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About the tutorial

Informal presentation, with focus on concepts rather than on formalism.

What problems do Conformal Predictors and Venn Predictors solve?

What questions do they answer?

How do they work?

What do their guarantees really mean?

How can we use them?
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Conformal Prediction and Venn Prediction

Conformal Predictors and Venn Predictors
Probabilistic “distribution-free” ML techniques

Invented at RHUL CS Dept
Prof. Gammerman and Prof. Vovk are the fathers
Reference textbook:
Gammerman, Vovk, Shafer,
Algorithmic Learning in a Random World,
Springer (2005)

Yearly symposium on the topic: COPA (2018, 7th edition)
Special issues on the topic in journals

Have theoretically proven guarantees, under minimal assumptions

Not just of theoretical interest:
CP and VP are currently used in drug development systems in a
major pharmaceutical company
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Hedging Prediction in Machine Learning:
Conformal Predictors
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Let’s frame the problem

Let’s consider a specific Statistical Learning setting:
Supervised Learning

We have a training set consisting of examples, each made up of an
object and its label.
We are presented with an arbitrary object and we are asked to
predict its label.
It’s “supervised” because the algorithm is presented with the labels,
as if provided by a supervisor.
In general, other settings are possible, e.g. unsupervised learning,
reinforcement learning, etc.

Often, practitioners content themselves in producing bare predictions,
i.e. simply a label value, and overlook the uncertainty of the prediction.
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The problem of prediction uncertainty

Statistical learning theory (PAC, VC) provide bounds on the prediction
errors.

The bounds demonstrate it is possible to achieve arbitrarily good
accuracy1 with sufficiently large sizes of the training set.

Drawback: these bounds are too loose to tell us anything interesting for
training sets that we actually deal with in practice.

A common practical and effective approach to estimate the accuracy is to
use hold-out estimates: observe the rate of errors on a set separate
(held-out) from that on which the learning algorithm is trained.

By complementing the prediction value with a bound on the probability of
error, we are effectively hedging the prediction.

1but of course within the limits of Bayes error
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CP: a different approach to “hedging”

Instead of producing a prediction and estimating its error, Conformal
Predictors allow a different way of hedging predictions.

CP can take almost any ML method and use it to output predictions with
a chosen probability of error.

The only assumption is that training and test data be i.i.d.

However, to achieve that, there is a “price” to pay.

The predictions are no longer single-valued: the prediction consists of a
set (or region) of label values.

This hedged prediction is considered correct when the prediction set
contains the actual label (otherwise, it is considered an error).

Note that predictions can also be empty.
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Conformal Prediction as a framework

Conformal Predictors are not a self-contained ML method, but should
rather be viewed as a framework.

Conformal Predictors operate on “top” of another ML algorithm (referred
to as ’underlying’).

Any classification or regression algorithm can be used, as long as one
can extract a score from it (as opposed to just a “hard” prediction).

SVM, Decision Trees, kNN, Neural Network, Naïve Bayes,. . .
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Conformal Predictors

Two desiderata:
Validity: the long run frequency of error does not exceed the

significance level ε at each chosen confidence level 1− ε.
Efficiency: the prediction set should be as small as possible.

As long as training and test data are independent and identically
distributed (i.i.d. assumption), validity is guaranteed by CP and does not
depend on the algorithm.

The efficiency depends on the underlying algorithm.

CP make it possible to avoid worrying about validity and to focus only on
improving efficiency.

P.Toccaceli (RHUL) CP & Venn prediction 9 / 69



Why “conformal”

The notion of conformity is at the heart of Conformal Prediction.
How “likely” does it seem that this example comes from the same
distribution that generated this training set?

