

DATAI INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Conformal Stability Measure for Feature Selection Algorithms

2024 Conformal and Probabilistic Prediction with Applications 9th to 11th September - Milano, Italy

Marcos López-De-Castro (PhD student),

Alberto García-Galindo, Rubén Armañanzas

Outline

- [1. Motivation](#page-2-0)
- [2. The framework](#page-7-0)
- [3. The approach based on CP](#page-21-0)
- [4. Results](#page-30-0)
- [5. Conclusions, limitations and further work](#page-35-0)

[1. Motivation](#page-2-0)

- [2. The framework](#page-7-0)
- [3. The approach based on CP](#page-21-0)
- [4. Results](#page-30-0)
- [5. Conclusions, limitations and further work](#page-35-0)

• Why are we interested in Feature Selection?

• Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

• Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

Figure 1: Stability of Features. 4

• Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

Figure 2: Non-stability of Features. 5

[1. Motivation](#page-2-0)

- [3. The approach based on CP](#page-21-0)
- [4. Results](#page-30-0)
- [5. Conclusions, limitations and further work](#page-35-0)
- Ludmila I. Kuncheva. A stability index for feature selection. In Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, page 390–395, USA, 2007. ACTA Press.
- Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the stability of feature selection algorithms. Journal of Machine Learning Research, 18(174):1–54, 2018.

- Stability $\iff RV$.
- Estimator has 5 desirable properties:

- Stability $\iff RV$.
- Estimator has 5 desirable properties:
	- Fully defined
	- Strict monotonicity
	- Known bounds
	- Maximum stability if and only if the selection is deterministic
	- Correction for chance

- Stability $\iff RV$.
- Estimator has 5 desirable properties:
	- Fully defined
	- Strict monotonicity
	- Known bounds
	- Maximum stability if and only if the selection is deterministic
	- Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:

- Stability $\iff RV$.
- Estimator has 5 desirable properties:
	- Fully defined
	- Strict monotonicity
	- Known bounds
	- Maximum stability if and only if the selection is deterministic
	- Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:
	- No valid guarantees
	- Only empirical approaches asymptotically

- Stability $\iff RV$.
- Estimator has 5 desirable properties:
	- Fully defined
	- Strict monotonicity
	- Known bounds
	- Maximum stability if and only if the selection is deterministic
	- Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:
	- No valid guarantees
	- Only empirical approaches asymptotically
- Our Contribution:
	- Use Conformal Prediction (CP) to provide valid and non-asymptotic prediction intervals of stability.

- $\mathcal{D} = \{ (X, Y) \}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.

- $\mathcal{D} = \{ (X, Y) \}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.
- $\pi(D) = z$ where z is a binary string of length d,

 $z = (0, 1, 1, 0, 0, 1).$

- $\mathcal{D} = \{ (X, Y) \}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.
- $\pi(D) = z$ where z is a binary string of length d,

 $z = (0, 1, 1, 0, 0, 1).$

• If we take M bootstrap samples from $\mathcal{D} \to \mathsf{matrix} \ \mathcal{Z}$:

$$
\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}
$$

$$
\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}
$$

• 1st key assumption: We assume independence between the rows of matrix Z.

$$
\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}
$$

• 2nd key assumption: Under the 1st assumption, the columns of matrix Z are random variables following a Bernouilli distribution with mean parameters b_j .

The framework: Nogueira's estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

$$
\hat{\Phi}_N(\mathcal{Z}) = 1 - \frac{\frac{1}{d} \sum_{j=1}^d s_j^2}{\frac{\bar{k}}{d} \left(1 - \frac{\hat{k}}{d}\right)},\tag{1}
$$

where $s_j^2=\frac{M}{M-1}\hat{b}_j(1-\hat{b}_j)$, $\hat{b}_j=\frac{1}{M}\sum_{i=1}^M z_{ij}$, $\bar{k}=\frac{1}{M}\sum_{i=1}^M\sum_{j=1}^d z_{ij}$ and z_{ii} is the element i, j) of the matrix \mathcal{Z} .

