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Introduction



The on-line setting

Reality outputs a sequence of pairs

(x1, y1), (x2, y2), . . .

called examples, consisting of objects x and labels y. For short, set
zi := (xi, yy).

Our standard assumption is that examples are drawn from some
probability distribution P on the example space Z that is
exchangeable.
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Adaptive conformal inference (ACI)

ACI was proposed by Gibbs and Candès as a way to achieve
asymptotic validity for non-exchangeable data. It uses a simple
online update of the significance level ε:

εn+1 = εn + γ(ε− errεnn (Γ)),

where γ is a step size.

For all N ∈ N,∣∣∣∣ε− 1
N

N∑
i=1

errεnn (Γ)

∣∣∣∣ ≤ max{ε1, 1− ε1}+ γ

γN a.s.

In particular, ACI ensures that a conformal predictor is asymptotically
valid, even if exchangeability is violated.
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Adapting ACI for multi-step ahead
time-series forecasting



Multi-step ahead setup

Let w1,w2, . . . be observations of a time-series, and suppose we want
to predict h steps ahead, using e.g. p lagged values and/or some
exogenous variables.

An object xt then consists of p lagged values. Its label
yt = (yt,1, . . . , yt,h) is a vector of the next h values.
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The problem

We use xt to predict yt = (yt,1, . . . , yt,h) at significance levels
ε = (ε1, . . . , εh).

Problem: We only get to observe yt,1. No way of knowing it the other
predictions are wrong.

But we know the values yt−h+1,1, . . . , yt,1. Suppose we have
predictions made at times t− h+ 1, . . . , t.
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Error observation

Denote by lt,i and ut,i the lower and upper bounds of our prediction
intervals, with i = 1, . . . ,h. Consider the matrices,

Lt =


lt,1 lt,2 . . . lt,h
lt−1,1 lt−1,2 . . . lt−1,h
...

... . . . ...
lt−h+1,1 lt−h+1,2 . . . lt−h+1,h


and

Ut =


ut,1 ut,2 . . . ut,h
ut−1,1 ut−1,2 . . . ut−1,h
...

... . . . ...
ut−h+1,1 ut−h+1,2 . . . ut−h+1,h

 .

The diagonal elements are the lower and upper bounds of the
predictions made at times t− h+ 1, . . . , t for the value yt,1.
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Online update of significance levels

Define the vector of errors known at time t as

errt = (errεt,1t,1 , err
εt−1,2
t−1,2 , . . . , err

εt−h+1,h
t−h+1,h) = ¬

(
diag(Lt) ≤ yt,1 ≤ diag(Ut)

)
where “¬” denotes logical negation, and the comparisons are made
element-wise.

Now we can update

εt+1 = εt + γ(ε− errt)

where γ = (γ1, . . . , γh) is a vector of step sizes, and vector
multiplication is understood as element-wise multiplication.
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Initialisation

For t = 1, . . . ,h we do not have the entire error vector. Note that
errt = ε is a fixed point of the iteration.

For any prediction step i where we can not observe the error, set
errt,i = εi. This keeps the significance level at prediction step i fixed
until the relevant information arrives.
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Validity and finite sample guarantees

All we do is apply ACI to each prediction step, using the incoming
errors as soon as they arrive. Therefore, we have∣∣∣∣ 1T ∑T

t=i errt,i − εi

∣∣∣∣ ≤ max{εi,i,1−εi,i}+γi
γiT , i = 1, . . . ,h (a.s.).

An upper bound on the overall error rate is obtained by combining
these inequalities∣∣∣∣ 1T

T∑
t=h

(
1
h

h∑
i=1

errt,i)−
1
h

h∑
i=1

εi

∣∣∣∣ ≤ 1
h

h∑
i=1

max{εh,i, 1− εh,i}+ γi
γiT

(a.s.)
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Summary

• Allowing for different target error rates lets us balance the
trade-off between tight intervals and high confidence.

• Different step sizes lets us balance the trade-off between
stability and adaptability that comes with ACI.

• Same finite sample guarantee as ACI on individual prediction
steps, which also lets us bound the overall error rate.

The same kind of framework will work for any method that uses ε as
control input, e.g. Conformal PID by Angelopolis et. al.
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Example: Electricity demand
forecasting



Setup

Figure 1: The Victoria electricity demand dataset. We use a MIMO version of
the conformailzed ridge regression algorithm (Vovk et. al.). The objects
consist of 24 lagged values together with temperature and calendar
information. The forecast horizon is five hours.
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Example 1. Same target coverage rate and step size for all pre-
dictions

Figure 2: ε = (0.1, 0.1, 0.1, 0.1, 0.1) and γ = (0.005, 0.005, 0.005, 0.005, 0.005)
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Example 1. Same target coverage rate and step size for all pre-
dictions

Figure 3: ε = (0.1, 0.1, 0.1, 0.1, 0.1) and γ = (0.005, 0.005, 0.005, 0.005, 0.005)
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Example 2. Different target coverage but same step size

Figure 4: ε = (0.1, 0.15, 0.2, 0.25, 0.3) and
γ = (0.005, 0.005, 0.005, 0.005, 0.005)
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Example 2. Different target coverage but same step size

Figure 5: ε = (0.1, 0.15, 0.2, 0.25, 0.3) and
γ = (0.005, 0.005, 0.005, 0.005, 0.005)
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Example 3. Different target coverage and step sizes

Figure 6: ε = (0.1, 0.15, 0.2, 0.25, 0.3) and
γ = (0.005, 0.007, 0.009, 0.011, 0.013)
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Example 3. Different target coverage and step sizes

Figure 7: ε = (0.1, 0.15, 0.2, 0.25, 0.3) and
γ = (0.005, 0.007, 0.009, 0.011, 0.013)
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Thank you for your time and attention!
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