Multi-Class Classification With Reject Option and Performance Guarantees Using Conformal Prediction

Alberto García-Galindo^{1,2}, Marcos López-De-Castro^{1,2} and Rubén Armañanzas^{1,2}

¹Institute of Data Science and Artificial Intelligence (DATAI), Universidad de Navarra, Spain ²TECNUN School of Engineering, Universidad de Navarra, Spain

13th Symposium on Conformal and Probabilistic Prediction with Applications September 9-11, 2024

SUMMARY.

- 1 Introduction
- 2 Background
- **3** Approach
- **4** Experimental setup
- **5** Results
- **6** Conclusions

• Beyond the common classification scenario, an interesting alternative in safety-critical and high-risk applications is classification with reject option.

- Beyond the common classification scenario, an interesting alternative in safety-critical and high-risk applications is classification with reject option.
- Key idea: only a prediction is made when the model is confident enough.

- Beyond the common classification scenario, an interesting alternative in safety-critical and high-risk applications is classification with reject option.
- Key idea: only a prediction is made when the model is confident enough.
- The central task lies in developing suitable rejection mechanisms.

- Beyond the common classification scenario, an interesting alternative in safety-critical and high-risk applications is classification with reject option.
- Key idea: only a prediction is made when the model is confident enough.
- The central task lies in developing suitable rejection mechanisms.
- In this setting, achieving performance guarantees for different rejection rates becomes valuable in decision-making.

- Beyond the common classification scenario, an interesting alternative in safety-critical and high-risk applications is classification with reject option.
- Key idea: only a prediction is made when the model is confident enough.
- The central task lies in developing suitable rejection mechanisms.
- In this setting, achieving performance guarantees for different rejection rates becomes valuable in decision-making.
- This paper extends previous works on classifiers with reject option and statistical guarantees grounded on the conformal prediction framework.

Previously...

- Binary classification
- Accuracy and precision estimation

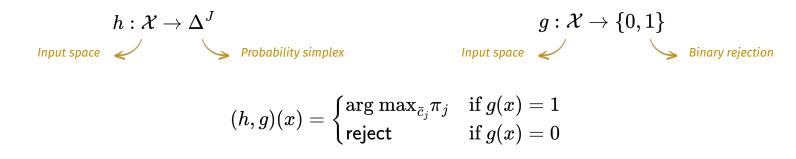
This paper...

- Multi-class classification
- Accuracy and recall estimation

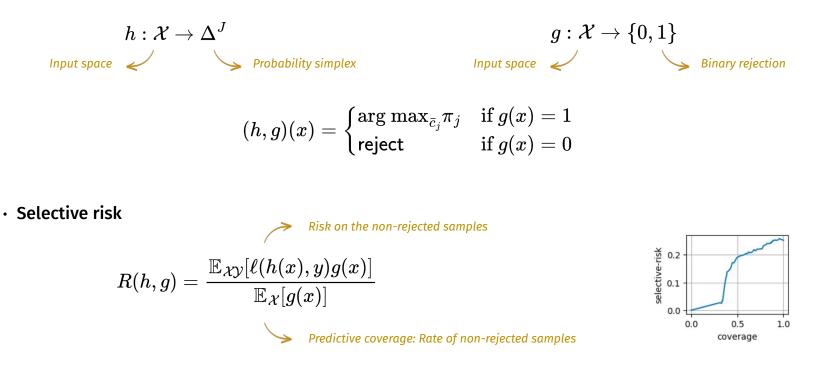
Also at COPA24...

Regression with reject option 😄

• Multi-class classifier with reject option



• Multi-class classifier with reject option



• Calibrated classifier

$$\mathbb{P}(y=c_j\,|\,\pi_j)=\pi_j$$

• Calibrated classifier

• Platt scaling

$$\hat{\mathbb{P}}(y=c_{j}\,|\,\pi_{j})=rac{1}{1+e^{w_{0}+\pi_{j}w_{1}}}$$

 $\mathbb{P}(y=c_j\,|\,\pi_j)=\pi_j$

Calibrated classifier

• Platt scaling

$$\hat{\mathbb{P}}(y=c_{j}\,|\,\pi_{j})=\pi_{j} \qquad \qquad \hat{\mathbb{P}}(y=c_{j}\,|\,\pi_{j})=rac{1}{1+e^{w_{0}+\pi_{j}w_{2}}}$$

• **Conformal classification** (at a glance)

 $\mathbb{P}($

A non-conformity function $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is used to quantify the degree of strangeness of a new sample z_i compared to a set of (labelled) samples $\{z_1, \ldots, z_n\}$.

