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The fuel of ML is clean, labeled data

MNIST CIFAR 10 CIFAR 100 Imagenet
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Collecting clean, annotated data is hard and expensive

14M images, 22K classes

49K annotators
2 /> years project
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No 100% accurate annotations
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Major ML datasets have tens RITTEN BY
Adam Conner-Simons
of thousands of errors

* Analysis of 10 datasets that have been cited over 100,000 times
* 3.4% of incorrect labels on average
* 6% wrong labels in ImageNet



Various sources of errors [carniero et al. 21]

* Labeling in a rush
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Various sources of errors [carniero et al. 21]

* Labeling in a rush
* Low-quality data, uncertainty

? 1. Airplane (CIFAR10 label)
2. Ship
3. Car
4. ..

P 1. Truck

e 2 Cat (CIFAR10 label)
3. Dog

4. ...




Various sources of errors [carniero et al. 21]

* Labeling in a rush
* Low-quality data, uncertainty
* Challenging problems

mammography brain MRI



Various sources of errors

Labeling in a rush
Low-quality data, uncertainty
Challenging problems mammography
Difficult to hire experts

' ' “I hope this email finds you well”

company

brain MRI




Various sources of errors

Labeling in a rush
Low-quality data, uncertainty
Challenging problems mammography
Difficult to hire experts

Subjective options, there is no consensus

Radiology:Artificial Intelligence

Just Accepted | Currentlissue | Allilssues | Collections ¥ | ForAuthors ¥ | CLAIM

Hurdles to Artificial Intelligence Deployment: Noise
in Schemas and “Gold” Labels

Mohamed Abdalla &, ““'Benjamin Fine




Various sources of errors

Labeling in a rush
Low-quality data, uncertainty
Challenging problems mammography
Difficult to hire experts

Subjective options, there is no consensus

Sensor noise

Data entry mistakes

No 100% accurate labels
Uncertainty is inevitable!

— noisy labels




Ultimate goal: reliable UQ under label noise

* Input: n noisy training points (Xl, 171), e (Xn, Yn) and a test point (Xiest, 7)
— exchangeable (e.g., i.i.d.) samples from unknown joint dist. P;;lsy

X € X : features

Y € Y :noisy label/response

Y €Y :ground-truth, clean label (unobserved)



Ultimate goal: reliable UQ under label noise

* Input: n noisy training points (Xl, 171), e (Xn, Yn) and a test point (Xiest, 7)

— exchangeable (e.g., i.i.d.) samples from unknown joint dist. P;;isy

X € X : features

Y € Y :noisy label/response

Y €Y :ground-truth, clean label (unobserved)

Wish to use any ML algorithm to construct a marginal distribution-free prediction set

IP’[Ytest € C“Oisy(Xtest)] >1—a (e.g., 90%)

a € (0,1) is a user-specified miscoverage rate

e Construct CM°1Y (X,.s¢) Using the observed noisy data

* Guarentee that clean Y,..: is covered in CnOiSy(Xtest)



Ultimate goal: reliable UQ under label noise

* Input: n noisy training points (Xl, 171), e (Xn, Yn) and a test point (Xiest, 7)

— exchangeable (e.g., i.i.d.) samples from unknown joint dist. P;;isy

X € X : features

Y € Y :noisy label/response

Y €Y :ground-truth, clean label (unobserved)

Wish to use any ML algorithm to construct a marginal distribution-free prediction set

IP’[Ytest € C“Oisy(Xtest)] >1—a (e.g., 90%)

a € (0,1) is a user-specified miscoverage rate

e Construct C1O1SY (X .st) using the observed noisy data how and under what
* Guarentee that clean Y;.q; is covered in C°SY (X o) conditions is it possible?



