
Adaptive conformal classification with noisy labels

Matteo Sesia

University of Southern California
Department of Data Sciences and Operations

September 9, 2024

1 / 48



Collaborators

Rachel Wang
(U. Sydney)

Xin Tong (USC) Teresa Bortolotti
(Politecnico di Milano)

Reference:

“Adaptive conformal classification with noisy labels”
arxiv.org/abs/2309.05092

September 2023, under review

2 / 48

arxiv.org/abs/2309.05092


Collaborators

Rachel Wang
(U. Sydney)

Xin Tong (USC) Teresa Bortolotti
(Politecnico di Milano)

Reference:

“Adaptive conformal classification with noisy labels”
arxiv.org/abs/2309.05092

September 2023, under review

2 / 48

arxiv.org/abs/2309.05092


Statistics and Conformal Inference in the Age of AI

This report underscores the transformative role of machine learning
and AI in scientific research, national security, and societal welfare.

However, key concerns include:

• Inadequate uncertainty
quantification.

• Inaccuracies in large data sets,
especially problems with
improperly labeled data.

• Data privacy issues, often
managed by introducing
random noise into data.
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Uncertainty Quantification (UQ) for Classification

ML models sometimes make mistakes, and are often overconfident.

Conformal prediction quantifies uncertainty through prediction sets.

True label: frog
Prediction:

 frog

True label: automobile
Prediction:

 automobile

True label: deer
Prediction:

 deer

True label: deer
Prediction:

 deer

True label: bird
Prediction:

 frog

True label: horse
Prediction:

 horse

True label: frog
Prediction:

 frog

True label: bird
Prediction:

 bird
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Prediction set:

 {frog}

True label: automobile
Prediction set:
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True label: deer
Prediction set:
 {deer, dog}
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Prediction set:
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Prediction set:
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Some Relevant Prior Works on UQ for Classification
• Set-valued classification: Grycko (1993)
• Classification with reject option: Chow (1970), Ripley (1996),
Herbei and Wegkamp (2006), Bartlett et al. (2008)

Conformal prediction for classification:

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α

(Guarantees coverage for prediction sets with probability 1− α.)

• Vovk et al. (2005)

• Nouretdinov et al. (2011)

• Papadopoulos (2014)

• Sadinle et al. (2018)

• Cauchois et al. (2020)

• Romano et al. (2020)

• Angelopoulos et al. (2021)

• Einbinder et al. (2022)

Typical assumption:
exchangeable
(or i.i.d.) data
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Conformal Inference Beyond Exchangeability

Some of the key topics:

• Testing Exchangeability: Vovk (2021), Bates et al. (2021)

• Time Series: Chernozhukov et al. (2018), Xu and Xie
(2021), Stankeviciute et al. (2021), Gibbs and Candès (2021,
2024), Angelopoulos et al. (2024), Zhou et al. (2024)

• Covariate Shift: Tibshirani et al. (2019)

• Label Shift: Podkopaev and Ramdas (2021), Si et al. (2023)

• General Robustness: Barber et al. (2022)

• Other Applications: S. et al. (2023), Liang et al. (2024)

Conformal prediction with “imperfect” data:

• Missing Counterfactuals: Lei et al. (2021), Yin et al. (2024)

• Censoring: Candès et al. (2023), Gui et al. (2024)

• Missing Covariates: Zaffran et al. (2023)

• Weak Supervision: Cauchois et al. (2022)

• Noisy Labels: Einbinder et al. (2022), and this talk . . .
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Why Care About Conformal Prediction with Noisy Labels?

Motivation: High-Quality Labels Aren’t Always Available

• High Cost of Labeling:
Manual labeling can be expensive and time-consuming
(e.g., Snow et al. (2008); Aguinis et al. (2021))

• Privacy Concerns:
Issues related to privacy may require adding random noise to
the data
(e.g., Ghazi et al. (2021))

Crowdsourcing leads to noisy labels
7 / 48
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Background: Prediction from Imperfect Labels

Learning from data with noisy labels is a well-established field.
[Natarajan et al., 2013; Sukhbaatar et al., 2014; Song et al., 2022]

Robustness of conformal prediction to noisy labels:
• Conformal inference beyond exchangeability [Barber et al., 2023]

(Worst-case bounds under Huber contamination model)

• We have some understanding of why conformal predictions
tend to be “conservative” in practice. [Einbinder et al. (2022)]
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Relation to Prior Works

The most closely related settings studied in the growing literature
on conformal inference beyond exchangeability are:

• Covariate Shift: Different PX , same PY |X
Tibshirani et al. (2019)

• Label Shift: Different PY , same PX |Y
Podkopaev and Ramdas (2021); Si et al. (2023)

• General Distribution Shifts: Worst-case bounds for arbitrary
shifts, including label contamination
Barber et al. (2023)

Our Approach:

• Closer to Barber et al. (2023), but less pessimistic.

