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Motivation

• Why are we interested in Feature Selection?

→ Knowledge discovery.
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Figure 1: Stability of Features.
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Previous works on stability

• Ludmila I. Kuncheva. A stability index for feature selection. In

Proceedings of the 25th IASTED International Multi-Conference:

Artificial Intelligence and Applications, page 390–395, USA, 2007.

ACTA Press.

• Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the

stability of feature selection algorithms. Journal of Machine Learning

Research, 18(174):1–54, 2018.
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The framework

• Stability ⇐⇒ RV.

• Estimator has 5 desirable properties:

• Fully defined

• Strict monotonicity

• Known bounds

• Maximum stability if and only if the selection is deterministic

• Correction for chance

• Framework computes approximate Confidence Intervals (CI) for the

estimates:

• No valid guarantees

• Only empirical approaches asymptotically

• Our Contribution:

• Use Conformal Prediction (CP) to provide valid and non-asymptotic

prediction intervals of stability.
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The framework

• D = {(X ,Y )}, where X ∈ Rd .

• Let π(·) be a feature selection method.

• π(D) = z where z is a binary string of length d ,

z = (0, 1, 1, 0, 0, 1).

• If we take M bootstrap samples from D → matrix Z:

Z =


0 1 0 · · · 1

1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1


M×d
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The framework

Z =


0 1 0 · · · 1

1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1


M×d

• 1st key assumption: We assume independence between the rows

of matrix Z.
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The framework

Z =


0 1 0 · · · 1

1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1


M×d

• 2nd key assumption: Under the 1st assumption, the columns of

matrix Z are random variables following a Bernouilli distribution

with mean parameters bj .
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The framework: Nogueira’s estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

Φ̂N(Z) = 1−
1
d

∑d
j=1 s

2
j

k̄
d

(
1− k̂

d

) , (1)

where s2j = M
M−1 b̂j(1− b̂j), b̂j =

1
M

∑M
i=1 zij , k̄ = 1

M

∑M
i=1

∑d
j=1 zij and

zij is the element i , j) of the matrix Z.

Definition (Φ̂N confidence interval)

A (1− α)-approximate confidence interval for Φ̂N is

[Φ̂− z∗(1−α
2 )
√
σΦ̂ , Φ̂ + z∗(1−α

2 )
√
σΦ̂], (2)

where z∗
(1−α

2 )
is the inverse cumulative of a standard normal

distribution at 1− α
2 and

√
σΦ̂ is an estimate of the variance.
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The approach based on CP

• Marginal coverage:

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α, (3)

• We want

P(Φ ∈ Cα(Z)) ≥ 1− α. (4)
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The approach based on CP: Methodology

Z =


0 1 0 · · · 1

1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1


M×d

(
0 1 0

. . . 1

1 1 0 · · · 0

)
κ×d

, · · ·

(
1 0 0

. . . 0

0 0 1 · · · 1

)
κ×d

.

Subsampling of the matrix Z by rows.

A set R = {Z1, ...,Zc} is generated.
Zi is a κ× d binary matrix with κ < M.
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The approach based on CP: Methodology

Z =


0 1 0 · · · 1

1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1


M×d

(
0 1 0 · · · 1

1 1 0 · · · 0

)
, · · ·

(
1 0 0

. . . 0

0 0 1 · · · 1

)
.

• Independence

between rows of Z.
• Columns of Z follows

B(bj).

⇒ Compute stabilities of

elements in R.
⇒ Indistinguishable.
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The Approach Based on CP: Methodology

• {Φ̂N(Z1), . . . , Φ̂N(Zi ), . . . , Φ̂N(Zc)} ← Bag of samples R

Transductive CP Algorithm:

• Initialize:

• Define a point estimate θ̂z based on the bag.

• Define f (): the distance between the point estimate and a sample.

• Propose a set of trial values Φ̂N(z) ∈ Ztrial = {− 1
κ−1

, ..., 1}.

• Compute Non-conformity Measures:

φz,i = f (θ̂z , Φ̂N(Zi )) ∀i ∈ {1, . . . , c},
φz,c+1 = f (θ̂z , Φ̂N(z))

• Check Conformity:

Cα ← {Φ̂N(z)j ∈ Ztrial : p
j > α}
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Design of experiments

• Tests: Artificial datasets codified as Z.
• M × 100 binary matrix Z with M = m, ∀m ∈ {5, ..., 10}.
• Columns are drawn from B(bj), with known bj (so the true stability

is known).

• We performed 1000 independent simulations for each m.

• 500 test values equally-spaced.

• Non-conformity score:

φz,i = |
Φ̂(Zi )− µz

σz
|, (5)

where µz , σz are the mean and the standard deviation of

R∪ {z} − {Φ̂(Zi )} and z is a trial value.
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Some results
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Figure 3: M = 7
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Figure 4: M = 8
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Figure 5: 1− α = 0.9
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Figure 6: 1− α = 0.7
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Conclusions, limitations and further work

• Conclusions:

• Well-calibrated prediction intervals to estimate the stability of any

feature selection method.

• Prediction intervals achieves validity and efficiency converges to C.I.

• Limitations:

• Improve efficiency when the number of samples available is low.

• May be computationally demanding (iterative sampling procedure).

• Future work:

• Define better point estimators.

• New non-conformity functions.

• Operational versions of this work could be enhanced by adapting

optimization methods from the full conformal methodology

(Papadopoulos et al. , 2011; Cherubin et al., 2021).

• Extension to split CP?
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Marcos López-De-Castro (PhD student),
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