In practice, the strangeness of z_i is quantified through the ability of a model learned on $\{z_1, \ldots, z_n\}$ to precisely predict its true label.

In the inductive scheme, the non-conformity scores are computed on a hold-out calibration dataset.

For a new sample x_{new} , we tentatively label it with each possible label \bar{c}_j and calculate a valid p-value to evaluate the hypothesis that \bar{c}_j is the actual label y_{new} .

These *p*-values are employed to create a set predictor such that $\Gamma_{set}(x_{new}) = \{c_j \in \mathcal{Y} \mid p_j > \alpha\}$. This set predictor has coverage guarantees: $\mathbb{P}(y_{new} \in \Gamma_{set}(x_{new})) = 1 - \alpha, \ \alpha \in [0, 1]$

Since prediction sets are uncertainty estimates, can we use them as a basis for a reject option?

Since prediction sets are uncertainty estimates, can we use them as a basis for a reject option?

How about reject everything, but singleton sets?

Since prediction sets are uncertainty estimates, can we use them as a basis for a reject option?

How about reject everything, but singleton sets?

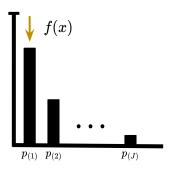
Conformal guarantees only ______ hold marginally We cannot make any claims about the coverage of singleton predictions!

However...

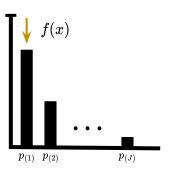
Multi-class Classification with Reject Option and Performance Guarantees > Approach

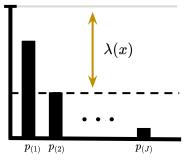
• We can still use the *p*-values to create, instead of a prediction set, a less typical output for a new test sample, the confidence-credibility prediction: $\Gamma_{cc}(x_{new}) = (f(x_{new}), \lambda(x_{new}), \gamma(x_{new}))$

- We can still use the *p*-values to create, instead of a prediction set, a less typical output for a new test sample, the confidence-credibility prediction: $\Gamma_{cc}(x_{new}) = (f(x_{new}), \lambda(x_{new}), \gamma(x_{new}))$
 - Forced prediction

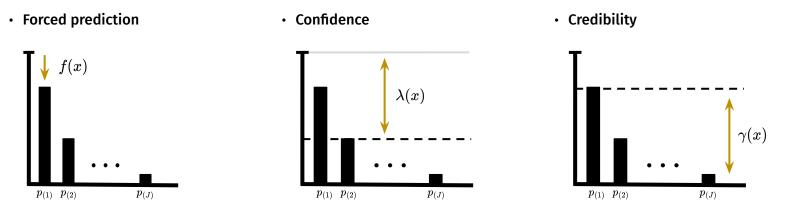


- We can still use the *p*-values to create, instead of a prediction set, a less typical output for a new test sample, the confidence-credibility prediction: $\Gamma_{cc}(x_{new}) = (f(x_{new}), \lambda(x_{new}), \gamma(x_{new}))$
 - Forced prediction

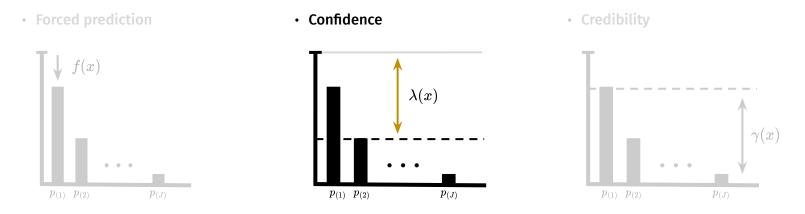




• We can still use the *p*-values to create, instead of a prediction set, a less typical output for a new test sample, the confidence-credibility prediction: $\Gamma_{cc}(x_{new}) = (f(x_{new}), \lambda(x_{new}), \gamma(x_{new}))$



• We can still use the *p*-values to create, instead of a prediction set, a less typical output for a new test sample, the confidence-credibility prediction: $\Gamma_{cc}(x_{new}) = (f(x_{new}), \lambda(x_{new}), \gamma(x_{new}))$



