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Motivation

m Estimating the current value of a home is essential for
homeowners, banks, real estate agents, insurance companies,
investors, government, etc.

m Increasing use of automated valuation models (AVMs) instead of
manual appraisal

m Extremely noisy prediction problem — need to quantify
prediction uncertainty

m State-of-the-art: Tree-based models combined with temporal and
spatial smoothing
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Al in Property Valuation: The Most
Consequential Algorithms You've Never
Heard Of

Shutterstock

If we told you about an AI built on the latest foundation models that shapes muilti-trillion-dollar

markets and ‘walks’ through every home in the United States, would you say it was science fiction?

Well, let us introduce you to Automated Valuation Models, or AVMs, invented a century ago.

Article by researchers at at Brookings Institution and Georgetown University, published in Tech
Policy on 9th of October 2023.
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= THE WALL STREET JOURNAL: soun

BUSINESS

‘What Went Wrong With Zillow? A Real-Estate Algorithm

Derailed Its Big Bet

The company had staked its future growth on its digital home-flipping business, but getting the algorithm right proved difficult

Wall Street Journal article from 17th of November 2021.
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Quantifying Uncertainty in AVMs

m CP applied to the housing market previously:
m Bellotti 2017: Adjust for temporal drift (London, UK)
m Lim and Bellotti 2021: Design novel non-conformity scores for
AVMs (Ames, US)
m Hjort et al. 2024, preprint: Spatially-weighted CP (Oslo, Norway)
m Bastos and Paquette 2024, preprint: Conformalized QR
outperforms QR (San Francisco, US)
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Quantifying Uncertainty in AVMs

m CP applied to the housing market previously:
m Bellotti 2017: Adjust for temporal drift (London, UK)
m Lim and Bellotti 2021: Design novel non-conformity scores for
AVMs (Ames, US)
m Hjort et al. 2024, preprint: Spatially-weighted CP (Oslo, Norway)
m Bastos and Paquette 2024, preprint: Conformalized QR
outperforms QR (San Francisco, US)
m Our target: Approximately conditional coverage across
municipalities
m We study N = 84 975 transactions from K = 286 different
municipalities in Norway
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Conformal prediction
Indcutive conformal prediction approach:
m Split data set at random into training, calibration, test set
m Train a regression model f : X — Y on training set
m Calculate scores s; = V(Xj, Yi; ?) on calibration set
m On test set:

CioaXni1)={y €V: V(Xny1,yi1) < 1-a}

where §1_ is an empirical quantile of s1, ..., Sy, -
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Challenges

m Naive CP: Calculate g;_, once
Marginal validity guarantees
X In practice high coverage gap in some regions
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Challenges

m Naive CP: Calculate g;_, once
Marginal validity guarantees
X In practice high coverage gap in some regions

m Mondrian CP: Separate g;_ for each region
Theoretical guarantees on coverage per region
X Struggle in classes with few observations

m Spatially weighted CP: Separate §;_ for each observation
Some theoretical guarantees (Mao et al. 2023), and empirical
SUCCESS (Hjort et al. 2024, preprint)
X Fails if data is sparse
m Clustered CP: Cluster together similar regions, calculate §;_q
per cluster
Works well in classification (Ding et al. 2023)
X Small bias in coverage guarantees if clustering is poor
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Clustered CP

Algorithm:
m Use fraction y € (0, 1) of calibration data for clustering

m Cluster the ECDFs Fi, ..., Fx into M < K clusters, minimizing
within-cluster variance

m Let (“:71('1’2, be the (1 — a)th quantile of scores in cluster m
m Calibrate cluster-wise: for every observation in any class k in
cluster m we use &1(’2( to create the prediction interval
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Clustered CP

Algorithm:
m Use fraction y € (0, 1) of calibration data for clustering
m Cluster the ECDFs Fi, ..., Fx into M < K clusters, minimizing
within-cluster variance
m Let (“:71('1’2, be the (1 — a)th quantile of scores in cluster m
m Calibrate cluster-wise: for every observation in any class k in
cluster m we use &1(’2( to create the prediction interval

