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Conformal Prediction

Split Conformal Prediction

(Gammerman, Vovk and Vapnik (1998))
Data points Zi = (Xi ,Yi ), i = 1, . . . , n, with Xi ∈ X ,Yi ∈ Y

Model f̂ : X → Y

Example: f̂ predicts that Y is of class i ∈ {1, . . . ,K} when X = x is observed

Aim: For an observed Xn+1 obtain a (1 − α)-probability prediction set for a test
datapoint Zn+1 = (Xn+1,Yn+1)

On-line setting: Yi ’s are predicted successively, each one is revealed before the next one
is predicted.

Tool: (non-conformity) score function S : X × Y → R. The smaller, the better.
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Conformal Prediction

Example: classification

Suppose yi is a perhaps non-numerical label for xi . We observed “calibration data”
(xi .yi ), i = 1, . . . n and now we observe x .

Nearest-neighbour method:
find the xi which is closest to the observed x
use the label of xi as predicted label for y .

We could use as score

S(x , y) =
min{|xi − x | : 1 ≤ i ≤ n, yi = y}
min{|xi − x | : 1 ≤ i ≤ n, yi ̸= y}

comparing the distance of x to old objects with the same label to its distance to old
objects with a different label.
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Procedure
Intuition: predict y for which the corresponding score is “typical”.

Compute the score for each calibration data-point Si = S(Xi ,Yi ), take the order
statistics S(1) ≤ S(2) ≤ · · · ≤ S(n), set

q̂ = S(i) where i = ⌈(1 − α)(n + 1)⌉.

Use as the prediction set

Ĉn (Xn+1) = {y ∈ Y : S (Xn+1, y) ⩽ q̂} .

If the data are exchangeable then

1 − α ⩽ P
(
Yn+1 ∈ Ĉn (Xn+1)

)
= ⌈(1 − α)(n + 1)⌉(n + 1)−1 ⩽ 1 − α+ (n + 1)−1.
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Conformal Prediction

Equivalent: Estimate the prediction set boundary q̂ as

q̂ = Q1−α

( n∑
i=1

δSi + δ+∞

)
where δx is point mass at x and for a probability measure µ on R,

Q1−α(µ) = inf{x : µ((−∞, x ]) ≥ 1 − α}.

Extension to non-exchangeable situation: Barber et al. (2023)

Assumes that the data come from the same distribution.

What if not?
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Conformal Prediction

The Huber contamination model

Huber (1964, 1965)

Let ϵ ∈ [0, 1). Suppose that the calibration data are sampled i.i.d from a mixture model

Z̃i = (Xi ,Yi ) ∼ (1 − ϵ)π1 + ϵπ2,

where π1, π2 are two distribution functions over X × Y.

Then the scores S̃(Xi ,Yi ) are also distributed as a mixture,

S̃i = S̃(Xi ,Yi ) ∼ Π̃,

giving the standard i.i.d. setting, but for the contaminated distribution.
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Conformal Prediction

Split conformal prediction for the standard setting gives

P(S̃n+1 ⩽ q̃) ⩾ 1 − α for S̃n+1 ∼ Π̃

and q̃ the quantile for the mixture distribution.

Aim: a (1 − α)-probability prediction set for a “clean” test datapoint
Zn+1 = (Xn+1,Yn+1) ∼ π1
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Conformal Prediction

Theoretical guarantees

Recall: in the i.i.d. setting,

1 − α ⩽ P
(
Yn+1 ∈ Ĉn (Xn+1)

)
⩽ 1 − α+ (n + 1)−1.

Barber et al. (2023): In the Huber contamination model with
Z̃i = (Xi ,Yi ) ∼ (1 − ϵ)π1 + ϵπ2, and Zn+1 ∼ π1,

P
(
Yn+1 ∈ Ĉn (Xn+1)

)
⩾ 1 − α

1 − ϵ
.

They consider a slightly more general contamination model and relax the
exchangeability assumption.
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Theoretical guarantees continued

Sesia et al. (2024): Classification problem, K labels, i.i.d. observations, with latent
labels Yi and possibly contaminated observed labels Ỹi

Let nk = |{i ∈ 1, . . . , n : Ỹi = k}|, set Sk(i) = {S(Xi , k), i = 1, . . . , n},

q̂k = Sk(i) where i = ⌈(1 − α)(nk + 1)⌉

and
Ĉn,k (Xn+1) = {y ∈ Y : S (Xn+1, k) ⩽ q̂k} .