Conformal prediction: notations



Conformal prediction

* Input: pre-trained predictive model £, and holdout calibration set {(X;, Y;)},

* Process
— Compute non-conformity scores s; = s(X;,V;) foralli =1, ...,n
a measure of goodness-of-fit (the lower the better), e.g., s; = |f(Xl-) — Yl-|
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* Input: pre-trained predictive model £, and holdout calibration set {(X;, Y;)},

* Process
— Compute non-conformity scores s; = s(X;,V;) foralli =1, ...,n
a measure of goodness-of-fit (the lower the better), e.g., s; = |f(Xl-) — Yl-|

— Compute* §¢°a" = the (1 — a)-empirical quantile of {s;}1-,

A 90% quantile

Density

*missing a small correction term Non-conformity Score



Conformal prediction

* Input: pre-trained predictive model £, and holdout calibration set {(X;, Y;)},

* Process
— Compute non-conformity scores s; = s(X;,V;) foralli =1, ...,n
a measure of goodness-of-fit (the lower the better), e.g., s; = |f(Xl-) — Yl-|

— Compute* §¢°a" = the (1 — a)-empirical quantile of {s;}1-,
* Output: prediction set with 90% coverage 4 90% quantile

C(Xtest: q\clean) — {y €Y S(Xtest: y) < qclean}

Density

Sweep over all y € Y and return the guessed y’s

whose score falls below §¢'¢2"

*missing a small correction term Non-conformity Score



Another way to view conformal prediction

* Given a set constructing function

Clx,q) ={y€Y:s(x,y) <q}

e Find the §¢'°@" that achieves 90% coverage on the calibration set

Empirical coverage
on holdout data

100% -
95% -
90% -
85% -
80% -
75% A

—

1 1 I 1 1
03 04 0506 0.7 0.8 0.9
Calibration parameter g

1
Emp. Coverage*(q) = ~ i 1{Y; € C(Xy, )}z

*missing a small correction term



Conformal prediction is valid under exchangeability

Theorem (Vovk et al. ’99; Papadopoulos et al. ’12; Lei et al. ’18; R., Patterson, Candes ’19, ...)

If (X1,Y7), ..., (X}, Y,) and (Xiest, Yiest) are exchangeable (ori.i.d.). Then,

P[Viest € C9°*" (Xtest, 9°*")] 2 1 — @ (e.8., 90%)

* Finite sample, dist. free guarantee!
* There is also an upper bound (guarantee is tight)

* Exchangeability is the only assumption



Conformal in action: the Washington Post election night model

Technology is based on conformalized quantile regression [R., Patterson, Candes "19]

@he Washington Post

Democracy Dies in Darkness

PO StC O de Open positions

Don’t see the job you’re looking

for?
From The Washington Post Engineering team.

How The Washington Post Estimates Qutstanding
Votes for the 2020 Presidential Election

By Lenny Bronner, Jeremy Bowers and John Cherian
Oct. 22, 2020 at 6:14 p.m GMT+3




Pennsylvania

20 ELECTORAL VOTES

LIVE: Donald Trump (R) is leading. An estimated 78 percent of votes have been counted.

[ \\
- 7..l "
ATy B Biden
-y
"/ 43.0%
2,283,656

How much of the vote has been counted in
Pennsylvania?

The Post estimates 78% of votes cast have been counted here.

100%

78%

Polls closed (7 hours ago)

Now

B Trump

95.7%

2,956,791

U.S. House District 10

Perry 58.9%

DePasquale 41.1% I

An estimated 67% of votes have been counted

U.S. House District 17

Parnell 56.5%
Lamb 43.5%

An estimated 67% of votes have been counted

Pennsylvania has 18 U.S. House races. Jump to results

Note: Map colors on this page won't indicate a lead for a candidate until an estimated 35 percent of the vote has been reported there. Results updated at 2:50 a.m. ET

The Washington Post

4 November 2020, 11:50 PM



Pennsylvania

20 ELECTORAL VOTES

LIVE: Donald Trump (R) is leading. An estimated 78 percent of votes have been counted.

Where the vote could end up

These estimates are calculated based on past election returns as well as votes counted in the presidential race so far. View details

We estimate that 78 percent of the total votes cast have been counted.

Biden is favored to win the state, but TrumE still has a chance to win.
These are the most likely outcomes.

M countedvotes W W Estimates of final vote tally
Lighter colors are less likely outcomes

1M votes 2M
| |
& ] L
2> 2.3M votes
@ 3.0M

Core idea: use reported counties to
forecast unreported counties

The Washington Post

Breaking down the estimates

Urban counties
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« v I

Suburban counties
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Rural counties
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4 November 2020, 11:50 PM



Pennsylvania

20 ELECTORAL VOTES

LIVE: Joe Biden (D) is leading by 30,908 votes. An estimated 95 percent of votes have been counted.

