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Abstract. Consider the online regression problem where the depen-
dence of the outcome yt on the signal xt changes with time. Standard re-
gression techniques, like Ridge Regression, do not perform well in tasks of
this type. We propose two methods to handle this problem: WeCKAAR,
a simple modification of an existing regression technique, and KAARCh,
an application of the Aggregating Algorithm. Empirical results on artifi-
cial data show that in this setting, KAARCh is superior to WeCKAAR
and standard regression techniques. On options implied volatility data,
the performance of both KAARCh and WeCKAAR is comparable to
that of the proprietary technique currently being used at the Russian
Trading System Stock Exchange (RTSSE).

1 Introduction

Consider the online regression problem where the dependence of the outcome yt

on the signal xt changes with time. An example of this is the prediction of
financial options implied volatility described in Sect. 4.2. Standard regression
techniques, like Ridge Regression, treat all training examples equally. In time
series theory there is a method called GARCH (see, for example, [1, Chap. 19]),
which assigns exponentially decreasing weights to old examples. This method
is used to estimate historical volatility in finance. We would like to extend this
idea to the more general problem of online regression.

In Sect. 3 we present two methods as a solution to this problem: WeCKAAR
and KAARCh. WeCKAAR is a simple method that adds decaying weights to an
existing regression technique. KAARCh is a new method based on the Aggre-
gating Algorithm (AA). The AA (see [2]) allows us to merge experts from large
pools to obtain optimal strategies. To get KAARCh, the AA is used to merge
all predictors that can change with time.

We report the empirical performance of these methods in Sect. 4; first on an
artificial dataset, and then on options implied volatility data. These results show
that when dealing with changing dependencies, KAARCh is an improvement on
standard and weighted regression techniques. In addition, the performance of
WeCKAAR and KAARCh on options implied volatility data provided by the
Russian Trading System Stock Exchange (RTSSE) is comparable to that of the
specially designed proprietary technique currently being used.



2 Background

In the online regression framework at every moment in time t = 1, 2, . . . , the
value of a signal xt ∈ X arrives1. Statistician (or Learner) S observes xt and
then outputs a prediction γt ∈ R, before the outcome yt ∈ R arrives. The set X
is a signal space which is assumed to be known to Statistician in advance. We
will be referring to a signal-outcome pair as an example. The performance of S
is measured by the sum of squared discrepancies between the predictions and
the outcomes, known as square loss. Therefore, on trial t Statistician S suffers
loss (yt−γt)2. The losses incurred after T trials sum up to the cumulative square
loss at time T ,

LT (S) =
T∑

t=1

(yt − γt)2 .

Clearly, a smaller value of LT (S) means a better predictive performance.

2.1 Linear and Kernel Regression

If X ⊆ Rn we can consider simple linear regressors of the form w ∈ Rn. Given a
signal x ∈ X, such a regressor makes a prediction w′x. Linear methods are easy
to manipulate mathematically but their use in the real world is limited since
they can only model simple dependencies. The kernel trick (first used in this
context in [3]) is now a widely used technique which can make a linear algorithm
operate in feature space without the inherent complexities. For a function k :
X×X → R to be a kernel it has to be symmetric, and for all ` and all x1, . . . ,x` ∈
X, the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , ` must be positive semi-
definite (have nonnegative eigenvalues). For every kernel there exists a unique
reproducing kernel Hilbert space (RKHS) F such that k is the reproducing kernel
of F . In fact, there is a mapping φ : X → F such that kernels can be defined
as k(x, z) = 〈φ(x), φ(z)〉. We will be referring to any function in the RKHS F
as D. Intuitively D(x) is a decision rule in F that produces a prediction for the
object x. We will be measuring the complexity of D by its norm ‖D‖ in F . For
more information on kernels and RKHS see, for example, [4] and [5].

2.2 Ridge Regression (RR)

Ridge Regression (RR), introduced to statistics in [6], is a popular regression
technique that at time T aims to find a wR that minimises

LT (RR) = a‖wR‖2 +
T−1∑
t=1

(yt − 〈wR,xt〉)2 ,

1 As usual, all vectors are identified with one-column matrices and A′ stands for the
transpose of matrix A. We will not be specifying the size of simple matrices like the
identity matrix I when this is clear from the context.



where a is a fixed positive real number. RR’s solution is wR = (aI+X′X)−1X′y,
where I is the identity matrix, X = (x1, . . . ,xT−1)

′ and y = (y1, . . . , yT−1)
′. The

kernel version of RR, called Kernel Ridge Regression (KRR) (see [7]) calculates
the prediction for a new example xT by

γKRR = y′(aI + K)−1k , (1)

where k = (k(xi,xT )) and K = (k(xi,xj))i,j , i, j = 1, . . . , T − 1.

2.3 The Aggregating Algorithm for Regression (AAR)

The Aggregating Algorithm (AA) (see [2]), allows us to merge strategies (or
experts) from large pools to obtain optimal strategies. Typically, such an optimal
strategy performs nearly as good as the best expert in the pool in terms of the
cumulative loss. The AA was applied to the problem of linear regression resulting
in the AA for Regression (AAR) [2, Sect. 3] (also known as the Vovk-Azoury-
Warmuth forecaster, see [8, Sect. 11.8]). Using a Gaussian prior, AAR merges
all the static linear predictors that map signals to outcomes. AAR’s solution to
the regression problem is wA = (aI+ X̃

′
X̃)−1X̃

′
ỹ, where X̃ = (x1, . . . ,xT )′ and

ỹ = (y1, . . . , yT−1, 0)′. It can be shown (see [9]) that this solution minimises

LT (AAR) = a‖wA‖2 + 〈wA,xT 〉2 +
T−1∑
t=1

(yt − 〈wA,xt〉)2 .

