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Contents of the tutorial

Conformal Predictive Distributions (Vovk et al., 2017) are a novel
approach to estimating the probability distribution of a continuous
variable that depends on a number of features.

CPDs probabilities correspond to long-term relative frequencies
(within statistical fluctuation) under minimal assumptions.

CPDs require only that the data be generated independently by an
unknown but fixed distribution.
No assumption on the type of distribution
No need of a prior

Outline of the tutorial

Motivation, context
Predictive Distribution, Conformal Predictive Distribution
KRRPM
Evaluation of PD and real-life examples
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The roots of prior-free predictive distributions

Suppose data D is generated by a known distribution with unknown
parameter θ, which we want to estimate.

Bayesian statistics can provide a distribution for the parameter

Estimating a probability distribution comes naturally to Bayesian
methods

p(θ|D) ∝ p(θ)p(D|θ)

but you have to specify a prior p(θ).

Frequentist statistics provides Confidence Intervals

Given α ∈ [0, 1] coverage probability, we compute an interval

L(D, α),U(D, α)

that contains the actual θ a fraction α of the time.

p(θ|D) does not make sense in a strict frequentist framework.

But frequentists recognized that predictive distributions would be
useful!
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Prior-free posterior distributions

“The Holy Grail of parametric statistics” (Efron, 2010)

Early attempts to arrive at prior-free posterior distributions can be
traced back to Fisher’s fiducial approach in the 1930s.

Not completely formalized; controversial; referred to as ”Fisher’s
biggest blunder”.

There is now a resurgence of interest in the topic.

Conformal Predictive Distributions are part of this trend.
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Predictive Distributions: our setting

Unrestricted randomness, i.i.d. data

D = {(x1, y1), . . . , (xn, yn)} generated independently by fixed, but
unknown P(X ,Y )

Intuitively, we seek an F (y , x) that has the properties of a Cumulative
Distribution Function in y .

F (y , x ,D) = P{Y ≤ y |X = x)

As long as (xi , yi ) ∼ P(X ,Y ), the intervals (−∞, y) contain yi with
relative frequency F (y , xi )
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A property of CDF

Let FX () be the (Cumulative) Distribution Function of the Random
Variable X.

FX (x) = P{X ≤ x}

The RV that is obtained by evaluating the FX on the RV X is
uniformly distributed.

FX (X ) ∼ U(0, 1)
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Predictive Distributions

Suppose we have observations z1, . . . , zn from a set Z = X× R and a
test object xn+1 ∈ X

Let’s call Predictive Distribution a function Q(z1, . . . , zn, (xn+1, y))
that

for any choice of training sequence z1, . . . , zn and any choice of test
object xn+1 has the following properties of a CDF:

Q(z1, . . . , zn, (xn+1, y)) is monotonically increasing in y
limy→−∞Q(z1, . . . , zn, (xn+1, y)) = 0
limy→+∞Q(z1, . . . , zn, (xn+1, y)) = 1.

for any joint probability distribution P on Z,

Q(z1, . . . , zn, zn+1) ∼ U when (z1, . . . , zn+1) ∼ Pn+1.

This definition omits some technicalities to keep things simple.
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Predictive Distributions

The “uniformity” property confers the ability to produce prediction
intervals with guaranteed coverage

Guaranteed coverage is the key property of predictive distributions

We can choose a confidence level α and we can read, off the predictive
distribution, intervals of y in which the actual value falls with rate α
(barring statistical fluctuation).
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Predictive Distribution Interpretation

Note that one can choose different prediction intervals for a given
confidence level.

One can choose the narrowest

i.e. where the slope of the predictive distribution is largest

Or one around the median (previous slide)
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An aside: Why CDF?

The ECDF is guaranteed to converge to CDF for i.i.d. data
(Glivenko-Cantelli theorem)

The ECDF converges fast to the CDF (Dvoretzky–Kiefer–Wolfowitz
inequality)

To obtain a PDF you have to solve an ill-posed (unstable) problem:∫
h(x − t)f (t)dt = F (t) where h(x) is the step function

stable: a small variation in the right-side F (x) results in a small change
in the solution f (x)
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An aside: Why CDF?

Pros

Computing an ECDF from data is
straightforward.
You can read probabilities easily off
the chart.

Cons

Perceptually challenging to evaluate
density
You can’t find the mode immediately.
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Conformal Predictive Distributions

It is possible to obtain Predictive Distributions by using a variant of
Conformal Prediction for Regression.

We define as conformity measure a function

A(z1, . . . , zn+1)

invariant w.r.t. permutations of the first n arguments.

Given (xn+1, y), we compute conformity scores αy
i as:

αy
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi ), i = 1, . . . , n,

αy
n+1 := A(z1, . . . , zn, (xn+1, y)).

Subject to some conditions on A(), the predictive distribution is then

Q(z1, . . . , zn, (xn+1, y)) :=
1

n + 1

(∣∣{i = 1, . . . , n + 1 | αy
i < αy

n+1

}∣∣)
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Requirements on the conformity measure

Q() can be viewed as the estimate of probability under i.i.d. of
drawing an observation with a smaller value of the CM than the
hypothetical observation (xn+1, y).
It is as if we were testing the null hypothesis of i.i.d. using α as test
statistic and computing the p-value Q().

In contrast to CP, not all functions with the specified invariance
property are conformity measures that result in valid predictive
distributions.