M Biden

49.6%

3,339,318

How much of the vote has been counted in
Pennsylvania?

The Post estimates 95% of votes cast have been counted here.

100%. ..o

Polls closed (4 days ago)

B Trump

49.1%

3,308,410

U.S. House District 10

Perry v 53.4%
DePasquale 4607

An estimated 94% of votes have been counted

U.S. House District 17
Lamb 50.9% NG
Parnell ety

An estimated 94% of votes have been counted

Pennsylvania has 18 U.S. House races. Jump to results

Note: Map colors on this page won't indicate a lead for a candidate until an estimated 35 percent of the vote has been reported there. Results updated at 11:24 a.m. ET

The Washington Post

7 November 2020, 08:30 AM



Amazing software packages

Unit tests | passing codecov | 100% license [BSP-3-€Clause | python 3.7 | 3.8 | 3.9 | 3.10
pypi [v0.7.0 § conda-forge (v0.7.0 | release v0.7.0 §J commits since v0.7.0 2 | 10.48550/arXiv.2207.12274

MAP: E

MAPIE - Model Agnostic Prediction Interval
Estimator




Conformal in the cloud

aws

\\_/7

rexinvent Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events

Blog Home Category ~ Edition ~

AWS Machine Learning Blog

Introducing Fortuna: A library for uncertainty quantification

by Gianluca Detommaso, Alberto Gasparin, Cedric Archambeau, Michele Donini, Matthias Seeger, and Andrew Gordon
Wilson | on 16 DEC 2022 | in Amazon Machine Learning, Artificial Intelligence, Foundational (100) | Permalink | ¢

Comments | # Share

https://github.com/awslabs/fortuna



@ Fortuna's documentation Quickstart Installation Examples Usage modes API|References More ¥

Conformal prediction methods

We support conformal prediction methods for classification and regression.
For classification:

« A simple conformal prediction sets method [Vovk et al., 2005]

A simple conformal prediction method deriving a score function from the probability associated to the largest
class.

« An adaptive conformal prediction sets method [Romano et al., 2020]

A method for conformal prediction deriving a score function that makes use of the full vector of class
probabilities.

« Adaptive conformal inference [Gibbs et al., 2021]

A method for conformal prediction that aims at correcting the coverage of conformal prediction methods in a
sequential prediction framework (e.g. time series forecasting) when the distribution of the data shifts over time.

For regression:

« Conformalized quantile regression [Romano et al., 2019]

A conformal prediction method that takes in input a coverage interval and calibrates it.

« Conformal interval from scalar uncertainty measure [Angelopoulos et al., 2022]

A conformal prediction method that takes in input a scalar measure of uncertainty (e.g. the standard deviation)

and returns a conformal interval.

UQ methods we developed for image recovery tasks: Technion-Berkeley collaboration



Back to label noise...



Back to Label noise: what is the challenge?

Suppose we observe only the noisy labels

Y =g(Y,U) e.g., randomly flip the true label w.p. €

* g is a corruption function; U is random noise



Back to Label noise: what is the challenge?

Suppose we observe only the noisy labels

Y =g(Y,U) e.g., randomly flip the true label w.p. €
* gis a corruption function; U is random noise
Imagine we run conformal prediction on noisy data as if it is clean
C(x,q") ={y € Y : sKpest, ¥) < 3"}

EI‘HOiSY = (1 — a)-empirical quantile of {s(X;, 171 7-1_
i=1



Back to Label noise: what is the challenge?

Suppose we observe only the noisy labels

Y =g(Y,U) e.g., randomly flip the true label w.p. €
* gis a corruption function; U is random noise

Imagine we run conformal prediction on noisy data as if it is clean

C(x, ™) = {y € Y : s(Ktest, ¥) < 3"}

aniSY = (1 — a)-empirical quantile of {s(X;, 171 7-1_
i=1

—

* It achieves valid cov. on noisy P (iest € C(Xiest §"%Y)) 21— | ~ Problem:

. . . — distribution shift!
* Would it have valid cov. on clean? P (Ytest € C(Xtest q*nmsy)) >1—a clean _, pnoisy
XY

- PX,Y




Adversarial thinking about distribution shift
U

under-coverage

But is it really the case?