The nonconformity measure (NCM) quantifies (on an arbitrary but
consistent scale) how random an example is, compared to a training set
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Nonconformity measure

The nonconformity measure is implemented using the underlying ML
method.
Example using nearest neighbours as underlying:

αi :=

∑k
j=1 d+

ij∑k
j=1 d−ij

, i = 1, . . . ,n,

with the elements (xi , yi ) of our data set, where d+
ij is the j th shortest

distance from xi to other objects labelled in the same way as xi , and d−ij is
the j th shortest distance from xi to the objects labelled differently from xi .
Example: the NCMs for k = 3 for the examples in the previous page are:
12.14, 0.27, 1.19
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An outline for the Classification case

Conformal Prediction works by making hypotheses as to the value of the
label y of the test object xtest .
The hypothesis we test is that the hypothetical example (xtest , yhyp) was
drawn i.i.d from the same distribution as the training examples.
We compute the p-value of this hypothesis
We reject those hypotheses whose p-value is less than the significance
level ε
The labels of the hypotheses we could not reject constitute the prediction
set.
Gammerman and Vovk showed how to compute the p-values and proved
that this procedure outputs predictions that have the validity property.
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The details 1/2

Denoting the training set with (x1, y1), . . . , (x`, y`) and the test object with x`+1,
the Conformal Prediction is obtained as follows:

For every possible label y ∈ Y :
we form the hypothetical "completion" z`+1 = (x`+1, y)

we compute α1, . . . , α`, α`+1 as:

αi = A(Hz1, z2, . . . , z`+1I\zi , zi )

where Hz1, z2, . . . , znI\zi denotes the bag Hz1, z2, . . . , znI with zi removed.
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The details 2/2

The p-value for the completion is then obtained with:

pY :=
|{i = 1, . . . , `+ 1 : αi ≥ α`+1}|

`+ 1
,

In words, the p-value is the proportion of the αs which are at least as large as
the last α , i.e. it is the proportion of examples that appear "stranger than" or
"as strange as" the completion.
Given ε, the region prediction is then defined as:

Γε (x1, y1, . . . , x`, y`, x`+1) := {y ∈ Y : py > ε}
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Practical Considerations

Note that in the definition of αi in slide 13 the bag varies from one αi to
the next.

This means that the underlying algorithm is to be trained on a different
training set for every αi .

If we have ` examples in the training set, we have to train ` instances of
the underlying algorithm to calculate one p-value py .

In addition, we need to repeat the calculation for every possible value that
the label can take (2 in the simplest case).

The resulting computational load can be prohibitive.
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Just to be clear...

CP computes p-values in order to produce a prediction set.

p-values are not posterior probabilities!

They do not express the probability of object x having label y .
They express the probability of drawing, from the same distribution,
an example that is as or more contrary to hypothesis of being drawn
iid from the same distribution as the training set.

Similar to p-value in classical Statistical Hypothesis Testing, i.e. the
probability, under the Null Hypothesis, of an outcome as or more contrary
to the Null Hypothesis.

p0 and p1 do not have to sum to 1!
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An example on synthetic data

Just a toy example with binary classification.
Two classes: 0 (green) and 1 (red)
200 training examples

kNN with k = 3 as underlying.
At the point indicated with the black cross

p0 = 0.56
p1 = 0.01

P.Toccaceli (RHUL) CP & Venn prediction 17 / 69



An example on synthetic data

Prediction set
p0 ≤ ε, p1 ≤ ε ∅
p0 > ε, p1 ≤ ε {0}
p0 ≤ ε, p1 > ε {1}
p0 > ε, p1 > ε {0, 1} Uncertain
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An example on synthetic data

For low ε (error rate), the predictions are often hedged (brown areas).
Both p values are larger than ε, hence both labels are in the prediction
set.
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An example on synthetic data

Predictions on 1,000 test examples from the same distribution for varying
significance level ε
The error rate should be less than or equal to ε (barring statistical
fluctuation)

