Aggregating Algorithm for Prediction of Packs

Yuri Kalnishkan

Computer Learning Reseach Centre and
Department of Computer Science
Royal Holloway, University of London

September 2019

ROYAL

HOLLOWAY

AA for Packs, 1, Slide 1/20 CLRC and DCS, RHUL
Experts
» there are N experts Eq, Eo, . .., En predicting the same
sequence
(1)FORt=1,2,...
(2) the experts output predictionsy e I, n=1,...,N
(3) the learner produces ~; € T
(4) the nature outputs w; € Q
(5) the learner suffers loss A(~:, wy)
(6) the experts suffer losses A(7/,wt), n=1,2,...,N
(7) END FOR

» we want to construct a merging algorithm ensuring that our
loss is the same or little worse than those of the best expert
— i.e., we want guarantees of the type
Lossr(Learner) < Losst(Ep) forall nand T
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Online Learning Framework

« the outcomes wq,wo, ... occur one after another
— outcomes come from an ouicome space 2

» before seeing the outcome w; we output a prediction v; € T
— predictions can be drawn from a prediction space '

« discrepancies between predictions and outcomes leads to
loss given by a loss function A : T x Q — [0, +00]
— we want the cumulative loss

T

Losst = > A(ye, wr)
t=1

to be small
o the triple (2, T, \) is called a game
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Aggregating Algorithm
parameters: n and initial distribution g1, g2, ..., gn

1) initialise weights w§ = gn, n=1,2,...,N

(1)

(2) FORt=1,2,...

(38) read the experts’ predictions 7/, n=1,2,...,N
(4) normalise the weights p7 , = w ./ S°N_ w .
(5) solve the system (w € Q):

A7, w) < —% InSo0q e A7)
w.r.t. v and output a solution ~;

(6) observe the outcome wy

(7) update the experts’ weights w’ = w;? ;=0
n=1,2,....N

(8) END FOR

[Vovk, 1991]
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Mixability Constant

» for every n > 0, the mixability constant C,, is the minimal C
such that for all arrays of predictions v',...,+"N and
weights p', ..., pN there is ~, such that for all w

N
M7, w) < —C% In> " plem(")
n=1

— we can solve the system of inequalities “relaxed” by C,
» we get the guarantee [Vovk, 1991]

Losst(Learner) < C, Losst(En) + % InN

— for every expert Ej, all experts’ predictions, and all
moments T
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Mixability

» we have C, > 1;if C, = 1, the game is called »-mixable

o example: square-loss game Q = I = [A, B] is mixable for
n<2/(B- A7

» the minimal n such that the game is n-mixable is the
obvious choice
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Optimality of the AA

« if any algorithm is capable of achieving
Losst(Learner) < ALosst(E,) + BInN

for every expert Ej, all experts’ predictions, and all
moments T
—then AA can do the same or better for some n:

C,<A
G g
n

for some n
[Vovk, 1998]
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Packs

» suppose that on step t several outcomes w; 1,wt 1, ... Wt k,
happen
— and we need to make K; predictions v; 1,7t 1, - - - Ytk
— we do not predict outcomes one by one, but predict a
pack of them

¢ K; can stay the same or vary from step to step
¢ the plain loss is

T K

Losst = Z Z MYk Wik)

t=1 k=1

AA for Packs, 1, Slide 8/20 CLRC and DCS, RHUL



BOLD Question

» we can run several instances of a regular merging
algorithm at the same time
— when we get experts’ predictions /., . .. 77£/k’ we feed
them to an available instance of the algorithm « can we manage with one instance of AA?
— it gives us a prediction v x and gets blocked until the
outcome w;  is known; then we give it to the algorithm and
it becomes available to merge more experts’ predictions

— if no instances are available, we start a new one ¢ BOLD has K- N weights for N experts
— can we manage with N?

» BOLD depends on the order of outcomes within a pack
— can we have an order-independent algorithm?

* loss bound with AA as the base algorithm:

Lossr(Learner) < C, Losst(Ep) + max Klfﬁ InN
n

=1,

[Joulani et al, 2013]
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Mixability for Packs Aggregating Algorithm for Packs
(1) initialise weights wy = qn, n=1,2,...,N
- for a game & = (Q, T, \) consider the game (2)FORt=1.2,...
BK = (K K AK)) (8)  normalise the weights p/ ; = th_1/z,,¥:1 A
— where (4) FORk=1,2,....K;
(5) read the experts’ predictions ’ygk, n=12,...,N
(6) solve the system (w € Q):

K
A (e, k) (@1, wk) = S Mk wk)
9 9 9 9 I ) C _ N
2 Aw) < =S 3o pp e 0e)

w.r.t. v and output a solution ~;

» Theorem C) = G, (7) END FOR
— for the equality we need to assume convexity of X in ~; (8)  observe the outcomes wy 1, ...,V kK
K K n K
but we always have sz /})( <G, (9)  update the e>;5erts’ weights w = wf ;e Ll Ao k) /K
n=12...,

(10) END FOR
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Guarantees
» what is K; on step t?
— there are two options
o AAP-incremental: take K; = maxs—1 2. ¢ Ks; then

Lossr(Learner) < C, Losst(Ep) +  max_ Kt% In N
as in BOLD
o AAP-current: take K; = K;: then

&InN,
n

average average
LossT % (Learner) < C, LossT° “%°(E,) +
where

average
Loss7

;
_y >t A wik)
t=1 Ki
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Experiments

« bookmakers’ data (after [Vovk and Zhdanov, 2009]
— tennis: artificial packs
— football: true packs

» house sales data
— we want to work out the house sale price from the
house description
— the experts are regressions and trees trained on a
month of data from the first year: January, February, ...,
December
— a pack is made of all houses sold in a month
— Ames dataset: 2930 transactions
— London area house sales: 1.38 million transactions
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BOLD vs AAP Tennis
Histogram of Losses: tennis
1 AA with Order ]
° —— 2 AAP-current
3 4 —— 3 Mean
—— 4 AAP-incremental
» BOLD depends on the order within a pack and AAP does 5 AAP-max 3| |2lp « the histogram shows the
not . N losses of BOLD under
h— let us shuffle the data within a pack and see what - || shuffling within packs
appens © o AAP-incremental and
2 AAP-current beat the
average
ol ]
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Regression on Ames House Prices Incremental vs Current

Histogram of Losses: Ames

o AAP-incremental achieves

120

1 AA with Order m
—— 2 AAP-current
o | — 3 Mean [ ] er
8] — ampincrenenal 2|4 ||k « AAP-incremental and Lossr(Learner) < C, Losst(Ep) + :max K;7 InN
S AAP-current still beat the
average — whenever K; is uses a suboptimal learning rate
; G « but BOLD with the original o AAP-current uses the optimal learning rate
i order beats them all by far — but for the plain cumulative loss we only get
« the order conveys useful max K C
2 | i i ion? Lossr(Learner) < —— =t Lo | osst(E, max_Ki— InN
% information (location?) 7( ) < A 7( ")+t:1,...,r e,
2.93é+12 ‘ 2.95é+12 ‘ 2.97é+’£'_‘
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Tennis Small Packs Tennis Large Packs

{ = « the difference
Losst(AAP-current) —
Losst(AAP-incremental)
is plottedvs T

« artificial packs of size 5to 16

« the difference
Losst(AAP-current) —
Losst(AAP-incremental)
is plotted vs T

« artificial packs of size 1 to 12
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