Let’s see some evidence on label noise robustness



Classification: CIFAR10H image data

e Task: classify the object in an image (K = 10 classes)
e Clean CIFAR10 :clean labels Y are the majority vote of = 50 annotators
* Noisy CIFAR10H : noisy labels Y are from a single annotator

* NNet classifier (resnet-18)

B clean
0.94 | mmm noisy
nominal

* True label: * True label:
Cat Car

()]
(o))
g0-92 * Noisy: * Noisy:
> -
S 0.90 |-----—-(ARNEE_ {Cat, Dog} {Car, Ship, Cat}
* Clean: * Clean:
0.88 {Cat) (Car)

» Exact coverage when calibrated on clean labels (not surprising)

* Conservative but valid coverage when calibrated on noisy labels



Regression: aesthetic visual analysis

e Data: pairs of images and their annotated aesthetic score, in a range of 1-10

Ranked as “high-quality” Ranked as “low-quality”
Aesthetic score =9 Aesthetic score = 2

Subjective options, uncertainty, ...



Regression: aesthetic visual analysis

e Data: pairs of images and their annotated aesthetic score, in a range of 1-10

* Task: predict the aesthetic score of a given image 96

O
AN

— Clean Y = average score of = 200 annotators —
noisy

B clean
————— nominal

— Noisy ¥ = average score of ® 10 annotators

Coverage
O
N

O
o

* NNet regressor (fine-tuned VGG-16 model)

88

* Training (= 35K images), calib. (= 8K), testing (= 8K) Residual magnitude - CQR
e Exact coverage when calibrated on clean >0
* Conservative coverage when calibrated on noisy %j:
* Noisy intervals are wider i 2:4
Residual magnitude CQR

Method



Empirical evidence: [abel noise = over-coverage

Let’s gain intuition: when and why this happens?



Contractive vs. dispersive noise

contractive noise dispersive noise
Clean scores _
A 90% quantile A 90% quantile
I [
f : > |
= I g [
C C
g [ 2 [
| |
| |
L, ] >
Non-conformity score Non-conformity score
scores on clean > scores on noisy scores on clean < scores on noisy

eg. Var(Y | X =x)>Var(V | X =x) eg. Var(Y | X =x)<Var(V [ X =x)



Contractive vs. dispersive noise

contractive noise dispersive noise

90% quantile
Clean scores

I
Noisy scores 4 90% quantile 4 90% q:iantile

1 1

> 1 | > I

5 1 | ‘»n I

g 1 | 3 |
- |
I |
11 l >

Non-conformity score Non-conformity score
scores on clean > scores on noisy scores on clean < scores on noisy
e.g. Var(Y | X = x) >Var(Y | X = x) e.g. Var(Y | X = x) <Var(Y | X = x)

Effect: under-coverage




Contractive vs. dispersive noise

contractive noise dispersive noise
90% quantile 90% quantile
Clean scores ! . ! _
Noisy scores 4 90% quantile 4 90% quantile
11 11
> 1 | > 11
5 1 | ‘»n 11
g I g I
1| 1
1| 11
' -1
Non-conformity score Non-conformity score
scores on clean > scores on noisy scores on clean < scores on noisy
e.g. Var(Y | X = x) >Var(Y | X = x) e.g. Var(Y | X = x) <Var(Y | X = x)

Effect: under-coverage Effect: over-coverage




Contractive vs. dispersive noise

contractive noise dispersive noise
] oL () Wy
— Noisy ?i? 132;“ 90% coverage g 122;’“
% 0 onh noisy ’ % 0
%t = = = = = = %t = = = = = —
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Qo 8% O 85%T on noisy

e 80%T : 3 80%} |

£ I S I

oo 75%1 oo 75%T
— —_—
0.3 0.40.50.6 0.7 0.8 0.9 03040506 0708 0.3
Calibration parameter q Calibration parameter q

scores on clean > scores on noisy scores on clean < scores on noisy

e.g. Var(Y | X = x) >Var(Y | X = x) e.g. Var(Y | X = x) <Var(Y | X = x)

