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INTRODUCTION.

- Beyond the common classification scenario, an interesting alternative in safety-critical and
high-risk applications is classification with reject option.

- Key idea: only a prediction is made when the model is confident enough.
- The central task lies in developing suitable rejection mechanisms.

- In this setting, achieving performance guarantees for different rejection rates becomes valuable in
decision-making.

. This paper extends previous works on classifiers with reject option and statistical guarantees
grounded on the conformal prediction framework.

Previously... This paper... Also at COPA24...

+ Binary classification + Multi-class classification . Regression with reject option &2

+ Accuracy and precision estimation « Accuracy and recall estimation
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h: X — A7 g: X —{0,1}
Input space </ S Probability simplex Input space </ S Binary rejection

arg max, 7; ifg(z) =1
reject if g(z) =0

(hn9)(e) = {

. Selective risk

/> Risk on the non-rejected samples

% 0.2

R(h g) — EW[K(}L(J;)? y)g(w)] % o1

’ Exlg(c)]
\> Predictive coverage: Rate of non-rejected samples > Cov:rsage "
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- Calibrated classifier - Platt scaling

1
1 _|_ ewg+7rjw1

Ply =c¢j|mj) =7 I@’(y:cj|7rj):

- Conformal classification (at a glance)

A S: X x )Y — Ris used to quantify the degree of strangeness of a new
sample z; compared to a set of (labelled) samples {zl, ceey zn}.
In practice, the strangeness of z; is quantified through the ability of a model learned on {z1, ..., 2, }

to precisely predict its true label.
In the inductive scheme, the non-conformity scores are computed on a hold-out

For a new sample xnew, we tentatively label it with each possible label ¢; and calculate a valid
p-value to evaluate the hypothesis that c; is the actual label Ynew -

These p-values are employed to create a such that Teet(znew) = {¢c; € YV |p; > a}.

This set predictor has : P(Ynew € Dset(Tnew)) =1 — ¢, a € [0,1]
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Since prediction sets are uncertainty estimates, can we use them
as a basis for a reject option?

How about reject everything, but singleton sets?

Conformal guarantees only _ We cannot make any claims about the
hold marginally - coverage of singleton predictions!

However...
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- We can still use the p-values to create, instead of a prediction set, a less typical output for a new
test sample, the confidence-credibility prediction: T'cc(Znew) = (f(@new)> A(@new), V(Znew))
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- We can still use the p-values to create, instead of a prediction set, a less typical output for a new
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- Forced prediction

P

f(z)

P2
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- We can still use the p-values to create, instead of a prediction set, a less typical output for a new
test sample, the : Fcc(xnew) = (f(xnew)a )\(ajnew)a ’Y(xnew))

- Confidence

Az)
-
Pa) P(2) P)
- The measure presents a suitable tool for the reject option setting: it is the
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idx lo 1 2 3 4 5 6 7 8 9
g o o 1 1 o0 1 o0 1 o0 1
confidence | 0.70 0.75 0.80 0.83 0.87 0.90 0.93 0.95 0.97 0.99

- We should approximately expect 70 % accuracy in the whole test set.

- If we reject the 2 most unconfident predictions, we should expect 80 % accuracy.

- And if we reject the 5 most unconfident predictions, we should expect 90 % accuracy.

- We can estimate the expected accuracy as we start rejecting samples without knowing the true classes.

- If Mondrian calibration is performed, we can estimate the expected per-class recall similarly.
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APPROACH. g: &= 10,1}

Input space & N\ Binary rejection
- Conformal selection function
1, if AM(z) > 0;
g}\(w) — I ( ) .— I
0, otherwise.
- In standard conformal prediction, 6 is reported as the expected accuracy in the non-rejected samples.

- In Mondrian conformal prediction, @ is reported as the expected recall in the non-rejected samples.

- Maximum score function

(z) = 1, if max;m; > 6, The average maximum posterior score of the non-rejected
I ~ 10, otherwise. samples is reported as the expected accuracy.

. Class score function

()_ 1, 7rj20; The average class-specific posterior score of the
Im\&) = 0, otherwise. non-rejected samples is reported as the expected recall.
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- Classification algorithms: and (with fixed hyperparameters).

- Rejection mechanisms:

Uncalibrated classifiers (

) ) Maximum score function (accuracy) and class score function (recall)
Platt-scaled classifiers ( )

Conformal-based rejection ( ) | Conformal function with standard (accuracy) and Mondrian (recall)

- Rejection rates: 7 € {0.1,0.2,...,0.9}
- Non-conformity measure = (y;, h(z;)) =1 — h(x;)y,,

- Testing protocol: 100x repeated hold-out, 75/25 % train-test split, 66/33 % proper train-calibration split
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EXPERIMENTAL SETUP.

Datasets

Dataset n p |V

Target class for each dataset

adult 49.531 10 3
beans 13,611 16 6
ocr 5,620 64 9
cars 1728 6 4
synthetic 1,000 8 3
glass 214 9 6

Class description Proportion
Income < $20K 0.399
Sira dry bean type 0.194
Digit nine 0.100
Car with an acceptable evaluation 0.222
Synthetic class (y = 1) ;338
Headlamp 0.136

Multi-class Classification with Reject Option and Performance Guarantees > Experimental setup

9/16



RESULTS (some of them).
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RESULTS (some of them).
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CONCLUSIONS.

- Conformal prediction can be used in a suitable way in the context of classification with reject
option to produce reliable performance estimates.

- In this study, we have extended previous research in the development of confidence classifiers
with reject option and covered multi-class classification.

- Our approach, tested in six datasets, consistently delivers reliable accuracy and recall estimates
with better results than off-the-shelf uncalibrated classifiers and Platt-scaled models.

- Some limitations on low-data regime scenarios, when only a few calibration samples are available
and statistical efficiency is sacrificed.
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