• We focus on methodological development, making some
additional assumptions on the label contamination process.

• We take a more general view than Einbinder et al. (2022),
which did not consider how to “adapt” to label noise.
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Preview of Contributions

1. We study the impacts of label noise on conformal predictions.
Seeking more “actionable” insight compared to
Barber et al. (2023), Einbinder et al. (2022).

2. We develop an “adaptive” method to account for label noise.

Note: the problem is not straightforward.

1. We see only data with “noisy” labels.
2. We want to predict the “true” label of a new test point.
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Background: Conformal Classification



Conformal Classification [Vovk et al., 2005]

Data Setup:
• Observations: (X1,Y1), (X2,Y2), . . . , (Xn,Yn), (Xn+1, ?)
• Features: X ∈ Rp

• Label: Y ∈ [K ] := {1, . . . ,K}

Key Assumption: (Xi ,Yi )
iid∼ P for some unknown distribution P.

Typical Goal: prediction sets Ĉα(Xn+1) with marginal coverage:

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α

at the desired confidence level α ∈ (0, 1); e.g., α = 0.1.

Upper Coverage Bound: Under smoothness conditions,

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≤ 1− α+O

(
1

n

)
.
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Typical Goal: prediction sets Ĉα(Xn+1) with marginal coverage:

P
[
Yn+1 ∈ Ĉα(Xn+1)
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Overview of split-conformal classification1

Idea: Split the data, train a “black-box” classifier, then calibrate it.

deer bird horse horse cat bird

horse airplane frog cat frog frog

cat horse ship ship ship cat

automobile deer frog airplane automobile ship

Labeled data

1Vovk et al. Algorithmic learning in a random world. Springer (2005).
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1) Data Splitting and Model Training

Random Data Splitting
• Randomly split the data into two sets: Dtrain and Dcal.

Model Training
• Train a classifier on Dtrain to estimate class probabilities:

π̂k(x) ≈ P [Y = k | X = x ] ∈ [0, 1].

• Example: final soft-max layer of a deep neural network.

No Assumptions Required:
• No assumptions are needed about the accuracy of π̂.
• The model may be trained using noisy labels Ỹ .
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2) Translating the fitted model into prediction sets

A classical example:

C(x , τ ; π̂) := {k ∈ [K ] : π̂k(x) ≥ 1− τ} ,
for some “threshold” τ ∈ [0, 1].

In practice, we prefer to apply a slightly more complicated function
C that can account for possible “heteroschedasticity”.2

Definition (Prediction function)

Let C be a set-valued function (depending on π̂), taking as input:

• x ∈ Rd ,

• τ ∈ [0, 1].

We say that C is a prediction function if:

1. 1 [k ∈ C(X , τ)] is increasing in τ .

2. C(X , τ) = {1, . . . ,K} if τ = 1.

2Romano, S., and Candès. Adv. Neural Inf. Process. Syst. 33 (2020).
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3) Evaluating the Conformity Scores

Step 3: Computing Conformity Scores

• Use the held-out calibration samples Dcal to compute
conformity scores ŝ(Xi , k) for each k ∈ [K ] and i ∈ Dcal.

• These scores can be interpreted as generalized residuals.

Classical Example:

ŝ(x , k) = 1− π̂k(x).

General Case:

ŝ(x , k) = inf {τ ∈ [0, 1] : k ∈ C(x , τ ; π̂)} .

16 / 48



4) Prediction Sets with Marginal Coverage

Calibrating the Prediction Sets:

1. Evaluate the conformity scores ŝ(Xi ,Yi ) for all i ∈ Dcal.

2. Sort these scores and compute the threshold:

τ̂0 = ⌈(1+|Dcal|)·(1−α)⌉-th smallest value in {ŝ(Xi ,Yi )}i∈Dcal .

3. Construct the calibrated prediction set:

Ĉ (Xn+1) = C(Xn+1, τ̂ ; π̂),

where τ̂ = (τ̂0, . . . , τ̂0).

