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Motivation
Estimating the current value of a home is essential for
homeowners, banks, real estate agents, insurance companies,
investors, government, etc.
Increasing use of automated valuation models (AVMs) instead of
manual appraisal
Extremely noisy prediction problem =⇒ need to quantify
prediction uncertainty
State-of-the-art: Tree-based models combined with temporal and
spatial smoothing
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Article by researchers at at Brookings Institution and Georgetown University, published in Tech
Policy on 9th of October 2023.
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Wall Street Journal article from 17th of November 2021.
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Quantifying Uncertainty in AVMs
CP applied to the housing market previously:

Bellotti 2017: Adjust for temporal drift (London, UK)
Lim and Bellotti 2021: Design novel non-conformity scores for
AVMs (Ames, US)
Hjort et al. 2024, preprint: Spatially-weighted CP (Oslo, Norway)
Bastos and Paquette 2024, preprint: Conformalized QR
outperforms QR (San Francisco, US)

Our target: Approximately conditional coverage across
municipalities
We study N = 84 975 transactions from K = 286 different
municipalities in Norway
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Conformal prediction
Indcutive conformal prediction approach:

Split data set at random into training, calibration, test set
Train a regression model f̂ : X 7→ Y on training set
Calculate scores si = Ψ(Xi ,Yi ; f̂ ) on calibration set
On test set:

C1−α(XN+1) = {y ∈ Y : Ψ(XN+1, y ; f̂ ) ≤ q̂1−α}

where q̂1−α is an empirical quantile of s1, ..., sNcalib .
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Challenges
Naïve CP: Calculate q̂1−α once
✓ Marginal validity guarantees
✗ In practice high coverage gap in some regions

Mondrian CP: Separate q̂1−α for each region
✓ Theoretical guarantees on coverage per region
✗ Struggle in classes with few observations
Spatially weighted CP: Separate q̂1−α for each observation
✓ Some theoretical guarantees (Mao et al. 2023), and empirical
success (Hjort et al. 2024, preprint)

✗ Fails if data is sparse
Clustered CP: Cluster together similar regions, calculate q̂1−α
per cluster
✓ Works well in classification (Ding et al. 2023)

✗ Small bias in coverage guarantees if clustering is poor
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Clustered CP
Algorithm:

Use fraction γ ∈ (0,1) of calibration data for clustering

Cluster the ECDFs F̂1, ..., F̂K into M < K clusters, minimizing
within-cluster variance
Let q̂(m)

1−α be the (1 − α)th quantile of scores in cluster m
Calibrate cluster-wise: for every observation in any class k in
cluster m we use q̂(m)

1−α to create the prediction interval

Theoretical properties: Let εm be the maximum Kolmogorov-Smirnov
distance between two classes in cluster m. Then,

P
(

YN+1 ∈ C(XN+1)|class k
)
≥ 1 − α− εm, ∀k ∈ m.
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Clustered CP: Synthetic data
s = 0.1 s = 1 s = 3
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ECDFs of K = 100 classes (in grey) and M = 10 clusters (in colors). Non-conformity scores in
class k is drawn from from N (μk ,σ2), with μk ∼ U(0, 1, ..., 10).
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The data set
We study N = 84 975 from the Norwegian housing market in 2015.
Transactions come from K = 286 different municipalities; Nk < 100 for
more than 167 municipalities and Nk > 1 000 for 16 municipalities.

Variable Unit Mean St. Dev. Min Max Type

Sale Price NOK (mill.) 3.07 1.72 0.02 28.7 Numerical
Size m2 100 54 0 819 Numerical
Gross Size m2 112.42 67.48 0 1131 Numerical
Longitude degrees 9.82 2.90 4.79 30.47 Numerical
Latitude degrees 60.71 2.37 57.99 70.72 Numerical
Altitude m 101.69 136.49 0 1151 Numerical
Bedrooms - 2.56 1.20 0 15 Numerical
Municipality - - - - - Categorical

Anders Hjort UQ in AVMs September 11, 2024 11 / 21



Experimental setup
Random split into training (25%), calibration (50%) and test
(25%)
Three non-conformity scores:

ΨCP(Xi ,Yi ) = |Yi − f̂ (Xi )| (CP)

ΨNorm.CP(Xi ,Yi ) = |Yi − f̂ (Xi )|/f̂ (Xi ) (Normalized CP)

ΨCQR(Xi ,Yi ) = max{Q̂α/2(Xi )− Yi ,Yi − Q̂1−α/2(Xi )} (CQR)

We use a random forest to train f̂ , and quantile regression forest
(Meinshausen 2006) for CQR
Clustering:

Experiment with cluster fractions γ ∈ (0.25,0.5,0.75).
Discretize each ECDF, i.e., F̂k ≈ [qk

10,q
k
20, . . . ,q

k
90]. Solve by

M-means clustering in R9.
If Nk < 10: Assign to NULL cluster, calibrate globally.
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Results
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C
P

C
Q

R
N

orm
alized C

P

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

8.5

9.0

9.5

10.0

8.6

8.8

9.0

9

12

15

18

21

Clusters

M
A

C
G

Clustered CP Spatial k-means

Straight line: Global calibration with γ = 0 (CP). Dotted: Mondrian CP with
γ = 0. Note that the range of MACG is different for the different non-conformity
scores.
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Results

CP CQR Normalized CP

An example of the identified clusters with the Clustered CP methodology for
M = 6 clusters. The grey municipalities either have no observations or are part
of the NULL cluster.
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Results
CP
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Results
CP CQR Normalized CP
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Coverage gap for different bins of Nk for MCP, CP, and Clustered CP with
M = 10. The results are for confidence level α = 0.1 with a fraction γ = 0.5 set
aside for clustering in Clustered CP.
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Discussion
Clustered CP is a pragmatic version of Mondrian CP where
similar classes are pooled together
Induces a small coverage gap εm in theory which is reduced if
the clustering is good
Clustering based on ECDFs outperforms clustering based on
spatial distance
Open questions:

How to decide the optimal number of clusters a priori?
How to handle the imbalanced classes?
Adjusting the CP intervals for temporal drift in the housing market
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Appendix: Synthetic data, details
Draw data from K = 100 different classes. Each class is drawn from a
normal N (μk ,σ2). Importantly: Some of the groups are drawn with
similar μk !

G ∼ U(1, ...,K )

μk ∼ U(1,2, ...,
√

K )

S|G = k ∼ N (μk ,σ2).

Anders Hjort UQ in AVMs September 11, 2024 20 / 21



Appendix: Results from Hjort et al. 2024
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The map shows the performance for different non-conformity measures (horizontally) and
weighting methods (vertically) on a data set of N = 26 362 observations from Oslo (2016-2017).
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