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Université de Technologie de Compiègne, France
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Object detection

(Safety-critical) Object detection

Sub-task N°1: predict object categories, e.g., car, pedestrian.
Sub-task N°2: predict object locations, e.g., [(10, 15), (35, 75)].

Figure 1: Detecting pedestrians & vehicles.
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Object detection

Other (safety-critical) applications

Figure 2: Quality control.
Figure 3: Medical diagnosis.

Figure 4: Plant monitoring.

We need UQ because failure in these systems can result in catastrophes!

Bruce Cyusa Mukama (CNRS & UTC) (Smaller) bounding box prediction regions Milan, September 11, 2024 4 / 22



Object detection

Object detection (under the hood)

Object detectors are shipped without any rigorously calibrated UQ mechanism:

Figure 5: The typical architecture of object detectors [2].
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(Reliable) Conformal bounding boxes

Conformal bounding boxes

What are bounding box confidence regions?

true bbox

confidence region

outer box

inner box

Figure 6: A bounding box confidence region (bottom) and its inference pipeline (top).
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(Reliable) Conformal bounding boxes

Reliable bounding boxes

A formal definition of the problem:

the available data (boxes) → {(b̂i , bi )}ni=1 with bi = [x i , y i , x i , y i ],

the non-conformity scores → αi = |bi − b̂i | ∈ R4,

the desired confidence level → 1− ϵg ∈ (0, 1),

the conformal prediction region: Bϵi = [b̂i , b̂i ] ∈ R2×4,

the goal:

P(bn+1 ∈ Bϵn+1) ≥ 1− ϵg (1)

P(|xn+1 − x̂n+1| ≤ α1
s , . . . , |yn+1 − ŷn+1| ≤ α4

s ) ≥ 1− ϵg (2)

F (α1
s , . . . , α

4
s ) ≥ 1− ϵg (3)
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(Reliable) Conformal bounding boxes

Copula-based conformal bounding boxes

We can use copulas to deduce dimension-wise confidence levels {1− ϵd}4d=1 [5].

Sklar’s theorem [6]

Every joint c.d.f. is composed of (d) marginal c.d.f(s) and their dependency model
C : [0, 1]d → [0, 1], i.e., the copula [4].

Figure 7: An illustration of Sklar’s theorem, from [7].
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(Reliable) Conformal bounding boxes

Copula-based conformal bounding boxes

To achieve perfect calibration:

P(bi ∈ Bϵi ) = F (α1
s , . . . , α

4
s ) = 1− ϵg

C(F 1(α1
s ), . . . ,F

4(α4
s )) = C(1− ϵ1, . . . , 1− ϵ4) = 1− ϵg

(4)

We can solve (4) and compute dimension-wise quantiles:

[α1
s , . . . , α

4
s ] = [Q1((1− ϵ1)× (n + 1)/n), . . . ,Q4((1− ϵ4)× (n + 1)/n)] (5)

We define the prediction region’s bounds as follows:

b̂i ← [x̂ i + α1
s , ŷ i + α2

s , x̂ i − α3
s , ŷ i − α4

s ] (6)

b̂i ← [x̂ i − α1
s , ŷ i − α2

s , x̂ i + α3
s , ŷ i + α4

s ] (7)
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Experiments & results

Tested approaches

Preexisting approaches [1]:

Multiple hypothesis testing: ϵ1 = · · · = ϵ4 = ϵg/4,

Dimensionality reduction:

αi = max(|bi − b̂i |) ∈ R and α1
s = · · · = α4

s = Q((1− ϵg )× (n + 1)/n).

Our (copula) approaches:

Independent copula: Cπ(u
1, . . . , um) =

∏m
t=1 u

t ,

Gumbel copula:

CG (u
1, . . . , um) = exp

(∑m
t=1 (− ln ut)θ

) 1
θ ,

Empirical copula:

CE (u
1, . . . , um) = 1

n

∑n
i=1

∏m
t=1 1uti ≤ut .
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Experiments & results

Test results on synthetic data

Settings:

αi = |bi − b̂i | ∼ U(Ω) with Ω = [0, 2.8]× [0, 2.5]× [0, 8]× [0, 2.5]

Results:

Figure 8: Calibration. Figure 9: Regions’ volumes.

our approach is more robust to the disparity of ranges between the dimensions!
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Experiments & results

Test results on benchmarks

We also use popular (real-life) benchmarks:

Figure 10: An example from the KITTI
dataset [3].

Figure 11: An example from the BDD100K
dataset [8].

