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Introduction
Multi-label Classification Problem

Multi-label classification is a problem category in which each instance can belong to multiple
classes simultaneously, resulting in the formation of label-sets.

Let C = {c1, ..., cd} denote the set of d individual classes, with each class indexed
corresponding to an element of C. A label-set ψ is a subset of C,

ψ ⊆ C.

Multi-label classification progress studies

Figure: (Bogatinovski et al. 2022): A summary of the number of papers from the SCOPUS database related
to the topic of Multi-label Classification. The vertical axis represents the number of conference and journal
papers related to the topic per year.
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Introduction
Multi-label Classification Problem

Paper (Wang et al. 2017) published in Proceedings of the IEEE conference

‘’Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases‘’

Data: comprises 108,948 frontal-view X-ray images of 32,717 unique patients
Citations: more than 4000
Funding:
- Research Programs of the NIH Clinical Center and National Library of Medicine
- GPU donation by NVIDIA Corporation
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Introduction
Multi-label Classification Problem

Multi-label classification techniques fall into two major categories (Tsoumakas and Katakis
2007):

• Algorithm Adaptation (AA) methods:
Modified versions of multi-class machine learning techniques for predicting sets of labels.

• Problem Transformation (PT) methods:
Such as:
- Binary Relevance (BR)
- Instant Reproduction (IR)
- Label Power-set (LP)

Differences LP-CP and other multi-label CP methods:
1 Calculation of nonconformity scores and p-values
2 Construction of prediction regions
3 Provided guarantee
4 Computational cost
5 Label dependencies and interactions
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Introduction
Inductive Conformal Prediction (ICP)

Example space symbolism
• Ψ denote a set of label-sets.
• X denote the feature space of which the inputs are represented as vectors of the form,

x⃗i = (xi1 , ..., xis ),

where X ∼= Rs and s is the number of attributes.
• Z denote example space,

Z =
{
(xi , ψi ) : xi ∈ X , ψi ∈ Ψ, i = 1, ..., n

}
,

Training set partitioning
• proper-training set {(x1, ψ1), ..., (xq , ψq)}, where q ≤ n.
• calibration set {(xq+1, ψq+1), ..., (xn, ψn)}.

Nonconformity measure of the calibration instances

A : Z → R with ai = A
({

(x1, ψ1), ..., (xq , ψq)
}
, (xi , ψi )

)
, i = q + 1, ..., n.

Nonconformity measure of the test instances
Let Yj denote every assumed label-set for a test instance xn+m.

a
Yj
n+m = A

({
(x1, ψ1), ..., (xq , ψq)

}
, (xn+m,Yj )

)
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Introduction
Inductive Conformal Prediction (ICP)

P-value p of each possible label Yj

p(Yj ) =

∣∣i = q + 1, ..., n : ai ≥ a
Yj
n+m

∣∣+ 1
n − q + 1

Prediction regions for every test instance xn+m

Γεxn+m =
{
Yj : p(Yj ) > ε

}
We sort the calibration scores in descending order and we denote the ordered calibration
scores as adesc

k , for k = 1, ..., n − q, where adesc
1 < ... < adesc

n−q .

Proposition:
For some value ε of the significance level , the minimum integer of which the inequality,∣∣∣∣{i = q + 1, ..., n : adesc

i ≥ adesc
kε

}∣∣∣∣ > ε(n − q + 1)− 1,

holds is,
kε = ⌊ε(n − q + 1)⌋.

Given kε, the prediction sets for each instance xn+m at the ε significance level are written in
the equivalent form,

Γεxn+m =
{
Yj : a

Yj
n+m ≤ adesc

kε

}
.
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Multi-label ICP using Mahalanobis measure
Multi-hot label representation

Let P(C) =
{
Yj : Yj ⊆ C

}
denote the power-set generated by all combinations of classes.

For every label-set Yj ∈ P(C), we construct a multi-hot vector y⃗j = (yj1 , ..., yjc , ..., yjd ) as
follows,

yjc =

{
0, if c /∈ Yj

1, if c ∈ Yj
, for every c ∈ C.

Thus, we create a bijection, σ : P(C) → Y , between the power-set P(C) and the formed
subspace Y ⊆ Rd of the vectors y⃗j .

Notes:
• The empty set in P(C) corresponds to the zero vector.
• The number of possible multi-hot vectors in Y equals the number 2d of possible

label-sets in P(C).
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Multi-label ICP using Mahalanobis measure
Error space

Denote o⃗ = o⃗(x) the predicted probabilities of classifier, for an instance x , where o ∈ Rd .

We define the linear transformation r : Rd × {o⃗(x)} → Rd with,

r(y⃗ , o⃗(x)) = |y⃗ − o⃗(x)|.

Definition
We define r⃗

yj
i =

(
ri1 , ..., rid

)
as the error vector for instance i related to label-set yj , such that

r⃗
yj
i = (|yj1 − oi1 |, ..., |yjd − oid |),

where o⃗i = (oi1 , ..., oid ), with oik ∈ [0, 1], k = 1, ..., d .

Notes:
• The error vectors constitute a subspace R of Rd .
• The linear map r is injective, and thus the label-space Y and the error space R are

isomorphic.
• The choice of defining error vectors in Euclidean vector space provides a connection

between the probabilistic outputs of the underlying classifier and the label-sets.
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Multi-label ICP using Mahalanobis measure
Distances nonconformity measures

Let y⃗j denote the true label for calibration instances and assumed label for the test instances.

Euclidean Distance (Norm) nonconformity measure
Maltoudoglou et al. 2022 define a nonconformity measure, for an instance i , using Euclidean
Distance as,

α
yj
i =

√
r2
i1
+ ...+ r2

id
.