• The confidence measure presents a suitable tool for the reject option setting: it is the highest significance level where we get a singleton prediction.

idx	0	1	2	3	4	5	6	7	8	9
\hat{y}			1							1
confidence	0.70	0.75	0.80	0.83	0.87	0.90	0.93	0.95	0.97	0.99

• Imagine a synthetic case that we have 10 test samples with the following sorted confidence measures:

idx	0	1	2	3	4	5	6	7	8	9
\hat{y}	0	0	1	1	0	1	0	1	0	1
confidence	0.70	0.75	0.80	0.83	0.87	0.90	0.93	0.95	0.97	0.99

• We should approximately expect 70 % accuracy in the whole test set.

idx	0	1	2	3	4	5	6	7	8	9
\hat{y}	0	0	1	1	0	1	0	1	0	1
confidence	0.70	0.75	0.80	0.83	0.87	0.90	0.93	0.95	0.97	0.99

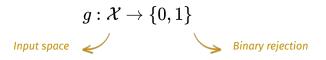
- We should approximately expect 70 % accuracy in the whole test set.
- If we reject the 2 most unconfident predictions, we should expect 80 % accuracy.

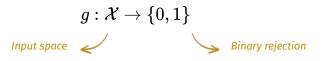
idx	0	1	2	3	4	5	6	7	8	9
\hat{y}	0	0	1	1	0	1	0	1	0	1
confidence	0.70	0.75	0.80	0.83	0.87	0.90	0.93	0.95	0.97	0.99

- We should approximately expect 70 % accuracy in the whole test set.
- If we reject the 2 most unconfident predictions, we should expect 80 % accuracy.
- And if we reject the 5 most unconfident predictions, we should expect 90 % accuracy.

idx	0	1	2	3	4	5	6	7	8	9
\hat{y}	0	0	1	1	0	1	0	1	0	1
confidence	0.70	0.75	0.80	0.83	0.87	0.90	0.93	0.95	0.97	0.99

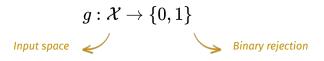
- We should approximately expect 70 % accuracy in the whole test set.
- If we reject the 2 most unconfident predictions, we should expect 80 % accuracy.
- And if we reject the 5 most unconfident predictions, we should expect 90 % accuracy.
- We can estimate the expected accuracy as we start rejecting samples without knowing the true classes.
- If Mondrian calibration is performed, we can estimate the expected per-class recall similarly.





• Conformal selection function

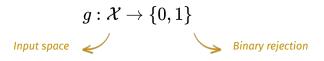
$$g_\lambda(x) = egin{cases} 1, & ext{if } \lambda(x) \geq heta; \ 0, & ext{otherwise.} \end{cases}$$



 \cdot Conformal selection function

$$g_\lambda(x) = egin{cases} 1, & ext{if } \lambda(x) \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

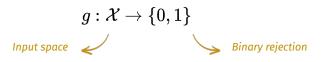
• In standard conformal prediction, θ is reported as the expected accuracy in the non-rejected samples.



 \cdot Conformal selection function

$$g_\lambda(x) = egin{cases} 1, & ext{if } \lambda(x) \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

- In standard conformal prediction, θ is reported as the expected accuracy in the non-rejected samples.
- In Mondrian conformal prediction, θ is reported as the expected recall in the non-rejected samples.



 \cdot Conformal selection function

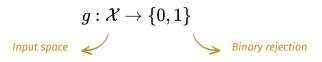
$$g_\lambda(x) = egin{cases} 1, & ext{if } \lambda(x) \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

- In standard conformal prediction, θ is reported as the expected accuracy in the non-rejected samples.
- In Mondrian conformal prediction, θ is reported as the expected recall in the non-rejected samples.

• Maximum score function

$$g_{\pi}(x) = egin{cases} 1, & ext{if } \max_j \pi_j \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

The average maximum posterior score of the non-rejected samples is reported as the expected accuracy.



 \cdot Conformal selection function

$$g_\lambda(x) = egin{cases} 1, & ext{if } \lambda(x) \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

- In standard conformal prediction, θ is reported as the expected accuracy in the non-rejected samples.
- In Mondrian conformal prediction, θ is reported as the expected recall in the non-rejected samples.