ε Positive
predicted
Positive

Positive
predicted
Negative

Negative
predicted
Negative

Negative
predicted
Positive

Empty
preds

Uncertain
preds

Error
rate

0.01 344 3 345 2 0 306 0.005
0.05 427 33 462 15 0 63 0.048
0.10 440 39 464 21 36 0 0.096
0.15 415 25 455 9 96 0 0.130
0.20 398 13 430 6 153 0 0.172
0.25 393 8 398 3 198 0 0.209
0.50 275 2 265 0 458 0 0.460
0.75 138 0 127 0 735 0 0.735
0.80 121 0 111 0 768 0 0.768
0.85 88 0 90 0 822 0 0.822
0.90 53 0 59 0 888 0 0.888
0.95 28 0 28 0 944 0 0.944
0.99 4 0 4 0 992 0 0.992
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Inductive Conformal Predictors

The definition of CP discussed so far is referred to as "Transductive
Conformal Prediction".

Excursus: Induction vs. Transduction (back-up slides)
The key aspect is that we use also the test object.

A less compute-intensive form of CP is possible: Inductive Conformal
Prediction.

ICP is actually the recommended form of CP when there is more data
available than needed to train the underlying with adequate performance.

ICP too has the validity property.
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Inductive Conformal Predictors

Proper Training Set Calibration Set Hyp example

Training

Prediction

Prediction

NCMs

NCMs

CP

The training set is split into proper training set and calibration set.
The underlying algorithm is trained on the proper training set (once).
The αi are calculated applying the algorithm on the calibration set and
the test object.
Drawback: some data has to be used for calibration, rather than training

P.Toccaceli (RHUL) CP & Venn prediction 22 / 69



Mondrian (class-conditional) CP

The validity guarantee of CP is not per-class.
The error rate for objects of one class might be higher than the
target, but it may be compensated by a lower error rate for the other
class: the guarantee is over all the classes.
It is a problem for imbalanced data sets, in particular.

Class-conditional (Mondrian) CPs provide per-class validity guarantee.

P.Toccaceli (RHUL) CP & Venn prediction 23 / 69



Mondrian Conformal Predictors

Mondrian Conformal Predictors partition all examples (xn, yn) into categories
and set a separate significance level εk for each category.

Called Mondrian because the categories resemble a
Mondrian paintings

"Composition II in Red, Blue, and Yellow", 1930 by Piet
Mondrian (1872-1944)
Wikipedia - Licensed under Public Domain via Commons

Here we shall consider the so-called label-conditional Conformal Predictors
where k(n, xn, yn) = yn.

The fundamental advantage of a Mondrian Conformal Predictor
is that the validity property holds separately on each category
(label).
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p-values for Mondrian CP

The only change is in how p-values are computed.

For the label-conditional CP the p-values are:

p(y) =
|{i = 1, . . . , (`+ 1) : yi = y , αi ≥ α`+1}|

|{i = 1, . . . , (`+ 1) : yi = y}|

The difference with respect to the earlier definition of p-value is that the
comparisons are restricted to the αi associated with training examples
with the same label as the hypothetical completion.
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Using CP for point predictions

In alternative to predictions sets, one can use CP to output a point
prediction and hedge it with confidence and credibility.

prediction: ŷ = arg maxy py

confidence: {1− ε : |Γε| ≤ 1}

credibility: inf {ε : |Γε| = 0}

In words, the confidence is 1 minus the 2nd largest p-value, and the
credibility is the largest p-value.

Note: while we have validity guarantees for prediction sets, there is no
guarantee on point predictions, confidence, and credibility.
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Uses of CP

In addition to providing valid hedged predictions, CP can be used for:
Ranking: order test objects e.g. by lowest p0.

Anomaly detection: declare an anomaly when you can reject all labels at
the chosen significance level.

Ensembling: p-values provide a common scale across disparate ML
algorithms. p-value combination methods from classical Statistical
Hypothesis Testing can be used to ensemble predictions.
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Final considerations

Conformal Predictors allow to produce predictions with a chosen error
rate (significance level ε).

The price to pay is multi-value predictions.