Theoretical Guarantees:
• This procedure satisfies the marginal coverage condition:

P
[
Yn+1 ∈ Ĉ (Xn+1)

]
≥ 1− α.

• If the conformity scores are almost surely distinct:

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≤ 1− α+

1

|Dcal|
.
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3. Construct the calibrated prediction set:
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3. Construct the calibrated prediction set:
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Coverage Bounds Under Label Contamination
What if we cannot see the true labels?



Conformal Classification with Noisy Labels

Data: (X1,Y1, Ỹ1), (X2,Y2, Ỹ2), . . . , (Xn,Yn, Ỹn), (Xn+1, ?, ?).

• features X ∈ Rp

• true label Y ∈ [K ] := {1, . . . ,K}
• noisy label Ỹ ∈ [K ] := {1, . . . ,K}

Key assumption: (Xi ,Yi , Ỹi )
iid∼ P, for some P.

Question:

• Imagine applying standard conformal prediction based on the
observed noisy labels Ỹ1, . . . , Ỹn.

• What happens to the coverage of Yn+1?
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Result: Coverage “Inflation” of Standard Prediction Sets

Theorem

For standard prediction sets Ĉα:

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α+ E [∆(τ̂)] .

If the scores s(Xi , Ỹi ) are almost surely distinct,

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≤ 1− α+

1

ncal + 1
+ E [∆(τ̂)] .

Coverage Inflation Factor:

∆(t) :=
K∑

k=1

[
ρkF

k
k (t)− ρ̃k F̃

k
k (t)

]
,

F k
l (t) := P

[
ŝ(X , k) ≤ t | Y = l ,Dtrain

]
, ρk := P[Y = k],

F̃ k
l (t) := P

[
ŝ(X , k) ≤ t | Ỹ = l ,Dtrain

]
, ρ̃k := P[Ỹ = k].
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The Main Challenge: Estimating ∆(t)

The Coverage Inflation Factor:

∆(t) :=
K∑

k=1

[
ρkF

k
k (t)− ρ̃k F̃

k
k (t)

]
The Difficulty:

• This factor depends on quantities that are hard to estimate,
particularly:

F k
l (t) := P

[
ŝ(X , k) ≤ t | Y = l ,Dtrain

]
, ρk := P[Y = k]

Assumption Needed: To make progress, we need to impose
assumptions about the distribution of noisy labels.
A common starting point is:

Assumption (Conditional Independence of Label Noise)

Ỹ ⊥⊥ X | Y .
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Conservativeness of Standard Conformal Predictions

Corollary

Consider the setting of Theorem 1, assuming Assumption 1 holds.
Additionally, suppose the CDFs of the conformity scores satisfy:

max
l ̸=k

F l
k(t) ≤ F k

k (t), ∀t ∈ R, k ∈ [K ].

Then, we have:

• ∆(τ̂) ≥ 0 almost surely.

• The standard prediction sets Ĉα(Xn+1) are conservative:

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α.

Intuition: The condition ensures that the correct label is the most
likely point prediction output by the model.
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Where We Are

Main Challenge: Label noise often makes conformal predictions
too conservative.
Our Goals:

1. Quantify the conservativeness precisely.
2. Develop new adaptive methods to correct for this issue.

Demonstration: CIFAR-10H dataset with pre-trained CNN model:

• Calibration with noisy data
• Prediction of the true labels
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Adaptive prediction sets
How to correct for label noise?



Modeling the Label Noise

Assumptions:

Assumption (1)

Ỹ ⊥⊥ X | Y
(The noisy label Ỹ is conditionally independent of the features X ,
given the true label Y .)

Assumption (2)

The transition matrix T ∈ [0, 1]K×K is known, where:

Tkl := P
[
Ỹ = k | X ,Y = l

]
(This matrix models the probability of observing noisy label k
when the true label is l .)
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Plug-in Estimate for the Coverage Inflation Factor

Setup: Assume the transition matrix T is known and invertible,
with inverse denoted by W := T−1. Under Assumption 1, the
coverage inflation factor ∆(t) can be written as:

∆(t) :=
K∑

k=1

K∑
l=1

Wkl ρ̃l F̃
k
l (t)− F̃ (t).