For the resulting Q() to have the properties of CDF, the conformity
measure must be such that:

αy
n+1 − α

y
i is a monotonically increasing function of y ∈ R

limy→±∞(αy
n+1 − α

y
i ) = ±∞

A simple example is the y − ŷn+1 where ŷn+1 is the estimate obtained
with K nearest neighbours regression.
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Some details

The definition was simplified for the sake of clarity.
The properly defined CPD has a randomness element

Q(z1, . . . , zn, (xn+1, y)) :=
1

n + 1

(∣∣{i = 1, . . . , n + 1 | αy
i < αy

n+1

}∣∣)+

τ

n + 1

(∣∣{i = 1, . . . , n + 1 | αy
i = αy

n+1

}∣∣)
where τ ∼ U(0, 1)

Informally, it’s a “thick” distribution function, but the thickness is
1

n+1 , so it matters little as soon as you have a reasonably sized
training set
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Kernel Ridge Regression Predictive Machine

Let’s use Kernel Ridge Regression

ŷn+1 := k ′(K + aI )−1Y

where ki = K(xi , xn+1), Ki ,j := K(xi , xj), i , j = 1, . . . , n.
Unfortunately, y − ŷn+1 is not a proper conformity measure. It fails to
produce a strictly increasing function in y for high-leverage objects.

Another possibility is to include the test object with the hypothetical
label in the training set of the KRR.

ˆ̄yn+1 := k̄ ′(K̄ + aI )−1Ȳ

where k̄i = K(xi , xn+1), K̄i ,j := K(xi , xj), ȳi = yi , i , j = 1, . . . , n + 1.
This too fails to guarantee a strictly increasing function in y .
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Kernel Ridge Regression Predictive Machine

A conformity measure is obtained as:

yn+1 − ˆ̄yn+1√
1− h̄n+1

where h̄n+1 is the element H̄n+1,n+1 of the hat matrix
H̄ := (K̄ + aI )−1K̄

There exists an explicit form of the resulting KRRPM.
It can be implemented in a way that avoids recomputing from scratch
the hat matrix for every test object.
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Application of KRRPM to Chemoinformatics

Data set from a study on an enzyme

1368 compounds
68 features (PhysChem properties)

Training set: 1000 observations, randomly sampled

KRRPM using Laplace kernel
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Desirable properties of PD

Validity
The predicted probabilities correspond to the long-term relative
frequencies

Specificity (a.k.a. Sharpness)
The intervals for a given probability are as narrow as possible

You can always make a valid predictive distribution: just output for all
test objects the same PD, the ECDF of the label. But this would be a
terrible forecast as it would have no specificity.

CPDs guarantee validity under i.i.d.
One can concentrate on improving specificity
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Evaluating Predictive Distributions

For probabilistic predictions, there are some established “scores”

Brier loss: 1
n

∑n
i=1 (pi − oi )

2

Log loss: 1
n

∑n
i=1 (oi log pi + (1− oi ) log(1− pi ))

These apply to tasks in which predictions must assign probabilities to
a set of mutually exclusive discrete outcomes.

They can be used on predictive distributions but they do not evaluate
the PDs in their entirety.

There are metrics and diagnostic tools for PDs

PIT, CRPS
Validity plot, Interval boxplots
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Assessing validity

Probability Integral Transform (PIT): evaluate Fi () on the actual
label yi

If the predictions Fi (y) are ideal,
Fi (yi ) are variates from a U(0, 1) distribution.

The PIT can be used to check validity.

The histogram of the PIT should be as flat as possible.

Perhaps better, the ECDF of the PIT should be as close as possible to
the (0,0)-(1,1) diagonal

Kolmogorov-Smirnov statistic and K-S test
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Continuous Ranked Probability Score (CRPS)

The quadratic measure of discrepancy between the forecast CDF
F (y , x) and the “ideal forecast CDF” given the scalar observation y

CRPS(F , x , y) =

∫
R

[F (t, x)− I(t ≥ y)]2 dt

where I() is the indicator function.

For a number of predictions, one takes the average:

CRPS(F ) =
1

n

n∑
i=1

CRPS(F , xi , yi )
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Practical diagnostic tools: Validity plot

Validity plot: actual coverage vs. confidence
For all the confidence values of interest (e.g. 0.1, 0.2, . . . , 0.9)

compute the intervals for the objects in the validation set
compute the relative frequency of “interval contains actual label”

The relative frequency should be close to the confidence

Paolo Toccaceli (RHUL) Conformal Predictive Distributions 22 / 28



Practical diagnostic tools: Interval boxplots

Descriptive statistics of the intervals

The narrower the intervals, the more useful the predictions.
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A real-life comparison
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Observations

The validity guarantee rests on the i.i.d. assumption.

{(x1, y1), . . . , (xn, yn)} ∼ Pn(X ,Y ), where (xi , yi ) ∼ P(X ,Y )
It is a minimal assumption of regularity
But it can be violated very easily in practice!

P(X ,Y ) = P(X )P(Y |X )
P(X ) varies: covariate shift
P(Y |X ) varies: in high-dimensional spaces, one visits just a small
portion

You should not assess validity and efficiency separately.

There is a trade-off between the two
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Summary

Conformal Predictive Distributions offer a prior-free, non-parametric
way to estimate the distribution of random variable Y for an object x,
based on previous data (x1, y1), . . . , (xn, yn).

CPDs have a validity guarantee under a minimal assumption of test
and training data being i.i.d.

CPD require only that the data be generated independently by an
unknown but fixed distribution.

KRRPM uses the flexible and regularized method of Kernel Ridge
Regression to generate Conformal Predictive Distributions.
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