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A Need for Explanation

• Building trust in machine learning models

• Ethical and legal considerations
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Explanation Methods

• Surrogate Models

• Important Features Selection

• Generation of Adversarial Examples

• The Shapley Value
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The Shapley Value
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The Shapley Value

• Local accuracy: the explanation matches the model

• Missingness: a missing feature is attributed a value of zero

• Consistency: if the contribution of a feature increases or remains unchanged, the 

Shapley value increases or remains unchanged
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Efficient Approximation of the Shapley Value

• KernelSHAP

• TreeSHAP for a tree-based model

• FastSHAP learns to approximate the Shapley values 

• Hierarchical Shap, H-Shap, for image classification
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Fast approximations are not always accurate!
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The Main Contributions

• An approach for quantifying the fidelity of Shapley value approximations 

accompanied with validity guarantees

• A set of non-conformity measures for the conformal prediction framework
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The Proposed Method
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The Proposed Method
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The Proposed Difficulty Estimation Functions

• Probability of the explanation:

• Probability difference:

• Similarity to null:
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Experimental Setup

● The experiments were conducted on 20 public datasets available on Openml.org

● The data was split into training, development, calibration, and test subsets

○ 60% training, 20% calibration, and 20% test

● The black-box models were generated using the XGBoost algorithm

● The regression models are gradient boosting regressors with 600 estimators
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Experimental Results
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Experimental Results
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Concluding Remarks

● We proposed an efficient method to estimate the quality of Shapley value approximations 

while providing validity guarantees using the conformal prediction framework

● We proposed difficulty estimates targeting explanations

● We have presented results from a large-scale empirical evaluation, comparing the proposed 

difficulty estimates 
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Thank You!
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