Effect: under-coverage Effect: over-coverage




Contractive vs. dispersive noise

contractive noise dispersive noise

- ClI () o4 () ol
_ N(()eiin b 100% 90% coverage b 100%
Y g 95%T on noisy g 95%T
@) y (@)
0%t = = = = = = 90%F = = = = = —
CSU 859 i w LT)U 850, I 90% coverage
S) %T 8] %T :
2 30% 2 on noisy
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w 75%7T w 75%7T
— . . ——
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Calibration parameter q Calibration parameter q
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e.g. Var(Y | X = x) >Var(Y | X = x) e.g. Var(Y | X = x) <Var(Y | X = x)

Effect: under-coverage Effect: over-coverage




Contractive vs. dispersive noise
contractive noise dispersive noise

95% coverage

- ClI () o1 () ol
_ N(()eiin o 100% 90% coverage oo 100% on clean
Y § 95%T on noisy § By — = — — = .
@) y (@)
0%t = = = = = = 0% F = = = —
CSU 850, i w Lr—)c 850, I90% coverage
S) %T 8] %T :
2 30% 2 on noisy
S goud — — = % coverage ; S gonl |
c on clean c I
w o 75%T w 75%7T
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0.3 0.40.50.6 0.7 0.8 0.9 03040506 0708 0.3
Calibration parameter q Calibration parameter q
scores on clean > scores on noisy scores on clean < scores on noisy
e.g. Var(Y | X = x) >Var(Y | X = x) e.g. Var(Y | X = x) <Var(Y | X = x)

Effect: under-coverage Effect: over-coverage




Formally: validity under dispersive noise

Theorem

If P(s(Xtest Veest) < t) < P(s(Xtest Viest) < t) forall t, then
P|Viest € C™Y (Xes) | 2 1 — @
e See paper for upper bound

Visualizing the assumption
A

Challenge: when does this assumption hold?

Density

It’s a function of (1) the clean data dist., (2) the noise,
(3) the model performance, and (4) the score we use

Non-conformity score



Regression



The ideal, oracle case

* Imagine we know the true conditional dist. of the clean data

upper
guantile

lower(x) = 0.05-th cond. quantileof Y | X = x

upper(x) = 0.95-th cond. quantileof Y | X = x

lower
quantile

90% coverage by definition




The ideal, oracle case : noisy vs. clean

* Imagine we know the true conditional dist.

 What is the effect of noise? ¥ =Y + Z, the noise Z is symmetric around 0

4 4
Noisy
2 - upper 5. upper-
guantile quantile
0 > 0
2 Iower- > Noisy
quantile lower
quantile
_4 ) T T T T T _4 . : : , I
0 1 2 3 4 5 0 1 2 3 A
X X

The noisy interval contains the clean interval

higher coverage rate on clean



The ideal, oracle case : noisy vs. clean

* Imagine we know the true conditional dist.

 What is the effect of noise? ¥ =Y + Z, the noise Z is symmetric around 0

A Conditionalon X = x
Clean
' [ [
Noisy I I 95% coverage
=y I I on clean
-
) [ [
- ! !
90% coverage
oh noisy
—p-

The noisy interval contains the clean interval

higher coverage rate on clean



Conformalized quantile regression (CQR) [r,, patterson, Candes '19]

* Given a model that estimates the lower(x) and upper(x) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss [Koenker & Bassett '78]

lower(x), upper(x) = arg Hllbn 2iPay, (Yi — l(Xl-)) * Pay, (Yi — U(Xi))

—— Estimated lower & upper quantiles

40,(2)




Conformalized quantile regression (CQR) [r,, patterson, Candes '19]

* Given a model that estimates the lower(x) and upper(x) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss

* CQR interval function: C"°SY(x, q) = [lower(x) — g, upper(x) + q]

* Calibrate the threshold §"°'Y on the noisy calibration data

—— Estimated lower & upper quantiles

| <P

100% -
95% -
90% -

Emp. Coverage

85% 1
80% -
75% 1

0.7 0.750.80.85 09095 1.0

Noisy calibration parameter g



Conformalized quantile regression (CQR) [r,, patterson, Candes '19]

* Given a model that estimates the lower(x) and upper(x) cond. quantiles
e.g., quantile regression model fitted to minimize the pinball loss

* CQR interval function: C"°SY(x, q) = [lower(x) — g, upper(x) + q]