KITTI is smaller and was collected with a single platform (Germany),

BDD100K is larger and was collected with multiple platforms (USA).
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Experiments & results

Test results on benchmarks

Our approach yields smaller prediction regions:

Figure 12: Calibration on KITTI. Figure 13: Calibration on BDD100K.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 6.96e+09±5.47e+09 1.06e+10±1.34e+10 3.78e+09±3.56e+09 3.45e+09±3.76e+09 7.33e+08±1.02e+09
0.95 2.10e+07±2.10e+07 4.33e+05±2.88e+05 6.97e+06±9.28e+06 3.44e+06±4.07e+06 2.87e+05±1.85e+05
0.90 4.42e+05±4.99e+05 4.86e+04±1.64e+04 1.84e+05±1.24e+05 1.21e+05±6.99e+04 3.48e+04±1.11e+04
0.80 2.31e+04±1.01e+04 6.95e+03±1.31e+03 1.56e+04±5.45e+03 1.14e+04±3.30e+03 5.42e+03±7.63e+02

Table 1: Regions’ volumes on KITTI.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 1.59e+08±9.23e+06 1.73e+08±9.97e+06 1.51e+08±7.40e+06 1.41e+08±7.79e+06 1.41e+08±8.60e+06
0.95 9.11e+06±4.91e+05 6.44e+06±3.23e+05 8.29e+06±4.79e+05 7.49e+06±3.99e+05 6.22e+06±3.24e+05
0.90 1.62e+06±2.76e+04 9.84e+05±1.55e+03 1.36e+06±6.67e+03 1.21e+06±8.24e+01 8.88e+05±5.10e+03
0.80 2.46e+05±2.75e+02 1.40e+05±1.23e+03 1.93e+05±6.70e+01 1.73e+05±4.26e+01 1.27e+05±6.38e+02

Table 2: Regions’ volumes on BDD100K.
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Key takeaways

Key takeaways

Figure 14: Regions’ volumes.

Copula-based conformal object detection’s advantages:

robustness to the disparity of dimension ranges,

higher efficiency on popular benchmarks.

The limitations:

the guarantees only apply to detected objects,

the classification task is not (yet) addressed.

Future directions:

exploring vine & hierarchical copulas,

tracking moving objects.
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Key takeaways
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Key takeaways

Backup materials

Figure 15: Examples of object detection errors.
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Key takeaways

Backup materials

How to select a solution-tuple among many candidate confidence levels:

we can explicitly minimize confidence region sizes [9],

argmin
ϵ1,...,ϵ4

4∏
d=1

(
2× αd

s

)
s.t.

{
C(1− ϵ1, . . . , 1− ϵ4) ≥ 1− ϵ

ϵd ∈ (0, ϵd ]
(8)
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Key takeaways

Backup materials

Algorithm 1 The generic calibration procedure for box-wise SCP

Require: a global significance level ϵg , an object detector fθ, a dataset D
1: Split the dataset D in two subsets: Dtrain & Dcal = {(Xi ,Yi )}ni=1,
2: Fit or fine tune fθ on Dtrain,
3: Follow Algorithm 2 to compute bounding box dissimilarity scores {αi,j}ni=1,
4: Compute conformal quantiles {α1

s , α
2
s , α

3
s , α

4
s} from {αi,j}ni=1 and ϵg ,

5: For any new predicted box B̂n+1,j , infer an inner box B̂n+1,j and an outer box B̂n+1,j :

B̂ i,j = {x̂ i,j + α1
s , ŷ i,j

+ α2
s , x̂ i,j − α3

s , ŷ i,j − α4
s} (9)

B̂ i,j = {x̂ i,j − α1
s , ŷ i,j

− α2
s , x̂ i,j + α3

s , ŷ i,j + α4
s} (10)

6: Yield bounding box prediction regions I(B̂n+1,j)← [B̂n+1,j , B̂n+1,j ]
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Key takeaways

Backup materials

Algorithm 2 Computing bounding box dissimilarity scores

Require: a detection threshold ρth, an overlap threshold IoUth,
a trained object detector fθ, a calibration dataset Dcal.

1: for Xi ∈ Dcal do
2: Predict the bounding boxes: Ŷi = fθ(Xi ),
3: for Bi ,j ∈ Yi , B̂i ,j ∈ Ŷi do

4: if IoU(Bi ,j , B̂i ,j) ≥ IoUth and ρi ,j ≥ ρth then

5: Pair Bi ,j with B̂i ,j

6: end if
7: αi ,j ← {|x̂ i ,j − x i ,j |, |ŷ i ,j − y

i ,j
|, |x i ,j − x̂ i ,j |, |y i ,j − ŷ i ,j |}

8: end for
9: end for
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