Then, for label-conditional coverage, if Yi = Ỹi almost surely,

P
(
Yn+1 ∈ Ĉn,k (Xn+1) |Yn+1 = k

)
⩾ 1 − α.
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Sesia et al. (2024):

Notation: conditional distribution functions

F k
ℓ (t) = P(S(X , k) ≤ t|Y = ℓ)

F̃ k
ℓ (t) = P(S(X , k) ≤ t|Ỹ = ℓ);

coverage inflation factor
∆k(t) = F k

k (t)− F̃ k
k (t)

Then
P
(
Yn+1 ∈ Ĉn,k (Xn+1) |Yn+1 = k

)
⩾ 1 − α+ E∆k(q̂k).

If all scores are distinct: matching upper bound with an additive factor (n + 1)−1.
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Conformal Prediction

Our theoretical guarantees

Notation: Π̃ = (1 − ϵ)Π1 + ϵΠ2 has cumulative distribution function (cdf)

F̃ = (1 − ϵ)F1 + ϵF2

where F1,F2 are cdfs over the scores computed from each mixture component.
Under the mixture model, when (Xn+1,Yn+1) ∼ π1, with P1 indicating this,

(1 − α)− ϵE[F2(q̃)− F1(q̃)] ⩽ P1

(
Yn+1 ∈ Ĉn(Xn+1)

)
⩽ (1 − α) +

1
n + 1

+ ϵE[F1(q̃)− F2(q̃)]

and E[F1(q̃)− F2(q̃)] can be replaced by the Kolmogorov distance dK (Π1,Π2).
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Example: Gaussian linear regression

Y = βTX + E ,

E ∼ (1 − ϵ)N (0, 1) + ϵN (0, σ2
2),

where β is known; use S(X ,Y ) = |Y − βTX |. Then with σ1 = 1,

Fi (x) = erf

(
x√
2σi

)
, x ⩾ 0.

for i = 1, 2.
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Coverage: P1

(
Yn+1 ∈ Ĉn(Xn+1)

)
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Gaussian Linear Regression Under Contamination

Left: vary the standard deviation of the corruption σ2 from 0 to 5, keeping ϵ = 0.2.
Right: vary the mixing proportion ϵ from 0 to 0.5, keeping σ2 = 3.0.
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Classification under label noise
K classes; Xi ∼ FX , and Yi ∼ FY |X ; Y denotes a true label and Ỹ an observed label.
We assume that
* labels are corrupted with probability ϵ ∈ (0, 1

2), independently of the conditional
distribution X |Y
* Pji = Pji (ϵ) = P(Y = j |Ỹ = i) gives an invertible matrix
* for all q ∈ R, i ∈ {1, . . . ,K},

max
c:c ̸=i

P(S(X , c) ⩽ q|Y = i) ⩽ P(S(X , i) ⩽ q|Y = i).

Proposition: [Over-coverage] Then

P1(Yn+1 ∈ Ĉn(Xn+1)) ⩾ 1 − α.
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Conformal Prediction

Example: Uniform noise

Assume that the corrupting noise chooses one of the K labels uniformly at random,
regardless of the true label, so that a corrupted label Y c follows the uniform
distribution on [K ] (this is a randomised response model).

Assume that the true label Y also follows the uniform distribution on [K ] (but in
contrast to Y c it contains a signal on X ). Then

P−1 =
1

1 − ϵ
I − ϵ

K (1 − ϵ)
11⊺

and the proposition applies (for suitable scoring functions).

Aim: Amend conformal prediction to reduce the over-coverage.
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Conformal Prediction

CRCP: Contamination Robust Conformal Prediction
Recall: F1 is the true cdf and F̃ is the observable cdf (with contamination).

Set g(q) := F1(q)− F̃ (q), and i = ⌈(1 − α)(n + 1)⌉. Then our proposition can be
rephrased as

P1(Yn+1 ∈ Ĉn(Xn+1)) ⩾ 1 − α+ E[g(S(i))].

Idea If we knew Eg(S(j)), j = 1, . . . , n, then we could instead take i = ic such that

ic = ⌈(1 − α− Eg(S(ic )))(n + 1)⌉

and q̃c = S(ic ). Then using q̃c instead of q̃,

P1(Yn+1 ∈ Ĉn(Xn+1)) = ⌈(1 − α− Eg(S(ic )))(n + 1)⌉(n + 1)−1 + E[g(S(ic ))] ⩾ 1 − α.
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Conformal Prediction

But...

we do not know Eg(S(j)), j = 1, . . . , n. Instead:

* estimate g(q) by ĝn(q),
* bound E[|g(S(i))− ĝn(S(i))|] ≤ C (n, ϵ);
* instead of ⌈(1 − α)(n + 1)⌉, take i = ic as

ic = ⌈(1 − α− ĝn(S(i)) + C (n, ϵ))(n + 1)⌉.