* Calibrate the threshold §"°'Y on the noisy calibration data

4

—— Calibrated lower & upper quantiles

100% -
95% -

90%

Emp. Coverage

85% 1
80% -
75% 1

90% on
noisy

0.7 0.750.80.85 0.9 095 1.0

Noisy calibration parameter g



CQR is robust to dispersive noise

Assumptions
(1) Y | X is symmetric & unimodal

(2) Z is symmetric around 0

* Calibrate the threshold §"°'Y on the noisy calibration data

4

—— Calibrated lower & upper quantiles

. “0' :r\ . " 0 ® S ‘v ‘; J \\-‘L‘\f ) : C —‘: ~_—~. ¥
> 0 e g B A e R O o3
Sy Doyt o 5 & 3 .

N \/\

Noisy intervals achieve higher
coverage rate on clean

0 1 2 3 4 5
X

Emp. Coverage

100% -

95% -
90% -
85% 1
80% -
75% A

95% on
clean

90% on
noisy

0.7 0.750.80.85 0.9 095 1.0

Noisy calibration parameter g



CQR is robust to dispersive noise

Suppose that Y | X is symmetric and unimodal. Suppose further that noisy Y =V + Z
where Z is symmetric around 0. If lower(x) < median(x) < upper(x), then

P|Viest € CY (Xes)| = 1 — @

N Conditionalon X = x
Clean

Noisy 96% coverage

on clean

Remark

Density

+ Weak assumption on the model
— Strong assumption on the data

90% coverage
on noisy




Relaxing the distributional assumption

We say that the density of Y | X = x is peaked inside the interval [qlower, unper] if
forallt = 0:

frix=x(@"PP" +t) < fyix=x(q"PP" —¢)
f YIX:x(qlower + t) > f YIX:x(qlower — t)

Conditionalon X = x

Clean | I

Density




General robustness proposition

Suppose that Y = Y + Z where Z is symmetric around 0. If the densityof Y | X = x is
peaked inside C"°"Y (Xiest), then
P|Viest € C™Y (Xes) | 2 1 — @

Conditionalon X = x

Clean | I

Remark

Density

+ Weaker assumptions on the data
— Stronger assumptions on the
model




Inclusion between results

General
Master Unimodal

D) regression D)
Theorem casult

result



Multi-class classification



The noise setting

e Multi-class classification with K classes

* Random flip corruption

Y=gﬂip(Y,U)={Y W.Pp 1—¢

Y’ otherwise

Y" is drawn uniformly from {1,2, ..., K’}

[Angluin & Laird '88; Aslam & Decatur '96; Ma et al. ‘18; Jenni & Favaro '18; Yuan et al. ‘18]



The ideal, oracle case

* Imagine we know the true conditional class probabilities of the clean data

my(x) =PV =y | X = x]

 How to construct a predictionsetforY | X ?

- o 90% coverage
Clean Ty £ £0% £ 0% on clean
o) o] |
(g0} (¢0)
o Q [
o o
o1 30% S 30% I
% 10% § 10% |
O 5% 9o O | 5% o9
1 2 3 4 5 1 2 3 | 4 5
Sorted class labels Sorted class labels

cideal(y, g = 0.9) = {1,2,3}



The ideal, oracle case: noisy vs. clean

* Imagine we know the true conditional class probabilities of the clean data

7,(x) =P[Y =y | X = x] P[Y =y |X = x]

* What is the effect of noise = label is flipped w.p. € ? 7, (x) = (1 — €)mr,,(x) + €=

> >
Cleanmy, £ |505 46% £ 150% 34%
Noisv 77 - -
oisy T, g g
S 30% 28% = 30% 22%
n & 10%10%5/
10%10% % 7% )
o 5% 5.5% 29%2.8% 5 2%5.2%
1 2 3 4 5 1 2 3 4 5
Sorted class labels Sorted class labels
Smaller noise € Higher noise €

K =10, =0.1,04



The ideal, oracle case: noisy vs. clean

* Imagine we know the true conditional class probabilities of the clean data

7,(x) =PV =y | X = x] P[Y =y |X = x]

* What is the effect of noise = label is flipped w.p. € ?  7,(x) = (1 — €)m,(x) + €=

