

DATAI INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Conformal Stability Measure for Feature Selection Algorithms

2024 Conformal and Probabilistic Prediction with Applications 9th to 11th September - Milano, Italy

Marcos López-De-Castro (PhD student),

Alberto García-Galindo, Rubén Armañanzas

Outline

- 1. Motivation
- 2. The framework
- 3. The approach based on CP
- 4. Results
- 5. Conclusions, limitations and further work

Outline

1. Motivation

- 2. The framework
- 3. The approach based on CP
- 4. Results
- 5. Conclusions, limitations and further work

• Why are we interested in Feature Selection?

 $\bullet\,$ Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

 $\bullet\,$ Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

Figure 1: Stability of Features.

 $\bullet\,$ Why are we interested in Feature Selection? \rightarrow Knowledge discovery.

Figure 2: Non-stability of Features.

1. Motivation

- 3. The approach based on CP
- 4. Results
- 5. Conclusions, limitations and further work

- Ludmila I. Kuncheva. A stability index for feature selection. In Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, page 390–395, USA, 2007. ACTA Press.
- Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the stability of feature selection algorithms. *Journal of Machine Learning Research*, 18(174):1–54, 2018.

- $\bullet \ {\sf Stability} \ \Longleftrightarrow \ {\sf RV}.$
- Estimator has 5 desirable properties:

- Stability \iff RV.
- Estimator has 5 desirable properties:
 - Fully defined
 - Strict monotonicity
 - Known bounds
 - · Maximum stability if and only if the selection is deterministic
 - Correction for chance

- Stability \iff RV.
- Estimator has 5 desirable properties:
 - Fully defined
 - Strict monotonicity
 - Known bounds
 - · Maximum stability if and only if the selection is deterministic
 - Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:

- Stability \iff RV.
- Estimator has 5 desirable properties:
 - Fully defined
 - Strict monotonicity
 - Known bounds
 - · Maximum stability if and only if the selection is deterministic
 - Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:
 - No valid guarantees
 - Only empirical approaches asymptotically

- Stability \iff RV.
- Estimator has 5 desirable properties:
 - Fully defined
 - Strict monotonicity
 - Known bounds
 - · Maximum stability if and only if the selection is deterministic
 - Correction for chance
- Framework computes approximate Confidence Intervals (CI) for the estimates:
 - No valid guarantees
 - Only empirical approaches asymptotically
- Our Contribution:
 - Use Conformal Prediction (CP) to provide valid and non-asymptotic prediction intervals of stability.

- $\mathcal{D} = \{(X, Y)\}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.

- $\mathcal{D} = \{(X, Y)\}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.
- $\pi(D) = z$ where z is a binary string of length d,

z = (0, 1, 1, 0, 0, 1).

- $\mathcal{D} = \{(X, Y)\}$, where $X \in \mathbb{R}^d$.
- Let $\pi(\cdot)$ be a feature selection method.
- $\pi(D) = z$ where z is a binary string of length d,

z = (0, 1, 1, 0, 0, 1).

• If we take M bootstrap samples from $\mathcal{D} o$ matrix \mathcal{Z} :

$$\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}$$

$$\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}$$

• 1st key assumption: We assume independence between the rows of matrix \mathcal{Z} .

$$\mathcal{Z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{M \times d}$$

2nd key assumption: Under the 1st assumption, the columns of matrix Z are random variables following a *Bernouilli distribution* with mean parameters b_i.

The framework: Nogueira's estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

$$\hat{\Phi}_{N}(\mathcal{Z}) = 1 - \frac{\frac{1}{d} \sum_{j=1}^{d} s_{j}^{2}}{\frac{\bar{k}}{d} \left(1 - \frac{\hat{k}}{d}\right)},\tag{1}$$

where $s_j^2 = \frac{M}{M-1}\hat{b}_j(1-\hat{b}_j)$, $\hat{b}_j = \frac{1}{M}\sum_{i=1}^M z_{ij}$, $\bar{k} = \frac{1}{M}\sum_{i=1}^M \sum_{j=1}^d z_{ij}$ and z_{ij} is the element i, j) of the matrix \mathcal{Z} .