CP is a flexible framework that can be applied to most ML algorithms.

Inductive CP allows to scale the framework to large data sets.

Mondrian CP provides per-class validity guarantees, essential for
imbalanced data sets.
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Calibrated Probabilistic Predictions:
Venn Predictors
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Confidence vs. Probability

Confidence prediction: p-values
"What is the probability of drawing an example that is as or
more contrary than the test example to the hypothesis that it
comes from the same distribution as the training set?"

People generally think of the more direct question:

"What is the probability of the label of the test object being L
given the training set?"

Probabilistic Prediction answers this question
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Why Probabilistic Prediction: a simple example

Suppose that, out of five possible labels A, B, C, D, and E, a classifier outputs
C as prediction for an object x

Generally, this means that C is the most probable label for x , given the
training data.

But this in itself does not tell us much!

In the 4 distributions above, C is the most probable label.

But the way we would act based on them might be very different!
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Probabilistic Prediction

We want to predict the posterior conditional probability (density) of the
label, given the training set and the test object.

P [Y = y |X = x]

There are several different approaches:
Bayesian Machine Learning

Requires a “prior”
Kernel-based Density Estimation (Parzen-Rosenblatt)

Limitation: curse of dimensionality
“Classical Statistics” methods

e.g. From ECDF, as regularized solution of Fredholm integral
equations (Vapnik)

...the approach of this tutorial
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Our setting and goal

Learning under unconstrained randomness:
we know the space of examples (x, y) ∈ X× Y
we know the examples are drawn independently from the same
distribution Q
at the outset we know nothing about the distribution Q.

We want the predictor to be valid
Validity is the property of a predictor that outputs probability
distributions that perform well against statistical tests based on
subsequent observation of the labels.
In particular, we are interested in calibration:

P [Y = y |Py = p ] = p a.s.

It can be proved that validity cannot be achieved for probabilistic
prediction in a general sense.
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Venn Predictors

Venn Predictors are a form of multi-probabilistic predictors for which we
can prove validity properties

The impossibility result mentioned earlier is circumvented in two ways:
We output multiple probabilities for each label, one of which is the
valid one.
We restrict the statistical test for validity to calibration, i.e. the
property that probabilities are matched by observed frequencies
(for example, a particular label should occur in about 25% of the
instances in which we give it a probability of 0.25)
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Venn Predictors

We start from the usual method
divide the training set objects into categories.
use some method to classify the test object into one of the
categories.
use the frequencies of labels in the category of the test object as
predicted probabilities for the object’s label.

We introduce some key differences
We divide examples rather than objects into categories.
We create a test example from the test object by assigning a
hypothetical label.
When we compute the frequencies of labels in the category
containing the test example, we include the test example itself.
We repeat the category assignment and label frequency calculation,
for each possible label value.
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Venn Predictors in more formal terms

Usual setting:
training examples zi = (xi , yi ) forming a bag *z1, . . . , z`+
test object x`+1

Venn Predictor output:
For each possible label value y ∈ Y:

a probability distribution on |Y|

NOTE: not a single probability for a label, but a probability distribution on
the set of the labels. One of these probabilities is the calibrated one
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Venn Predictors: some detail

To create a Venn Predictor, one starts by defining a Venn Taxonomy.
Intuitively, the Venn Taxonomy is used to group examples that we
consider sufficiently similar for the purposes of estimating label
probabilities.
More precisely, the taxonomy is a partition of the space Z ` × Z
Let denote with A (*z1, . . . , z`+, z) the element of the partition that
contains (*z1, . . . , z`+, z)
Two examples zi and zj belong to the same category iff:

A (*z1, . . . , z`+1 + /zi , zi ) = A (*z1, . . . , z`+1 + /zj , zj )

Example: Taxonomy based on Nearest Neighbour
two examples are assigned to the same category if their nearest
neighbours have the same label
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Why Venn?

John Venn [1834-1923] was a logician and philosopher.