Empirical Estimates: Evaluated on calibration data:

F̂ k
l (t) :=

1

nl

∑
i∈Dcal

l

I[ŝ(Xi , k) ≤ t], ρ̂l :=
nl
n
,

F̂ (t) :=
1

n

∑
i∈Dcal

I[ŝ(Xi , Ỹi ) ≤ t],

where Dcal
l = {i ∈ Dcal : Ỹi = l} and nl = |Dcal

l |.
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A Novel Adaptive Calibration Algorithm

Intuition: The coverage is approximately 1− α+ ∆̂(τ̂(α)).
To reach 1− α, adjust the nominal level α by adding ∆̂(τ̂(α)).

Prediction Set: Ĉα(Xn+1) = C(X , τ̂(α)).
Goal: How do we calibrate τ̂(α) to achieve 1− α coverage?

Order Statistics: S(i) are the order statistics of {ŝ(Xj , Ỹj)}j∈Dcal .

Intuition: Replace α with α+ ∆̂(S(i)).

Standard Threshold: τ̂(α) is approximately given by:

τ̂ =

{
S(î), where î = min{i ∈ Î}, if Î ≠ ∅,
1, if Î = ∅

Î :=

{
i ∈ [n] :

i

n
≥ 1− α−∆̂(S(i))+δ(n)

}

• δ(n) is a finite-sample correction factor.
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The Finite-Sample Correction Factor

Effect of Omitting the Correction: Suppose we apply our
adaptive algorithm without the finite-sample correction factor:

Î :=

{
i ∈ [n] :

i

n
≥ 1− α−∆̂(S(i))+δ(n)

}

Question: How low could the coverage be without the correction?

P
[
Yn+1 ∈ Ĉ ada−0

α (Xn+1)
]
≥ 1− α−δ(n).

High-Level Result: In general, we can show that:

δ(n) = O
(

1√
n

)
More Precisely: We will now make this precise with both

• finite-sample bounds;

• large-sample asymptotics.
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Special Case: The Randomized Response Model

In the classical randomized response model (Warner, 1965), the
finite-sample correction takes a simple form.
Simplified Model:

P
[
Ỹ = k | X ,Y = l

]
= (1− ϵ)I[k = l ] +

ϵ

K
.

Result: Under this model, the finite-sample correction is given by:

δ(n) = c(n) := E

[
sup
i∈[n]

{
i

n
− U(i)

}]
,

where U(1), . . . ,U(n) are the order statistics of n
i.i.d. uniform([0, 1]) random variables.

Key Properties:

• c(n) can be accurately estimated via Monte Carlo simulation.

• By the DKWM inequality, c(n) ≤
√

π
2n .
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Ỹ = k | X ,Y = l

]
= (1− ϵ)I[k = l ] +

ϵ

K
.

Result: Under this model, the finite-sample correction is given by:

δ(n) = c(n) := E

[
sup
i∈[n]

{
i

n
− U(i)

}]
,

where U(1), . . . ,U(n) are the order statistics of n
i.i.d. uniform([0, 1]) random variables.

Key Properties:

• c(n) can be accurately estimated via Monte Carlo simulation.

• By the DKWM inequality, c(n) ≤
√

π
2n .

29 / 48



Special Case: The Randomized Response Model

In the classical randomized response model (Warner, 1965), the
finite-sample correction takes a simple form.
Simplified Model:

P
[
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General Case (Finite-Sample Empirical Process Theory)

In general, we must account for the structure of W := T−1.

Approach: We introduce the matrix W̄ , a K × K matrix
parameterized by coefficients β = (β0, β1, . . . , βK ) ∈ RK+1, where:

W̄kl = β0I[k = l ] +
βk
K

.

Next, define the deviation matrix Ω as: Ωkl := Wkl − W̄kl .

Finite-Sample Correction Factor: (from chaining arguments)

δ(n) = inf
β

{
c(n)

(
β0 +

∑K
k=1 βk
K

)
+

1√
n
B(K , n, β)

}
,

B(K , n, β) = 2min

{
max
l∈[K ]

∑
k

|Ωkl |
√
log(Kn + 1),

24 max
k,l∈[K ]

|Ωkl |
2 logK + 1

2 logK − 1

√
2K logK

}
.
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Optimizing the Finite-Sample Constants

Goal: Optimally choose the parameters β to minimize the
finite-sample correction factor δ(n):

δ(n) = inf
β

{
c(n)

(
β0 +

∑K
k=1 βk
K

)
+

1√
n
B(K , n, β)

}
.

Approach: The optimal choice of β depends on the structure of
W := T−1. This problem can be solved using convex optimization.

“Worst-Case” Behavior:

δ(n) ≈ min

{
O
(√

K logK√
n

)
,O

(√
log(Kn)√

n

)}
.