Theoretical properties: Let e, be the maximum Kolmogorov-Smirnov
distance between two classes in cluster m. Then,

P(YN+1 € C(Xny1)|class k) >1—oa—¢en VYkem.
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Clustered CP: Synthetic data
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ECDFs of K = 100 classes (in grey) and M = 10 clusters (in colors). Non-conformity scores in
class k is drawn from from N (uk, 2), with ug ~ U(0, 1, ..., 10).
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Clustered CP: Synthetic data

Mean Absolute Coverage Gap (MACG) as a function of the number of clusters.
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The data set

We study N = 84 975 from the Norwegian housing market in 2015.

Transactions come from K = 286 different municipalities; N, < 100 for

more than 167 municipalities and N > 1000 for 16 municipalities.

Variable Unit Mean St. Dev. Min Max Type
Sale Price NOK (mill.) 3.07 1.72 0.02 28.7 Numerical
Size m? 100 54 0 819 Numerical
Gross Size m? 112.42 67.48 0 1131 Numerical
Longitude degrees 9.82 2.90 479  30.47  Numerical
Latitude degrees 60.71 2.37 57.99 70.72 Numerical
Altitude m 101.69 136.49 0 1151 Numerical
Bedrooms - 2.56 1.20 0 15 Numerical
Municipality - - - - - Categorical
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Experimental setup

m Random split into training (25%), calibration (50%) and test
(25%)
m Three non-conformity scores:

Wop(X;, i) = | Vi — F(X)] (CP)
Y norm.cp(Xi, Vi) = Vi — 1(X)1/T(X) (Normalized CP)
Wear(X, Yi) = max{Qu/o(X) — Vi, Vi — Q1 _q/2(X)} (CQR)

= We use a random forest to train 7, and quantile regression forest
(Meinshausen 2006) for CQR
m Clustering:
m Experiment with cluster fractions y € (0.25,0.5,0.75).
m Discretize each ECDF, i.e., Fx ~ [ql,, 9k, - - - g,]. Solve by

M-means clustering in R®.
m If Ny < 10: Assign to NULL cluster, calibrate globally.
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Results
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Straight line: Global calibration with y» = 0 (CP). Dotted: Mondrian CP with
y = 0. Note that the range of MACG is different for the different non-conformity
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Results

CP CQR Normalized CP

An example of the identified clusters with the Clustered CP methodology for
M = 6 clusters. The grey municipalities either have no observations or are part
of the NULL cluster.
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Results
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The ECDF of the identified clusters with Clustered CP for M = 6, overlaying
the individual ECDFs for each municipality.
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Results
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Coverage gap for different bins of Ny for MCP, CP, and Clustered CP with
M = 10. The results are for confidence level o = 0.1 with a fraction y» = 0.5 set
aside for clustering in Clustered CP.
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Discussion

m Clustered CP is a pragmatic version of Mondrian CP where
similar classes are pooled together

m Induces a small coverage gap &, in theory which is reduced if
the clustering is good

m Clustering based on ECDFs outperforms clustering based on
spatial distance

m Open questions:

m How to decide the optimal number of clusters a priori?
m How to handle the imbalanced classes?
m Adjusting the CP intervals for temporal drift in the housing market
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Appendix: Synthetic data, details

Draw data from K = 100 different classes. Each class is drawn from a

normal N (uk,o?). Importantly: Some of the groups are drawn with
similar !

G~ UQ,...K)

ux ~ U(1,2, ..., VK)
S|G = k ~ N(u, 0?).
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Appendix: Results from Hjort et al. 2024
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The map shows the performance for different non-conformity measures (horizontally) and
weighting methods (vertically) on a data set of N = 26 362 observations from Oslo (2016-2017).
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