In 1866 he published The Logic of Chance, in which he laid the
foundations for the frequentist notion of probability.

He’s credited to have been the first to formulate explicitly and study the
reference class problem.
"It is obvious that every individual thing or event have an indefinite number of properties or attributes

observable in it, and might therefore be considered as belonging to an indefinite number of different

classes of things"

Which class do we take when calculating relative frequencies?

Venn also thought that "the more special the statistics, the better". But
this leads to a dilemma: the more specific the class is, the fewer the
element in the class.

The same dilemma applies when designing a taxonomy.
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Venn Predictors: some detail

Given the test object x`+1

For every possible value y of the label:
We form the bag *z1, . . . , z`+1+, with the hypothetical example
z`+1 = (x`+1, y)
Identify the category T to which the example (x`+1, y) belongs2.
The empirical probability distribution py of the labels in category T is
obtained as:

py (y ′) :=
|{(x∗, y∗) ∈ T : y∗ = y ′}|

|T |
In words: for every possible value y ′ of the label, we calculate the
fraction of examples in category T that have label y ′

2This is done by resorting to an underlying ML algorithm
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One comment on calibration

Calibration is desirable, but it is not the only property we seek in
predictions

Example: weather prediction
If we were asked to predict with what probability it will rain tomorrow,
we can simply always respond with the long-term average probability
of rain.

It would be a calibrated prediction, but it is hardly useful.

What we want to have a more specific prediction.

Venn Predictors offer a theoretically-backed framework in which we no
longer have to worry about calibration; we can focus only on making
predictions more specific.
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Venn Predictors: Nearest Neighbour example

Let’s create a taxonomy with this rule:
"two examples are assigned to the same category if their nearest
neighbours have the same label"

Given a test object xi

For each possible label value y
we create an example (xi , y)
Identify the category T to which the hypothetical example (xi , y)
belongs.
i.e. in this example find the label yNB of the nearest neighbour of (xi , y)

We compute the empirical probability distribution py of the labels
in category T
i.e. find all examples that have nearest neighbour with label yNB ; then for each possible label, count how many of those

examples have that label; then normalize the counts to obtain relative frequencies.

The result can be represented with a matrix, in which each row contains
the probability distribution over the labels associated with the hypothetical
label assignment.
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Venn Predictors: Nearest Neighbour example
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Venn Predictors: Nearest Neighbour example

Example: matrix for point (-1,-1)

0 1 2 3 4 5 6 7 8

0 0.6470 0.2941 0.0000 0.0588 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.5625 0.3750 0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.5625 0.3125 0.0625 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.5625 0.3125 0.0000 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.5625 0.3125 0.0000 0.0625 0.0625 0.0000 0.0000 0.0000 0.0000
5 0.5625 0.3125 0.0000 0.0625 0.0000 0.0625 0.0000 0.0000 0.0000
6 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0625 0.0000 0.0000
7 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0000 0.0625 0.0000
8 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.0625

Rows contain distributions
Each row corresponds to a hypothetical assignment of a label to the test
object
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Venn-ABERS predictors
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Calibration of scores into probabilities

Let’s restrict our attention to binary classification

Many machine learning algorithms for classification are in fact scoring
classifiers: they output a prediction score s(x) and the prediction is
obtained by comparing the score to a threshold.

One could apply a function g to s(x) to calibrate the scores so that
g(s(x)) can be used as predicted probability.

Isotonic Regression: let’s assume that g() be an non-decreasing
function.
Platt’s scaling: let’s fit a sigmoid
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Isotonic Regression3 example

Non-decreasing function that minimizes sum of square residues

3Monotonic: “one ordering”, either Isotonic (“order-preserving”) or Antitonic (“against the
order”)
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Isotonic calibrator

The isotonic calibrator g for ((s(x1), y1), (s(x2), y2), . . . , (s(x`), y`)) is the
non-decreasing function on s(x1), s(x2), . . . , s(x`) that maximizes the
likelihood ∏

i=1,2,...,`

pi

where:

pi =

{
g(s(xi )) if yi = 1
1− g(s(xi )) if yi = 0

The isotonic calibrator can be found as isotonic regression on
(s(x1), y1), (s(x2), y2), . . . , (s(x`), y`)).
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Isotonic regression and Venn prediction

Isotonic Regression is piecewise-constant.