The optimization can improve the scaling with respect to K .

Example: For a two-level randomized response model, we get:

δ = O

(
1√
n

(
1 +

√
2 logK

K

))
.
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Finite-Sample Coverage Guarantees

Theorem

Suppose (Xi ,Yi , Ỹi ) are i.i.d. for all i ∈ [n + 1], and Ỹ ⊥⊥ X | Y .
Let Ĉα(Xn+1) be our Adaptive prediction set based on the inverse
W of the label noise model matrix T , using the finite-sample
correction term δ(n) derived earlier. Then,

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α.

Further, under some (mild) additional technical conditions,

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≤ 1− α+O

(
1√
n

)
.
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Empirical Performance on Simulated Data
• Synthetic data with 4 possible labels.
• Label noise model: two-level randomized response.
• Metrics: Average coverage and size of prediction sets.
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Boosting Power with More Optimistic Calibration

Standard conformal predictions are often conservative.
Why not take advantage of this conservativeness to boost power?

Optimistic Calibration: We propose an adjusted calibration rule:

Î :=

{
i ∈ [n] :

i

n
≥ 1− α−max

{
∆̂(S(i))− δ(n),−1− α

n

}}
.

Proposition

Under the setup of the previous theorem, assume also that

inf
t∈R

∆(t) ≥ δ(n)− 1− α

n
.

If Ĉα(Xn+1) is our Adaptive+ prediction set based on the above Î,
then Ĉα(Xn+1) satisfies

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
≥ 1− α.
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Large-Sample Asymptotics

Large-Sample Behavior: The large-sample behavior of our
Adaptive calibration algorithm can be studied by applying
Donsker’s theorem to the following empirical process:

∆̂(t)−∆(t) :=
K∑

k=1

K∑
l=1

Wkl

[
ρ̂l F̂

k
l (t)− ρ̃l F̃

k
l (t)

]
.

Key Result: In the large-n limit, this process converges to a
Generalized Brownian Bridge, namely GBG(t), a centered Gaussian
process with covariance function given by:

Cov(t1, t2) = E[g(t1, t2)]− E[f (t1)]E[f (t2)].
Estimating the Covariance Function:

Ê[f (t)] =
K∑

k=1

K∑
l=1

Wkl ρ̂l
1

nl

∑
i∈Dl

I[ŝ(Xi , k) ≤ t],

Ê[g(t1, t2)] =
K∑

k=1

K∑
k′=1

K∑
l=1

WklWk′l ρ̂l
1

nl

∑
i∈Dl

I[ŝ(Xi , k) ≤ t1, ŝ(Xi , k
′) ≤ t2].
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Ê[f (t)] =
K∑

k=1

K∑
l=1

Wkl ρ̂l
1

nl

∑
i∈Dl

I[ŝ(Xi , k) ≤ t],

Ê[g(t1, t2)] =
K∑

k=1

K∑
k′=1

K∑
l=1

WklWk′l ρ̂l
1

nl

∑
i∈Dl

I[ŝ(Xi , k) ≤ t1, ŝ(Xi , k
′) ≤ t2].
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Large-Sample Asymptotics

Large-Sample Behavior: The large-sample behavior of our
Adaptive calibration algorithm can be studied by applying
Donsker’s theorem to the following empirical process:

∆̂(t)−∆(t) :=
K∑

k=1

K∑
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Wkl

[
ρ̂l F̂

k
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k
l (t)
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I[ŝ(Xi , k) ≤ t1, ŝ(Xi , k
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The Asymptotic Correction Factor

Asymptotic Approximation: In the large-n limit, the correction
factor δ(n) can be approximated as:

δasymptotic = Ê
[
sup
t∈R

GBG(t)

]
.

Estimation Procedure:
• Replace the unknown covariance function of GBG with a
plug-in empirical estimate.

• Simulate a discretized version of the Gaussian process for
various step sizes h.

• Apply Richardson extrapolation to approximate the limit as
h → 0.

Key Takeaways:
• It works well in practice.
• It agrees with the finite-sample approach in the special case of
the randomized response model.

• It produces slightly tighter correction factors in general.
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Empirical Performance on Simulated Data
• Synthetic data with 4 possible labels.
• Label noise model: two-level randomized response.
• Metrics: Average coverage and size of prediction sets.