The framework: Nogueira's estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

$$
\hat{\Phi}_N(\mathcal{Z}) = 1 - \frac{\frac{1}{d} \sum_{j=1}^d s_j^2}{\frac{k}{d} \left(1 - \frac{\hat{k}}{d}\right)},\tag{1}
$$

where $s_j^2=\frac{M}{M-1}\hat{b}_j(1-\hat{b}_j)$, $\hat{b}_j=\frac{1}{M}\sum_{i=1}^M z_{ij}$, $\bar{k}=\frac{1}{M}\sum_{i=1}^M\sum_{j=1}^d z_{ij}$ and z_{ii} is the element i, j) of the matrix \mathcal{Z} .

Definition $(\hat{\Phi}_{N}%)^{N}$ confidence interval)

A $(1-\alpha)$ -approximate confidence interval for $\hat{\Phi}_N$ is

$$
[\hat{\Phi} - z_{\left(1-\frac{\alpha}{2}\right)}^* \sqrt{\sigma_{\hat{\Phi}}}, \ \hat{\Phi} + z_{\left(1-\frac{\alpha}{2}\right)}^* \sqrt{\sigma_{\hat{\Phi}}}], \tag{2}
$$

where $z_{\left(1-\frac{\alpha}{2}\right)}^{*}$ is the inverse cumulative of a standard normal distribution at $1-\frac{\alpha}{2}$ and $\sqrt{\sigma_{\hat{\Phi}}}$ is an estimate of the variance.

- [1. Motivation](#page-2-0)
- [2. The framework](#page-7-0)
- [3. The approach based on CP](#page-21-0)
- [4. Results](#page-30-0)
- [5. Conclusions, limitations and further work](#page-35-0)

• Marginal coverage:

$$
\mathbb{P}(Y_{n+1}\in\mathcal{C}_{\alpha}(X_{n+1}))\geq 1-\alpha,\qquad \qquad (3)
$$

• We want

$$
\mathbb{P}(\Phi \in \mathcal{C}_{\alpha}(\mathcal{Z})) \ge 1 - \alpha. \tag{4}
$$

Subsampling of the matrix Z by rows. A set $\mathcal{R} = \{Z_1, ..., Z_c\}$ is generated. \mathcal{Z}_i is a $\kappa \times d$ binary matrix with $\kappa < M$.

- **Independence** between rows of \mathcal{Z} .
- Columns of Z follows $\mathcal{B}(b_i)$.

⇒

- **Independence** between rows of Z .
- Columns of Z follows $\mathcal{B}(b_i)$.

Compute stabilities of elements in R.

⇒ Indistinguishable.

 $\bullet \ \ \{\hat{\Phi}_\mathsf{N}(\mathcal{Z}_1), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_i), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_c)\} \leftarrow \mathsf{Bag} \ \mathsf{of} \ \mathsf{samples} \ \mathcal{R}$

 $\bullet \ \ \{\hat{\Phi}_\mathsf{N}(\mathcal{Z}_1), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_i), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_c)\} \leftarrow \mathsf{Bag} \ \mathsf{of} \ \mathsf{samples} \ \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
	- Define a point estimate $\hat{\theta}_z$ based on the bag.
	- Define $f()$: the distance between the point estimate and a sample.
	- Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$

 $\bullet \ \ \{\hat{\Phi}_\mathsf{N}(\mathcal{Z}_1), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_i), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_c)\} \leftarrow \mathsf{Bag} \ \mathsf{of} \ \mathsf{samples} \ \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
	- Define a point estimate $\hat{\theta}_z$ based on the bag.
	- Define $f()$: the distance between the point estimate and a sample.
	- Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$
- Compute Non-conformity Measures:

$$
\varphi_{z,i} = f(\hat{\theta}_z, \hat{\Phi}_N(\mathcal{Z}_i)) \quad \forall i \in \{1, \ldots, c\},
$$