In each interval of s in which g(s) is constant, the IR takes the average of
the values of the training points in that interval4

So, when the labels are encoded as 0 and 1, the value of the IR is the
relative frequency of label 1 in the interval.

It’s what we need to use it as Venn predictor!
The categories of the Venn taxonomy are the intervals over which
the IR is constant.

4theorem by Ayer, Brunk, Ewing, Reid, Silverman (1954)
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Venn-ABERS predictors

Let s0(x) be the scoring function for (z1, z2, . . . , z`, (x ,0)),
s1(x) be the scoring function for (z1, z2, . . . , z`, (x ,1)),
g0(x) be the isotonic calibrator for

((s0(x1), y1), (s0(x2), y2), . . . , (s0(x`), y`), (s0(x),0))

and g1(x) be the isotonic calibrator for

((s1(x1), y1), (s1(x2), y2), . . . , (s1(x`), y`), (s1(x),1))

The multiprobabilistic prediction output by the Venn-ABERS predictor is:
(p0,p1), where p0 := g0(s0(x)) and p1 := g1(s1(x))
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Toy example

Example of the two Isotonic Regressions in Venn Prediction
Blue dots: data (+1 or 0)
green dots: g0(s), red dots: g1(s)
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Synthetic data: V-A vs. Platt’s

Data set with deliberate departure from sigmoid
Venn-ABERS calibrator manages to recover actual score-probability
relationship
Platt’s scaling is not as accurate
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Synthetic data: V-A vs. Isotonic Regression

IR too recovers the score-probability relationship
However, the probability estimates are not as fine-grained
IR: 31 different probability levels
Venn-ABERS: 211 for p0, 1823 for p1
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Further observations

Calibration via Isotonic regression is known to "overfit"

Venn-ABERS predictors lessen this tendency to overfit and inherit the
validity guarantee of Venn predictors.

Compared with bare Isotonic Regression, the multi-probabilistic output
also provides an indication of the reliability of the probability estimates.

If the probabilities differ, this can be taken as an indication of the
uncertainty on the probability estimate itself.

Compared with Platt’s Scaling (fitting a sigmoid as calibrator),
Venn-ABERS predictors do not make any assumption on the shape
(functional form) of the calibrator.
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Single value prediction

Can we deal with a single-valued probability instead?

One approach is the following:
Assume a loss function L(y ,p) and minimize the expected loss with
respect to it
E.g. log loss: {

− log p if y = 1
− log(1− p) if y = 0

The optimal p for log loss is

p =
p1

1− p0 + p1

There is also an optimal p for Brier score (aka RMSE).

P.Toccaceli (RHUL) CP & Venn prediction 54 / 69



Synthetic data example: Loss

Losses on test data (average over 20 sets of 5000 test examples)

Probability estimate Log loss Brier

Isotonic Regression 0.380691 0.123435
Platt scaling 0.400399 0.131967
Venn-ABERS 0.368595 0.123379
VA p0 0.375235 0.123389
VA p1 0.375019 0.123461
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Real-life example

Venn-ABERS Calibrators for Compound Activity Prediction
Applied to SVM decision function
green dots: g0(s), red dots: g1(s)

Imbalanced data set (class 1 was ≈ 1%)
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Platt scaling vs. Venn-ABERS

Platt scaling vs. (log-loss) Venn-ABERS
Platt’s scaling is possibly less accurate for high probs
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Large-scale Venn-ABERS predictors

Venn-ABERS appear much more computationally demanding than
Isotonic Regression or Platt’s Scaling.