K
= >
Cleanmy, £ |50y a6% N
Noisv 77 - -
oisy T, 3 :
S 30% 28% = 30% 22%
7 n 10%10%5/
10%10% % 7% )
o 5% 5.5% 29%2.8% 5 2%5.2%
1 2 3 4 5 1 2 3 4 5
Sorted class labels Sorted class labels

1. The noisy class probs. get closer to uniform as € increases
2. The orderings of the clean/noisy class probs. are identical



Oracle achieves conservative coverage on clean

» Constructing sets with threshold g™°Y = 0.9; run the procedure as if data is clean

0 0
Clean m,, 90% coverage 90% coverage

> .
.20 E s50% 46% on clean on noisy
Noisy 7, =& I I
o
S 30% 28% l I
: 10%10% 594 5 o |
o o127 5:5% 99, 2 8%

1 2 3 ] 4 5

k*,clean k*,noisy

Sorted class labels

Ideal clean set €193l (x) = {1,2,3}

Noisy set C018Y(x, q"°1Y = 0.9) = {1,2,3,4,5}

The noisy set contains
all the labels of the clean
U

higher coverage rate on clean



Oracle achieves conservative coverage on clean

» Constructing sets with threshold g™°Y = 0.9; run the procedure as if data is clean

90% coverage 90% coverage K
Cle_an 7;[3/ 2 S0% 469% on clean on noisy f*nO1SY = {mink : z T jy(x) = 0.9
Noisy 7, =& | I =
8 [ | . ,
S 30% 28% I I { ke
» o I ZT[ Hx) + e E—Zn(j)(x) > 0.9
S 10%’1045% 257 29 2.8% j=1 j=1
. . > % ,clean \ ' I
1 2 3| 4 5
J*.clean J*noisy \VO
Sorted class labels
el m The noisy set contains
Ideal clean set Cgje, (%) = {1,2,3} all the labels of the clean
Noisy set €™ (x, g™ = 0.9) = {1,2,34,5} b
higher coverage rate on clean




Conformal APS [R., Sesia, Candes ('20)]

* Given a classifier 7,,(x) that estimates the conditional class probabilities
e.g., output of the softmax layer of a NNet

« Calibrate the threshold §"°'Y on the noisy calibration data

100% +
: o 95%
> Calibrated g"°'>Y that C
= o : 0 : O 90%dm = = = = — =
5 48% achieves 90% on noisy 8 | 90% on
g I . 85% 4+ :
O ) : S | hoisy
o 32% £ 80%4 |
+ 8% I
L 5% | 3% 75% T I
! | | : | | | | |
1 2 3 4 5 0.7 0.750.80.85 0.90.95 1.0

Sorted class labels Noisy calibration parameter g



Conformal APS is robust to dispersive noise

* Given a classifier 7,,(x) that estimates the conditional class probabilities
e.g., output of the softmax layer of a NNet

« Calibrate the threshold §"°'Y on the noisy calibration data

» Assumption: the classifier ranks the classes in the same order as the oracle P(Y | X)

Est. probability

Achieves 95% on clean

Calibrated G™°IsY that

48%

32%

8%
5%

achieves 90% on noisy

3%

1 2 3 4

Sorted class labels

Emp. Coverage

100% -
95% -
90% -
85%
80% -
75%

95% on
clean

90% on
noisy

0.7 0.750.80.85 0.9 095 1.0

Noisy calibration parameter g



Robustness under dispersive noise

Assume a random flip noise model. If the classifier ranks the classes in the same order
as the oracle P( ¥ | X ), then

P|Viest € C™Y (Xes) | 2 1 — @

e See paper for upper bound

Achieves 95% on clean
1

z Calibrated g1°'sY that Remark

5 | 48% achieves 90% on noisy + Relatively weak assumptions on

0

@]

° 290 the data

2 8% — Strong assumptions on the classifier

3%

(correct rankings)

1 2 3 4

Sorted class labels



General noise setting

* The key requirement for general noise robustness (intuition):

the noise should (a) push the class probabilities closer to uniform while (b) preserving
the class-probability ordering forall x € X

* Formally, assume for alli,j € {1, ..., k}

(a) ‘P[Y=i|x=x]—% S‘IP’[Y=i|X=x]—%‘
(b) P[Y=ilX=x]<P[Y=jlX=x]eP[V=ilX=x]<P[V =j|X=x]