• Maximum score function

$$g_\pi(x) = egin{cases} 1, & ext{if } \max_j \pi_j \geq heta; \ 0, & ext{otherwise.} \end{cases}$$

The average maximum posterior score of the non-rejected samples is reported as the expected accuracy.

• Class score function

$$g_{\pi}(x) = egin{cases} 1, & \pi_j \geq heta; \ 0, & ext{otherwise}. \end{cases}$$

The average class-specific posterior score of the non-rejected samples is reported as the expected recall.

EXPERIMENTAL SETUP.

- **Classification algorithms:** decision tree and random forest (with fixed hyperparameters).
- Rejection mechanisms:

Uncalibrated classifiers (Uncal). Maximum score function (accuracy) and class score function (recall) Platt-scaled classifiers (Platt).

Conformal-based rejection (Conf) Conformal function with standard (accuracy) and Mondrian (recall)

- Rejection rates: $au \in \{0.1, 0.2, \dots, 0.9\}$
- Non-conformity measure $\Xi(y_i, h(x_i)) = 1 h(x_i)_{y_i}$
- **Testing protocol**: 100x repeated hold-out, 75/25 % train-test split, 66/33 % proper train-calibration split

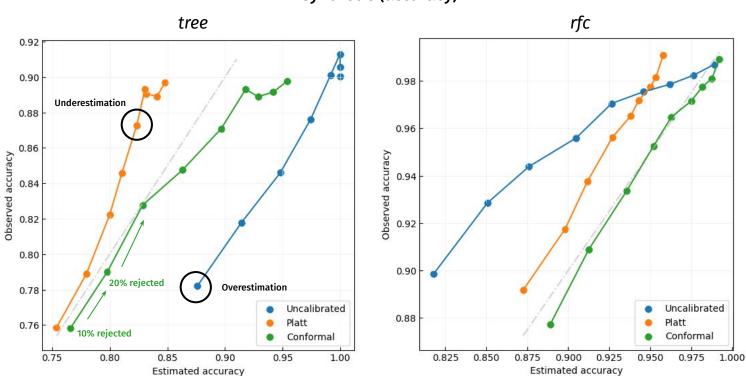
EXPERIMENTAL SETUP.

Datasets

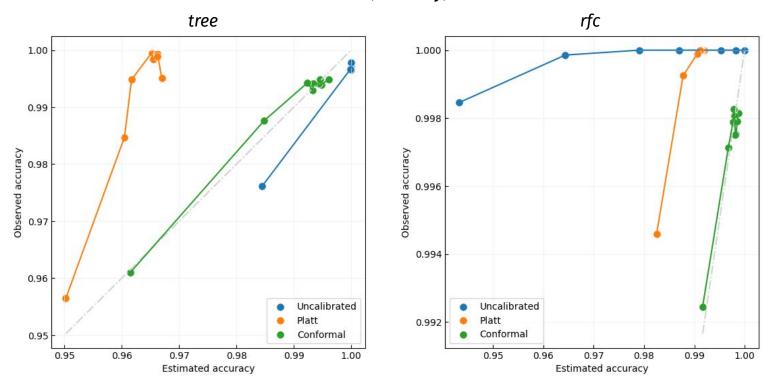
Target class for each dataset

Dataset	n	p	$ \mathcal{Y} $
adult	49,531	10	3
beans	$13,\!611$	16	6
ocr	$5,\!620$	64	9
cars	1,728	6	4
$\operatorname{synthetic}$	1,000	8	3
glass	214	9	6

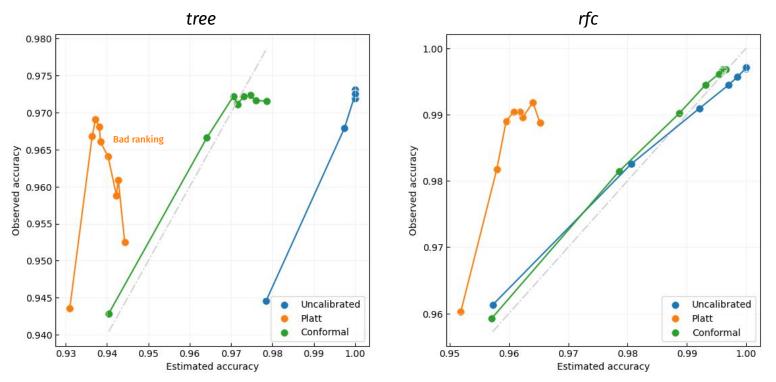
Class description	Proportion
Income \leq \$20K	0.399
Sira dry bean type	0.194
Digit nine	0.100
Car with an acceptable evaluation	0.222
Synthetic class $(y = 1)$	0.333
Headlamp	0.136



