (not surprising)

• Valid control on clean labels



Conclusion, open questions, and uncovered topics



Caution: there are cases where conformal would not obtain valid coverage (adv. noise)

Uncovered topics
• Segmentation problems 
• Online, time-varying settings with drifting dist.
➙ adaptive conformal inference (coverage) [Gibbs & Candes ‘21,’22]

rolling risk control (FNR risk) [Feldman et al. ’22]

Next step?
– Design conformity scores that are robust to label noise

Takwaway: accurate model + dispersive noise = conserva2ve coverage

Thank you!