$$
\varphi_{z,c+1} = f(\hat{\theta}_z, \hat{\Phi}_N(z))
$$

 $\bullet \ \ \{\hat{\Phi}_\mathsf{N}(\mathcal{Z}_1), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_i), \dots, \hat{\Phi}_\mathsf{N}(\mathcal{Z}_c)\} \leftarrow \mathsf{Bag} \ \mathsf{of} \ \mathsf{samples} \ \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
	- Define a point estimate $\hat{\theta}_z$ based on the bag.
	- Define $f()$: the distance between the point estimate and a sample.
	- Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$
- Compute Non-conformity Measures:

$$
\varphi_{z,i} = f(\hat{\theta}_z, \hat{\Phi}_N(\mathcal{Z}_i)) \quad \forall i \in \{1, \ldots, c\},
$$

$$
\varphi_{z,c+1} = f(\hat{\theta}_z, \hat{\Phi}_N(z))
$$

• Check Conformity:

$$
\mathcal{C}_{\alpha} \leftarrow \{ \hat{\Phi}_N(z)_j \in \mathcal{Z}_{trial} : p^j > \alpha \}
$$

- [1. Motivation](#page-2-0)
- [2. The framework](#page-7-0)
- [3. The approach based on CP](#page-21-0)

[4. Results](#page-30-0)

[5. Conclusions, limitations and further work](#page-35-0)

Design of experiments

- Tests: Artificial datasets codified as Z .
	- $M \times 100$ binary matrix $\mathcal Z$ with $M = m$, $\forall m \in \{5, ..., 10\}$.
	- Columns are drawn from $\mathcal{B}(b_i)$, with known b_j (so the true stability is known).
	- We performed 1000 independent simulations for each m.
	- 500 test values equally-spaced.

Design of experiments

- Tests: Artificial datasets codified as Z .
	- $M \times 100$ binary matrix $\mathcal Z$ with $M = m$, $\forall m \in \{5, ..., 10\}$.
	- Columns are drawn from $\mathcal{B}(b_i)$, with known b_i (so the true stability is known).
	- We performed 1000 independent simulations for each m.
	- 500 test values equally-spaced.
- Non-conformity score:

$$
\varphi_{z,i} = |\frac{\hat{\Phi}(\mathcal{Z}_i) - \mu_z}{\sigma_z}|,\tag{5}
$$

where μ_z, σ_z are the mean and the standard deviation of $\mathcal{R} \cup \{z\} - \{\hat{\Phi}(\mathcal{Z}_i)\}\$ and z is a trial value.

Some results

Figure 5: $1 - \alpha = 0.9$

Figure 6: $1 - \alpha = 0.7$

- [1. Motivation](#page-2-0)
- [2. The framework](#page-7-0)
- [3. The approach based on CP](#page-21-0)
- [4. Results](#page-30-0)
- [5. Conclusions, limitations and further work](#page-35-0)

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.

Conclusions, limitations and further work

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.

• Limitations:

- Improve efficiency when the number of samples available is low.
- May be computationally demanding (iterative sampling procedure).

Conclusions, limitations and further work

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.
- Limitations:
	- Improve efficiency when the number of samples available is low.
	- May be computationally demanding (iterative sampling procedure).

• Future work:

- Define better point estimators.
- New non-conformity functions.
- Operational versions of this work could be enhanced by adapting optimization methods from the full conformal methodology (Papadopoulos et al. , 2011; Cherubin et al., 2021).
- Extension to split CP?

Thanks for your attention!!

Acknowledgements

Gobierno **Not** Nafarroako de Navarra 3 Gobernua

European Commission

forizon 2020 European Union funding for Research & Innovation **#ERAPerMed**

DATA INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Contact: mlopezdecas@unav.es

DATAI INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Conformal Stability Measure for Feature Selection Algorithms

2024 Conformal and Probabilistic Prediction with Applications 9th to 11th September - Milano, Italy

Marcos López-De-Castro (PhD student),

Alberto García-Galindo, Rubén Armañanzas