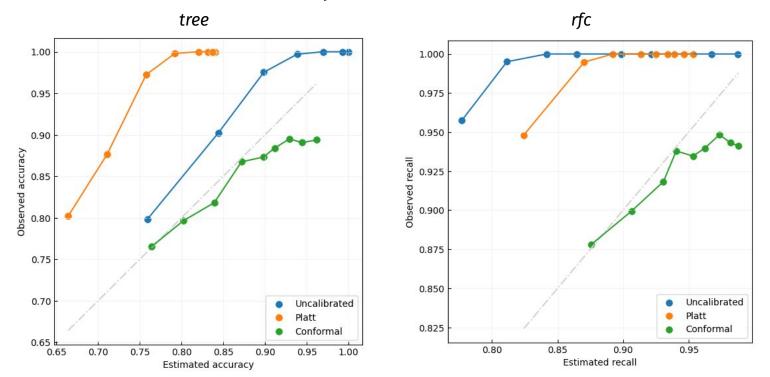
synthetic (accuracy)



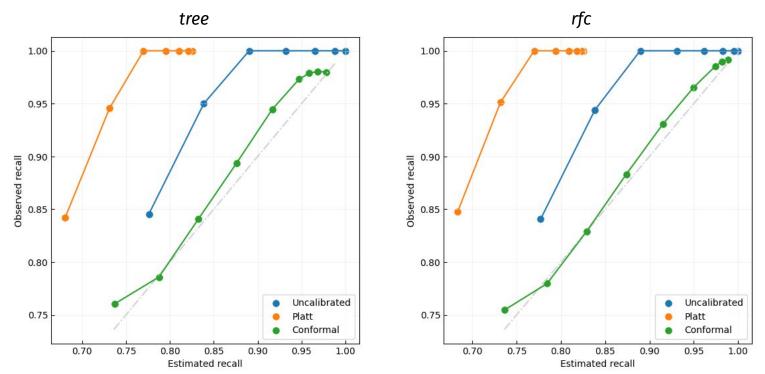
cars (accuracy)



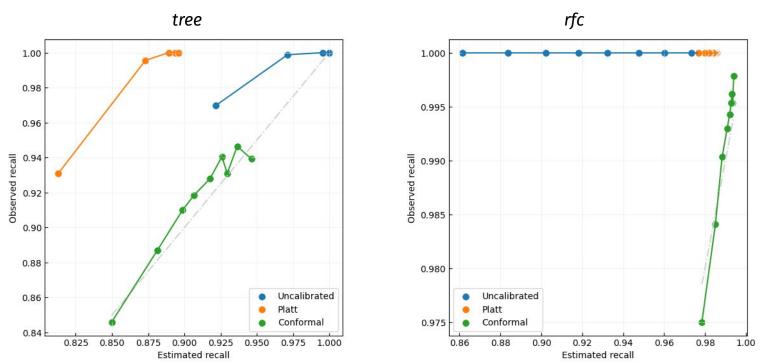
beans (accuracy)



synthetic (recall)



adult (recall)



ocr (recall)

- Conformal prediction can be used in a suitable way in the context of classification with reject option to produce reliable performance estimates.
- In this study, we have extended previous research in the development of confidence classifiers with reject option and covered multi-class classification.
- Our approach, tested in six datasets, consistently delivers reliable accuracy and recall estimates with better results than off-the-shelf uncalibrated classifiers and Platt-scaled models.
- Some limitations on low-data regime scenarios, when only a few calibration samples are available and statistical efficiency is sacrificed.

Acknowledgements

European Commission

> Horizon 2020 European Union funding for Research & Innovation

Multi-Class Classification With Reject Option and Performance Guarantees Using Conformal Prediction

THANK YOU FOR YOUR ATTENTION!

Alberto García-Galindo

You can reach me via LinkedIn or email: agarciagali@unav.es