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2. The framework



Previous works on stability

e Ludmila I. Kuncheva. A stability index for feature selection. In
Proceedings of the 25th IASTED International Multi-Conference:
Artificial Intelligence and Applications, page 390-395, USA, 2007.
ACTA Press.

e Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the

stability of feature selection algorithms. Journal of Machine Learning
Research, 18(174):1-54, 2018.
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e Stability < RV.
e Estimator has 5 desirable properties:
e Fully defined
e Strict monotonicity
e Known bounds
e Maximum stability if and only if the selection is deterministic
e Correction for chance
e Framework computes approximate Confidence Intervals (Cl) for the
estimates:
e No valid guarantees
e Only empirical approaches asymptotically
e Our Contribution:

e Use Conformal Prediction (CP) to provide valid and non-asymptotic
prediction intervals of stability.
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The framework

D = {(X,Y)}, where X € R¥.

Let 7(+) be a feature selection method.

m(D) = z where z is a binary string of length d,
z=1(0,1,1,0,0,1).

If we take M bootstrap samples from D — matrix Z:
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The framework
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e 1Ist key assumption: We assume independence between the rows
of matrix Z.

10



The framework
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e 2nd key assumption: Under the 1st assumption, the columns of
matrix Z are random variables following a Bernouilli distribution
with mean parameters b;.
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The framework: Nogueira’s estimator

inition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

1yd o2
dy(2)=1- %, (1)
d (1 - 3)

2_ M _p PN R _ 1M T 1M d
where 57 = =3 bj(1 — b)), bj = 37 22i%1 2ipy k = 17 2iza 2= 25 and

zjj is the element i, j) of the matrix Z.
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The framework: Nogueira’s estimator

Definition (Stability estimator)

A stability estimator for feature selection algorithms is as follows:

d
. L 52

241
by(2) =1 5(1_5),

2 ML A r 1M L r 1M —d
where 57 = =3 bj(1 — b)), bj = 37 22i%1 2ipy k = 17 2iza 2= 25 and

zjj is the element i, j) of the matrix Z.

(1)

Definition (®y confidence interval)

A (1 — «)-approximate confidence interval for Sy is

[®—2(_4)v76. O+ 4y V78l (2

~—

where z*l_ is the inverse cumulative of a standard normal

&
2

distribution at 1 — 5 and /G is an estimate of the variance.



3. The approach based on CP
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The approach based on CP

e Marginal coverage:
P(Ynt1 € Ca(Xp1)) 21— a, 3)

e We want
P(® € Co(2)) >1—a. (4)
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The approach based on CP: Methodology

010 1

1 10 0
Z = .
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<o 10 " 1) (1 00 . o) .
110 - 0 001 - 1)

Subsampling of the matrix Z by rows.
Aset R ={Z24,..., Z.} is generated.
Zjis a k X d binary matrix with k < M.
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The approach based on CP: Methodology
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¢ Independence
between rows of Z.

e Columns of Z follows
B(bj).
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The approach based on CP: Methodology
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z= ,
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010 -1 100 . 0
110 --- 0/ 001 --- 1)

¢ Independence

iliti f ... .
between rows of Z. _  Compute stabilities of Indistinguishable.

e Columns of Z follows elements in .

B(b;).
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o {dy(21),...,Pn(Z),...,Pn(Z.)} + Bag of samples R
Transductive CP Algorithm:

o Initialize:
e Define a point estimate 6, based on the bag.
o Define f(): the distance between the point estimate and a sample.
e Propose a set of trial values ®y(2) € Zyia = {— 15, ..., 1}.

e Compute Non-conformity Measures:

0z = F(0,,®n(Z)) Vie{l,... c},
Pz,c+1 = f(ézv &>N(Z))

e Check Conformity:
Ca — {&DN(Z)J' € Zirial pj > Oé}
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4. Results
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Design of experiments

e Tests: Artificial datasets codified as Z.
e M x 100 binary matrix Z with M = m, Vm € {5,...,10}.
e Columns are drawn from B(b;), with known b; (so the true stability
is known).
e We performed 1000 independent simulations for each m.
e 500 test values equally-spaced.
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Design of experiments

e Tests: Artificial datasets codified as Z.
e M x 100 binary matrix Z with M = m, Vm € {5,...,10}.
e Columns are drawn from B(b;), with known b; (so the true stability
is known).
e We performed 1000 independent simulations for each m.
e 500 test values equally-spaced.

e Non-conformity score:

dA)(ZI) — Mz
peg = | 2Btz Q

where i, 0, are the mean and the standard deviation of
RU{z} — {®(Z)} and z is a trial value.
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Some results
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Figure 3: M =7 Figure 4: M =8

20



Some results
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Figure 6: 1 — o = 0.7
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5. Conclusions, limitations and further work
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Conclusions, limitations and further work

e Conclusions:
e Well-calibrated prediction intervals to estimate the stability of any

feature selection method.
e Prediction intervals achieves validity and efficiency converges to C.I.

e Limitations:
e Improve efficiency when the number of samples available is low.
e May be computationally demanding (iterative sampling procedure).

e Future work:

e Define better point estimators.

e New non-conformity functions.

e Operational versions of this work could be enhanced by adapting
optimization methods from the full conformal methodology
(Papadopoulos et al. , 2011; Cherubin et al., 2021).

e Extension to split CP?
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