The framework: Nogueira's estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

$$\hat{\Phi}_{N}(\mathcal{Z}) = 1 - \frac{\frac{1}{d} \sum_{j=1}^{d} s_{j}^{2}}{\frac{\tilde{k}}{d} \left(1 - \frac{\hat{k}}{d}\right)},\tag{1}$$

where $s_j^2 = \frac{M}{M-1}\hat{b}_j(1-\hat{b}_j)$, $\hat{b}_j = \frac{1}{M}\sum_{i=1}^M z_{ij}$, $\bar{k} = \frac{1}{M}\sum_{i=1}^M \sum_{j=1}^d z_{ij}$ and z_{ij} is the element i, j) of the matrix \mathcal{Z} .

Definition ($\hat{\Phi}_N$ confidence interval)

A $(1-\alpha)$ -approximate confidence interval for $\hat{\Phi}_N$ is

$$[\hat{\Phi} - z^*_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\sigma_{\hat{\Phi}}} , \ \hat{\Phi} + z^*_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\sigma_{\hat{\Phi}}}], \tag{2}$$

where $z^*_{\left(1-\frac{\alpha}{2}\right)}$ is the inverse cumulative of a standard normal distribution at $1-\frac{\alpha}{2}$ and $\sqrt{\sigma_{\hat{\Phi}}}$ is an estimate of the variance.

- 1. Motivation
- 2. The framework
- 3. The approach based on CP
- 4. Results
- 5. Conclusions, limitations and further work

• Marginal coverage:

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1})) \ge 1 - \alpha,$$
(3)

• We want

$$\mathbb{P}(\Phi \in \mathcal{C}_{\alpha}(\mathcal{Z})) \ge 1 - \alpha.$$
(4)

Subsampling of the matrix Z by rows. A set $\mathcal{R} = \{Z_1, ..., Z_c\}$ is generated. Z_i is a $\kappa \times d$ binary matrix with $\kappa < M$.

- Independence between rows of \mathcal{Z} .
- Columns of \mathcal{Z} follows $\mathcal{B}(b_j)$.

- Independence between rows of *Z*.
- Columns of \mathcal{Z} follows $\mathcal{B}(b_j)$.

Compute stabilities of elements in \mathcal{R} .

 \Rightarrow Indistinguishable.

• $\{\hat{\Phi}_N(\mathcal{Z}_1), \dots, \hat{\Phi}_N(\mathcal{Z}_i), \dots, \hat{\Phi}_N(\mathcal{Z}_c)\} \leftarrow \text{Bag of samples } \mathcal{R}$

• $\{\hat{\Phi}_N(\mathcal{Z}_1), \dots, \hat{\Phi}_N(\mathcal{Z}_i), \dots, \hat{\Phi}_N(\mathcal{Z}_c)\} \leftarrow \text{Bag of samples } \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
 - Define a point estimate $\hat{\theta}_z$ based on the bag.
 - Define f(): the distance between the point estimate and a sample.
 - Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$

• $\{\hat{\Phi}_N(\mathcal{Z}_1), \dots, \hat{\Phi}_N(\mathcal{Z}_i), \dots, \hat{\Phi}_N(\mathcal{Z}_c)\} \leftarrow \text{Bag of samples } \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
 - Define a point estimate $\hat{\theta}_z$ based on the bag.
 - Define f(): the distance between the point estimate and a sample.
 - Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$
- Compute Non-conformity Measures:

$$\begin{split} \varphi_{z,i} &= f(\hat{\theta}_z, \hat{\Phi}_N(\mathcal{Z}_i)) \quad \forall i \in \{1, \dots, c\},\\ \varphi_{z,c+1} &= f(\hat{\theta}_z, \hat{\Phi}_N(z)) \end{split}$$

• $\{\hat{\Phi}_N(\mathcal{Z}_1), \dots, \hat{\Phi}_N(\mathcal{Z}_i), \dots, \hat{\Phi}_N(\mathcal{Z}_c)\} \leftarrow \text{Bag of samples } \mathcal{R}$