Mahalanobis Distance nonconformity measure

Definition
Based on the Mahalanobis distance, we define the non-conformity measure of the error
vectors for a calibration instance i as,

α
yj
i =

√
(⃗r

yj
i )

T
Σ−1 r⃗

yj
i

where Σ−1 is the inverse covariance matrix which is estimated from error vectors of the
proper training data.

Note:
• The covariance matrix takes into account the correlation of the error vectors.
• The Mahalanobis distance is a transformation of the Euclidean distance achieved by

using the covariance matrix.
• Σ is symmetric and positive definite.
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Multi-label ICP using Mahalanobis measure
Algorithm

Algorithm: Multi-label ICP using Mahalanobis measure

Input:
• Classifier’ s predicted probabilities for proper-training data o⃗(xi ), i = 1, ..., q, for

calibration data o⃗(xi ) , i = q + 1, ..., n, for each test instance o⃗(xn+m).
• Label-sets of proper-training data t⃗i , i = 1, ..., q, of calibration data t⃗i , i = q + 1, ..., n.
• Required significance level ε.

Steps:
1 Preprocessing on proper-training data:

• Calculate the error vectors r⃗i = |o⃗i − t⃗i |, i = 1, ..., q.
• Form the covariance matrix Σ.

2 Preprocessing on calibration data:
• Calculate the error vectors r⃗i = |o⃗i − t⃗i |, i = q + 1, ..., n.
• Calculate the calibration nonconformity scores ai , i = q + 1, ..., n, using α

ti
i =

√
(⃗r ti

i )
T
Σ−1 r⃗ ti

i .
• Sort calibration scores in descending order adesc

k , k = 1, ..., n − q.
• Calculate kε using kε = ⌊ε(n − q + 1)⌋.

3 Calculate scores a
yj
n+m , for every possible label-set y⃗j ∈ Y , using αyj

i =

√
(⃗r

yj
i )

T
Σ−1 r⃗

yj
i .

Output:
Predicted set, Γεxn+m =

{
y⃗j ∈ Y : a

yj
n+m ≤ adesc

kε

}
.
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Experimentation
Datasets and Classifier Info

Emotions and Yeast datasets

Dataset Instances Attributes Labels Cardinality
Emotions 593 72 6 1.868
Yeast 2417 103 14 4.237

Multi-layer Perceptron (MLP) model
- multiple five fully connected layers
- activation function relu is defined in each layer
- the sigmoid activation function is defined for the probabilistic outputs
- early stopping is set up to avoid overfitting

Dataset partitioning

Proper train Validation Calibration Test
Emotions 354 81 99 59
Yeast 1293 327 555 242

Note:
Our experiments were performed following a 10-fold cross-validation process, which was
repeated 10 times. The results were calculated as the average over all folds and repetitions.
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Experimentation
Empirical coverage

(a) Mahalanobis coverage per level ε (b) Norm coverage per level ε

Figure 2: Mahalanobis and Norm coverage for Emotions dataset.

(a) Mahalanobis coverage per level ε (b) Norm coverage per level ε

Figure 3: Mahalanobis and Norm coverage for Yeast dataset.
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Experimentation
Forced prediction

Table 1: Emotions dataset - Performance metrics

MLP-classifier ICP-Mahalanobis ICP-Norm
Hamming loss 0.329 0.343 0.343
Accuracy 0.040 0.039 0.039
F1 Micro 0.226 0.246 0.246
F1 Macro 0.103 0.123 0.123
Average confidence - 0.080 0.067
Average credibility - 0.948 0.958

Table 2: Yeast dataset - Performance metrics

MLP-classifier ICP-Mahalanobis ICP-Norm
Hamming loss 0.198 0.200 0.200
Accuracy 0.186 0.158 0.158
F1 Micro 0.644 0.628 0.628
F1 Macro 0.380 0.336 0.336
Average confidence - 0.203 0.205
Average credibility - 0.851 0.822

Note: The performance results indicate that no substantial classification performance is
sacrificed by the use of ICP.
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Experimentation
Statistical efficiency

Table: Mahalanobis and Norm S-criterion comparison

Mahalanobis Norm
Emotions 547.005 560.869
Yeast 30922.511 81839.323

Figure: Mahalanobis and Norm N-Criterion - Graph comparison.
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Experimentation
Mean prediction region size

Table: Mean prediction region size as a percentage of the number of possible label-sets

Emotions dataset
Level Mahala (%) Norm (%)
0.01 77 83
0.05 62 70
0.10 53 59
0.20 42 47

Yeast dataset
Level Mahala (%) Norm (%)
0.01 17 42
0.05 6 21
0.10 3 12
0.20 1 5

Note:
- The number of possible label-sets is 64 and 16.384 for the Emotions and Yeast dataset,
respectively.
- In all cases, the Mahalanobis measure produces smaller regions with the values for the
Yeast dataset demonstrating an impressive reduction.
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Conclusions and future work

Conclusions
• The vectors in the error space are injectively mapped to the label-sets space, rendering

the conformal predictor associated with the Mahalanobis measure valid.
• The covariance matrix considers correlations between error vectors and thus results is

higher informational efficiency compared to the Euclidean distance nonconformity
measure.

• The prediction region sizes per significance level using the action of Mahalanobis
measure is significantly smaller than that of the Norm measure.

Future work
• Formulate the calculation of nonconformity scores based on the nonconformity score of

the predicted label-set.
• Develop an approach for efficiently calculating prediction regions (without calculating all

p-values)
• Further explore the application of Mahalanobis nonconformity measure.
• Examine the formulation of a more informative ways of presenting the outputs.
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