For every evaluation, we have to retrain the underlying machine
learning algorithm and recompute Isotonic Regressions
This would not scale to large data sets.

Inductive Venn-ABERS Predictors
The training set is split into a proper training set and a calibration set.
The proper training set is used to train the underlying ML algorithm
once.
The Isotonic Regression is calculated only on the calibration set.
This method retains the theoretical validity guarantee.
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Large-scale Venn-ABERS predictors

Inductive Venn-ABERS predictors are a step in the right direction but they
still are prohibitive for large data sets.

For every evaluation, it seems we have to recompute 2 Isotonic
Regressions on the calibration set.

In actual fact, it can be computed very efficiently
It is possible to exploit the fact that only one data point is added to an
otherwise fixed calibration set
Most computation occurs once for g0() and once for g1().
The evaluation requires only a binary search in a pre-computed data
structure
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Conclusions

Complementing a prediction with its probability can enable better
decision making

Venn Predictors are (multi)probabilistic predictors with validity guarantee

Venn-ABERS Predictors are Venn Predictors that can be applied on top
of a Scoring Classifier

VAP do not assume a functional form (e.g. sigmoid) for the relationship
between score and probability
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Ranking example

Biological activity of chemical compounds (threshold: 3.81%). The table on the left is order by lowest pinactive ,

the one the right by highest pactive .

Rank Compound tag Viability pinactive

1 79813 1.76 3.483e-10
2 129543 4.57 9.419e-10
3 115173 1.48 1.593e-09
4 108813 15.69 2.372e-09
5 100523 0.85 4.316e-09
6 116614 39.05 2.161e-08
7 94529 3.57 2.312e-08
8 104764 1.47 3.455e-08
9 62991 25.27 4.058e-08

10 64246 4.44 4.743e-08
11 84878 1.77 4.755e-08
12 127825 1.67 5.238e-08
13 52454 2.95 5.885e-08
14 74599 3.84 6.941e-08
15 75236 74.03 9.263e-08
16 91399 2.05 1.138e-07
17 121411 1.69 1.929e-07
18 6106 2.27 2.118e-07
19 104197 1.78 2.127e-07
20 12551 1.08 2.363e-07
21 85895 2.03 2.412e-07
22 128112 1.96 2.579e-07
23 96373 1.16 2.599e-07
24 74016 2.37 2.820e-07
25 130880 3.36 3.077e-07

Rank Compound tag Viability pactive

1 115173 1.48 1.000
2 116614 39.05 1.000
3 129543 4.57 1.000
4 79813 1.76 1.000
5 100523 0.85 0.998
6 108813 15.69 0.998
7 94529 3.57 0.997
8 62991 25.27 0.994
9 64246 4.44 0.992

10 84878 1.77 0.990
11 104764 1.47 0.988
12 127825 1.67 0.985
13 52454 2.95 0.984
14 74599 3.84 0.982
15 75236 74.03 0.978
16 115494 83.84 0.977
17 121411 1.69 0.977
18 91399 2.05 0.977
19 119648 80.08 0.973
20 128112 1.96 0.964
21 85895 2.03 0.961
22 129514 50.91 0.960
23 130880 3.36 0.958
24 6106 2.27 0.958
25 104197 1.78 0.957

From Toccaceli et al. Combination of Conformal Predictors for Classification, COPA, 2017
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Combination example
p-value combination of SVC, XGB, kNN. F1 score for precise predictions for various significance levels
(averages over 50 runs). The best values are highlighted in bold.