* Then,

P|Viest € C™Y (Xies)| = 1 — @



Inclusion between results

General

Master ST
D classification D

— = result
Theorem casylt

Random flip



Risk control: moving beyond the miscoverage loss



Multi-label classification

e X € X :animage
* Y €Y :clean labels, e.g., {car, dog, house}
* ¥ €Y :noisy labels, e.g., {truck, cat, house}

* Random-flip noise model

- Y1il, w.p. 1—c¢,
Pl =4 " p- =
1—-Yljl, otherwise
* Varying #objects across different images | Credit: DALL-E 2
* Highdim.Y

— want less stringent notion of error than miscoverage = 1[Ytest ¢ CnOiSy(Xtest)]



Conformal risk control: prediction sets with controlled risk

e Goal (multi-label class.): construct prediction sets with a controlled false negative rate

Loss

E | LN (Vies €™ (iest) )| < @ (e-g., 10%)

Risk

false negative proportion (FNP) loss:

1yl total # of labels

. N C1OISY ( # of lables covered
| FNP (y’Cnmsy(x)) —1— |y ( )l —1 \'



Conformal risk control: FNR for multi-label classification

* Given a classifier 7,,(x) that estimates the conditional class probabilities
* Set function: C™°SY(x,q) = {y : fiy(x) = 1—qj}
* Calibrate the threshold §"°'Y on the noisy calibration data

30% 4+
25% 1
20% +

15% 1

10% on noisy
10% 4= = = = = —

Est. probability
Emp. FNR risk

L R g e - 5%__

ANOi . ! ! | !
S gnoisy achieves 0.7 0.75 0.8 0.85 0.9 0.95 1.0

Class labels 10% FNR on noisy Noisy calibration parameter g

CnOiSY(x’ aniSy) = {1’2,3} MOnOtoniCity: d1 = d; = C(x; qZ) C C(.x, ql)



Conformal risk control: FNR for multi-label classification

* Given a classifier 7,,(x) that estimates the conditional class probabilities

» Set function: C"°"Y(x, q) = {y : £,(x) = 1 — q}

* Calibrate the threshold §"°'Y on the noisy calibration data

Est. probability

30%
Under what assumptions this holds? 25% -
20% -
15% -
10% -

Emp. FNR risk

e - e e e e . e e o e e o o 5% -

10% on noisy

_______ 5% on clean

12 3 4 5 gnoisy gehieves
Sorted class labels 10% FNR on noisy

' ! [ !
0.7 0.750.80.85 0.9 0.95 1.0

Noisy calibration parameter g

CnOiSY(x’ aniSy) = {1’2,3} MOnOtoniCity: d1 = d; = C(x; qZ) C C(.x, ql)



Conformal risk control is robust to label noise

Assume a random flip noise model. Assume also that
1. The classifier ranks the classes in the same order as the oracle IP>(17 =y | X = x)

2. The clean labels are conditionally independent: Y[i] L V[j]| | X = x for all pairs (i, j)

= E [L7NP (Yiese, €Y (Keest) )| < @

Remark

Robustness can be guaranteed even if
1. the noise does not have the same
magnitude across all l[abels
1 2 3 4 5 GnoIsy achieves 2. the labels are dependent

Class labels 10% FNR on noisy

Cnoisy(x,qnoisy) — {1’2,3}

Est. probability




Experiment: MS COCO image data [Linetal.'14]

* Task: classify the objects in an image (K = 80 classes)
e Clean COCO : clean Y are original labels

» Noisy COCO : we collected 117 noisy Y from single annotators (calibration set)

* NNet classifier (TResNet) [Ridnik et al. "20]

0.15
Y4
, . £ 0.10
* Exact control on noisy labels (not surprising) »
=
. L 0.05
 Valid control on clean labels
0.00

0.00 0.05 010 0.15
Nominal risk level



Conclusion, open questions, and uncovered topics



Takwaway: accurate model + dispersive noise = conservative coverage

Caution: there are cases where conformal would not obtain valid coverage (adv. noise)

Uncovered topics
* Segmentation problems

* Online, time-varying settings with drifting dist.
— adaptive conformal inference (coverage) [Gibbs & Candes 21,22]
rolling risk control (FNR risk) [Feldman et al. "22]

Next step?

— Design conformity scores that are robust to label noise

Thank you!