Contam: 0.00 Contam: 0.05 Contam: 0.10 Contam: 0.20

C
overage

S
ize

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

0.80

0.85

0.90

0.95

1.00

1.4

1.6

1.8

2.0

Number of calibration samples

Method Standard
38 / 48



Empirical Performance on Simulated Data
• Synthetic data with 4 possible labels.
• Label noise model: two-level randomized response.
• Metrics: Average coverage and size of prediction sets.

Contam: 0.00 Contam: 0.05 Contam: 0.10 Contam: 0.20

C
overage

S
ize

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

0.80

0.85

0.90

0.95

1.00

1.4

1.6

1.8

2.0

Number of calibration samples

Method Standard Adaptive+
38 / 48



Empirical Performance on Simulated Data
• Synthetic data with 4 possible labels.
• Label noise model: two-level randomized response.
• Metrics: Average coverage and size of prediction sets.

Contam: 0.00 Contam: 0.05 Contam: 0.10 Contam: 0.20

C
overage

S
ize

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

3

1e
+0

4

1e
+0

5

0.80

0.85

0.90

0.95

1.00

1.4

1.6

1.8

2.0

Number of calibration samples

Method Standard Adaptive+ Adaptive+ (asymptotic)
38 / 48



Methodology Extensions



Further Methodology Extensions

1) Relaxing the Assumption of a Known Label Noise Model:
Instead of assuming that W = T−1 is known, we can work with
confidence bounds for its entries.

P
[
Ŵ low

kl ≤ Wkl ≤ Ŵ upp
kl , ∀k ̸= l

]
≥ 1− αW .

2) Fitting the Label Noise Model: If we have access to some
clean data, we can estimate W empirically.

3) Adaptive Predictions with Label-Conditional Coverage:
We can construct adaptive prediction sets that guarantee
label-conditional coverage.

4) Adaptive Predictions with Calibration-Conditional
Coverage: We can construct adaptive prediction sets that
guarantee calibration-conditional coverage.
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Application to CIFAR-10H Data



The CIFAR-10H Dataset

Dataset Overview:

• 10,000 images across 10 classes: airplane, car, bird, cat, deer,
dog, frog, horse, ship, or truck.

• Imperfect labels assigned by approximately 50 human
annotators via Amazon Mechanical Turk.

• Noisy labels are correct approximately 95% of the time.

• One noisy label is selected at random for each image.

Classifier:

• A ResNet-18 convolutional neural network, trained on 50,000
CIFAR-10 images.

Potentially Mis-Specified Assumptions:

• Ỹ |= X | Y
• Randomized response model
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The CIFAR-10H Dataset: Visual Overview

True label: deer
Noisy label: deer

True label: bird
Noisy label: bird

True label: horse
Noisy label: horse

True label: horse
Noisy label: horse

True label: cat
Noisy label: deer

True label: deer
Noisy label: horse

True label: deer
Noisy label: dog

True label: deer
Noisy label: horse
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Preview of Prediction Sets for CIFAR-10H Data

True label: frog
Standard:

 {frog}
Adaptive+:

{frog}

True label: automobile
Standard:

 {automobile}
Adaptive+:

{automobile}

True label: deer
Standard:
 {deer}

Adaptive+:
{deer}

True label: automobile
Standard:

 {automobile}
Adaptive+:

{automobile}

True label: deer
Standard:

 {deer, dog}
Adaptive+:

{deer}

True label: bird
Standard:

 {frog, bird, cat}
Adaptive+:
{bird, frog}

True label: deer
Standard:

 {deer, bird}
Adaptive+:

{deer}

True label: ship
Standard:

 {ship, automobile}
Adaptive+:

{ship}
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Performance on CIFAR-10H Data

Label Noise Model: Randomized response
Noise Parameter: Fitted from small clean sample
Target Coverage Level: 90%
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Conclusion



Conclusion

Some take-home messages:

• Conformal inference is growing beyond ideal exchangeability,
in many directions.

• Different types of non-exchangeability require different
solutions.

• Worst-case viewpoints are not always practically useful.

• Some modeling assumptions can be useful.

Some ideas for future work:

• Other types of data with measurement errors

• Other types of data hold-out techniques

• Other ideas? Collaborations?
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Thank you!

To learn more:

“Adaptive conformal classification with noisy labels”
Matteo Sesia, Y. X. Rachel Wang, Xin Tong

arxiv.org/abs/2309.05092

A new follow-up paper (with Teresa) will be posted very soon.

Software and tutorials:

https://github.com/msesia/conformal-label-noise

Funding from:
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