F1 for the Active class F1 for the Inactive class
epsilon 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15

SVC 0.269 0.176 0.122 0.096 0.193 0.459 0.617 0.716
XGB 0.258 0.173 0.121 0.096 0.287 0.501 0.645 0.736
kNN 0.161 0.102 0.077 0.066 0.253 0.401 0.510 0.593

min 0.232 0.122 0.091 0.085 0.367 0.637 0.745 0.771
max 0.166 0.220 0.209 0.177 0.110 0.230 0.334 0.429
mean 0.198 0.235 0.187 0.142 0.159 0.317 0.477 0.603
Fisher 0.217 0.133 0.102 0.087 0.468 0.653 0.742 0.793
min ECDF 0.261 0.177 0.128 0.106 0.289 0.480 0.613 0.693
max ECDF 0.218 0.143 0.106 0.088 0.279 0.493 0.630 0.711
mean ECDF 0.236 0.163 0.120 0.097 0.294 0.514 0.656 0.743
Fisher ECDF 0.280 0.183 0.127 0.100 0.310 0.523 0.658 0.743

weighted soft 0.196 0.235 0.192 0.148 0.161 0.325 0.496 0.634
weighted hard 0.240 0.212 0.169 0.140 0.312 0.567 0.712 0.794
reduced soft 0.199 0.239 0.190 0.141 0.161 0.325 0.495 0.630
reduced hard 0.248 0.155 0.114 0.099 0.326 0.578 0.710 0.773
weighted soft ECDF 0.235 0.158 0.116 0.094 0.353 0.633 0.782 0.856
weighted hard ECDF 0.237 0.155 0.126 0.134 0.643 0.839 0.897 0.896
reduced soft ECDF 0.240 0.169 0.123 0.099 0.295 0.517 0.661 0.749
reduced hard ECDF 0.251 0.172 0.125 0.104 0.279 0.477 0.610 0.692

From Toccaceli et al. Combination of Inductive Mondrian Conformal Predictors, Machine Learning, 2018
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Nearest Neighbour example
Zoom on the lower left quadrant

Test object at (-1,-1) with hypothetical label 0 (pale green, not drawn).
Large red dot denotes examples belonging to category 0.

P.Toccaceli (RHUL) CP & Venn prediction 66 / 69



Induction, Deduction,. . . Transduction! 1/2

Classical philosophy usually considers two types of inference:
induction: from particular to general
deduction: from general to particular

V. Vapnik proposed a new type5,6:
transduction: from particular to particular
(direct inference instead of generalization)

Examples

Model

Prediction at
point of interest

Ind
uc

tio
n

Transduction

Deduction

5V. Vapnik, The nature of statistical learning theory, p.293, 2nd ed., Springer 1999
6V. Vapnik, Estimation of Dependencies Based on Empirical Data, Chap.3, , Springer 2006
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Induction, Deduction,. . . Transduction! 2/2

Rationale: “If you are limited to a restricted amount of information, do not
solve a particular problem by solving a more general problem.”
The more general problem refers to creating a model that predicts well for
all possible values; in other words, it refers to the problem of estimating a
function.
The transductive approach is instead to create a model that predicts well
at the point(s) of interest, not everywhere; it estimate the values of a
function at point(s) of interest.
The implication is that at training time you also use the test objects.
It can be of benefit when you have a (relatively) small amount of data.
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Validity guarantees

P: exchangeable probability distribution on Z∞
ω = (x1, y1, x2, y2, . . . ) drawn from P

Err(ε)
n (Γ, ω) :=

{
1 if yn /∈ Γε(x1, y1, . . . , xn, yn, xn+1)

0 otherwise

Err(ε)
n (Γ,P) : random variable of which Err(ε)

n (Γ, ω) is a realization

Asymptotic conservative validity:

P

[
lim sup
n→∞

Err(ε)
n (Γ,P)

n
≤ ε

]
= 1

A stronger version applying the law of iterated logarithms:

P

[
lim sup
n→∞

Err(ε)
n (Γ, ω)√

2ε(1− ε)n ln ln n
≤ 1

]
= 1

Finite sample guarantee using Hoeffding’s inequality:

∀N > 0, ∀δ > 0 P
[
ω : Err(ε)

N (Γ, ω) ≥ (ε+ δ)N
]
≤ e−2Nδ2
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