Then
P1(Yn+1 ∈ Ĉn(Xn+1)) ⩾ 1 − α+ E[g(S(i))− ĝn(S(i))]− C (n, ϵ).

We call this Contamination Robust Conformal Prediction (CRCP).
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Conformal Prediction

Theoretical guarantee:

Set w (1)
i = P−1

i ,i Pi − P̃i and w
(2)
ij = PiP

−1
ji , and b(n, j) = (1 − P̃j)

n +
√

π
nP̃j

. Then

E[|ĝ(S(i))− g(S(i))|] ⩽ C (n, ϵ) =
K∑
i=1

|w (1)
i |b(n, i) +

∑
i ̸=j

|w (2)
ij |b(n, j)

 .

Note: C (n, ϵ) → 0 when n → ∞.

Idea of the proof: Using that the corruption is independent of the clean distribution,
write F1(q) in terms of F̃ which in turn can be estimated from the data.

The Dvoretzky-Kiefer-Wolfowitz inequality is used to control this approximation.
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In detail: For F̃ (q; i , j) = P(S(X , i) ⩽ q|Ỹ = j) (and similar notion F1(q; i , j)) we have

F̃ (q, i , j) =
K∑

k=1

P(Y = k|Ỹ = j)P(S(X , i) ≤ q | Ỹ = j ,Y = k) =
K∑

k=1

PkjF1(q, i , k).

Thus, F1(q) = F̃ (q)P−1. We estimate F̃ (q, i , j) by its empirical version

F̃n(q, i , j) =

∑n
ℓ=1 1(S(Xℓ, i) ≤ q)1(yℓ = j)∑n

ℓ=1 1(yℓ = j)

and g(q) = F1(q)− F̃ (q) by

ĝn(q) =
K∑
i=1

K∑
j=1

(
PiP

−1
ji F̃n(q, i , j)−

K∑
i=1

P̃i F̃n(q, i , i)
)
.
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Selected experiments

CIFAR-10N (Wei et al, 2022):
60,000 images, 10 classes, 6000 images per class
50,000 training images, 10,000 test images
images labelled by independent workers

Clean: is CIFAR-10, noise rate 0%
Aggr: noise rate 9.03%
R2: noise rate 18.12%
Worst: noise rate 40.21%.

Aim: 90% coverage
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CP:

Coverage Size
Clean 0.900 ± 0.005 1.507 ± 0.019
Aggr 0.940 ± 0.003 2.003 ± 0.027
R2 0.977 ± 0.002 3.177 ± 0.066

Worst 0.990 ± 0.001 5.473 ± 0.078

CRCP:

Coverage Size
Clean 0.909 ± 0.005 1.507 ± 0.019
Aggr 0.899 ± 0.005 1.550 ± 0.019
R2 0.903 ± 0.006 1.658 ± 0.021

Worst 0.917 ± 0.009 2.189 ± 0.093
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Connection with adaptive conformal classification

Sesia et al. (2024) have a very similar procedure, which is a key ingredient in what they
call adaptive conformal classiication, for slightly different conformal prediction problems:

* label-conditional coverage
* marginal coverage
* calibration-conditional coverage.

They give very nice theoretical guarantees and also very nice extensive simulation
studies.

There are some differences in the assumption, but the key difference is in C (n, ϵ).
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Example: Uniform noise (randomised response model)

The corrupting noise chooses one of the K labels uniformly; the true labels are also
uniform. Then

C (n, ϵ) = 2
ϵ

(1 − ϵ)

(K − 1)
K

{(
1 − 1

K

)n

+

√
πK

n

}

whereas Sesia et al. (2024) get, with n∗ the smallest number of observations in a class,

c(n) + 2(K − 1)
ϵ

(1 − ϵ)

1
√
n∗

min

{
K 2

√
π

2
,

1
√
n∗

+

√
log(2K 2) + log(n∗)

2

}

where c(n) → 0 with n. So C (n, ϵ) tends to 0 faster with n.
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Discussion

CRCP coverage is close to the desired 90% whereas CP over-covers

The CRCP intervals are narrower than the CP intervals and hence more precise

Contamination can affect coverage and CRCP can ameliorate it.

Future:

Investigate repercussions with Sesia et al. (2024) more thoroughly.

Run on CIFAR-10H and compare to the adaptive conformal prediction methods from
Sesia et al. (2024)

CRCP for regression.
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