Transductive CP Algorithm:

- Initialize:
 - Define a point estimate $\hat{\theta}_z$ based on the bag.
 - Define f(): the distance between the point estimate and a sample.
 - Propose a set of trial values $\hat{\Phi}_N(z) \in \mathcal{Z}_{trial} = \{-\frac{1}{\kappa-1}, ..., 1\}.$
- Compute Non-conformity Measures:

$$\begin{split} \varphi_{z,i} &= f(\hat{\theta}_z, \hat{\Phi}_N(\mathcal{Z}_i)) \quad \forall i \in \{1, \dots, c\}, \\ \varphi_{z,c+1} &= f(\hat{\theta}_z, \hat{\Phi}_N(z)) \end{split}$$

• Check Conformity:

$$\mathcal{C}_{\alpha} \leftarrow \{ \hat{\Phi}_{N}(z)_{j} \in \mathcal{Z}_{trial} : p^{j} > \alpha \}$$

- 1. Motivation
- 2. The framework
- 3. The approach based on CP

4. Results

5. Conclusions, limitations and further work

Design of experiments

- **Tests:** Artificial datasets codified as \mathcal{Z} .
 - $M \times 100$ binary matrix \mathcal{Z} with $M = m, \forall m \in \{5, ..., 10\}$.
 - Columns are drawn from $\mathcal{B}(b_j)$, with known b_j (so the true stability is known).
 - We performed 1000 independent simulations for each m.
 - 500 test values equally-spaced.

Design of experiments

- **Tests:** Artificial datasets codified as \mathcal{Z} .
 - $M \times 100$ binary matrix \mathcal{Z} with $M = m, \forall m \in \{5, ..., 10\}$.
 - Columns are drawn from $\mathcal{B}(b_j)$, with known b_j (so the true stability is known).
 - We performed 1000 independent simulations for each m.
 - 500 test values equally-spaced.
- Non-conformity score:

$$\varphi_{z,i} = |\frac{\hat{\Phi}(\mathcal{Z}_i) - \mu_z}{\sigma_z}|,\tag{5}$$

where μ_z, σ_z are the mean and the standard deviation of $\mathcal{R} \cup \{z\} - \{\hat{\Phi}(\mathcal{Z}_i)\}$ and z is a trial value.

Figure 3: M = 7

Figure 4: M = 8

Figure 5: $1 - \alpha = 0.9$

Figure 6: $1 - \alpha = 0.7$

- 1. Motivation
- 2. The framework
- 3. The approach based on CP
- 4. Results
- 5. Conclusions, limitations and further work

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.

Conclusions, limitations and further work

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.

• Limitations:

- Improve efficiency when the number of samples available is low.
- May be computationally demanding (iterative sampling procedure).

Conclusions, limitations and further work

• Conclusions:

- Well-calibrated prediction intervals to estimate the stability of any feature selection method.
- Prediction intervals achieves validity and efficiency converges to C.I.

• Limitations:

- Improve efficiency when the number of samples available is low.
- May be computationally demanding (iterative sampling procedure).

• Future work:

- Define better point estimators.
- New non-conformity functions.
- Operational versions of this work could be enhanced by adapting optimization methods from the full conformal methodology (Papadopoulos *et al.*, 2011; Cherubin *et al.*, 2021).
- Extension to split CP?

Acknowledgements

Gobierno 🙀 Nafarroako de Navarra 🐼 Gobernua

European Commission

Horizon 2020 European Union funding for Research & Innovatio **#ERAPerM**ed

DATAI INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Contact: *mlopezdecas@unav.es*

DATAI INSTITUTO DE CIENCIA DE LOS DATOS E INTELIGENCIA ARTIFICIAL

Conformal Stability Measure for Feature Selection Algorithms

2024 Conformal and Probabilistic Prediction with Applications 9th to 11th September - Milano, Italy

Marcos López-De-Castro (PhD student),

Alberto García-Galindo, Rubén Armañanzas