The main property of AAR is that it is optimal in the sense that the total loss it
suffers is only a little worse than that of any linear predictor. In [10] AAR was
kernelised to get Kernel AAR (KAAR) which makes a prediction at time T by

γKAAR = ỹ′(aI + K̃)−1k̃ ,

where K̃ = (k(xi,xj))i,j , i, j = 1, . . . , T , and k̃ =
(
k′, k(xT ,xT )

)′.
2.4 Controlled KAAR (CKAAR)

Controlled KAAR (CKAAR) [9] is a generalisation of both KRR and KAAR. At
time T the linear version of CKAAR aims to find a solution wC that minimises

LT (CKAAR) = a‖wC‖2 + b〈wC,xT 〉2 +
T−1∑
t=1

(yt − 〈wC,xt〉)2 ,

where b ≥ 0. It is clear that when b = 0, CKAAR is equivalent to RR and
equivalent to AAR when b = 1. Empirical results in [9] suggest that in general,
the performance of CKAAR is as good as or better than that of both KAAR
and KRR. The linear CKAAR solution is wC = (aI + X̂

′
X̂)−1X̂

′
ỹ, where X̂ =

(X′,
√

bxT )′. The kernel version of CKAAR makes a prediction at time T by

γCKAAR = ỹ′(aI + K̂)−1k̂ ,

where K̂ =
[

K
√

bk√
bk′ b k(xT ,xT )

]
and k̂ =

(
k′,

√
b k(xT ,xT )

)′
.



3 Methods

We are interested in making predictions in online regression where the depen-
dency of yt on xt changes with time. We present two solutions to this problem:
a simple method named WeCKAAR and our new method KAARCh. It is inter-
esting that the prediction formulae of these two methods are very similar.

3.1 WeCKAAR

Weighted CKAAR (WeCKAAR) is a simple modification of CKAAR that em-
ploys a decaying factor such that old examples are given less importance. The
objective of WeCKAAR is to find a w that minimises

LT (WeCKAAR) = a‖w‖2 + b〈w,xT 〉2 +
T−1∑
t=1

dt(yt − 〈w,xt〉)2 , (2)

where dt ∈ R are nonnegative weights that increase with t. Let dT = b and
D = diag(d1, . . . , dT ) be the diagonal matrix with elements d1 . . . dT . It can
be shown by differentiation that the minimum of (2) is achieved when w =(
X̃

′
DX̃ + aI

)−1

X̃
′
Dỹ. If we use the identity (AA′+aI)−1A = A(A′A+aI)−1

(see, for example, [10, Sect. 3.1]) to obtain the dual form of this and introduce
kernels, WeCKAAR’s prediction for the signal xT becomes

γT = ỹ′
√

D
(√

DK̃
√

D + aI
)−1√

Dk̃ , (3)

where
√

D = diag(
√

d1, . . . ,
√

dT ), and

√
DK̃

√
D =


d1k(x1,x1)

√
d1d2k(x1,x2) · · ·

√
d1dT k(x1,xT )√

d2d1k(x2,x1) d2k(x2,x2) · · ·
√

d2dT k(x2,xT )
...

...
. . .

...√
dT d1k(xT ,x1)

√
dT d2k(xT ,x2) · · · dT k(xT ,xT )

 .

3.2 KAARCh

The main idea behind our new method, the Kernel Aggregating Algorithm for
Regression with Changing dependencies (KAARCh), is to apply the Aggregating
Algorithm (AA) to the case where the pool of experts is made up of all linear
predictors that can change with time. More formally, an expert in this case is a
sequence θ1, θ2, . . ., that at time T predicts x′T (θ1+θ2+. . .+θT ), where xT ∈ Rn

and for every t, θt ∈ Rn.
Due to space limitations we are only going to give an overview of the main

theoretical results achieved (for details see [11]). Let a1, . . . , aT be positive con-
stants. Applying the AA to the pool of experts described above with a Gaussian
prior and introducing kernels, we get KAARCh which makes a prediction by

γT = ỹ′
(
K̄ + I

)−1
k̄ , (4)



where K̄ =
((∑min(i,j)

t=1
1
at

)
k(xi,xj)

)
i,j

, and k̄ =
((∑i

t=1
1
at

)
k(xi,xT )

)
i
, for

i, j = 1, . . . , T .
The main property of KAARCh is that its cumulative loss is less or equal

to that of a wide class of experts plus a term of the order o(T ). Informally, this
class is comprised of all the predictors that do not change very rapidly with time.
We assume that outcomes are bounded by Y , therefore, for any t, yt ∈ [−Y, Y ]
(however, we do not require our algorithm to know Y ).

Theorem 1. Let k be a kernel on a space X, let Dt be decision rules in the
RKHS induced by k and let D = (D1, D2, . . . , DT )′. Then for any point in time T
and any at > 0, t = 1, . . . , T ,

LT (KAARCh) ≤ inf
D

(
LT (D) +

T∑
t=1

at‖Dt‖2
)

+ Y 2 ln det
(
K̄ + I

)
.

Let us bound the norm of D1 by d and assume that T is known in advance. If
each ‖Dt‖, for t = 2, . . . , T , is small, we can find a1, . . . , aT such that the extra
terms become of the order o(T ).

Corollary 1. Under the conditions of Theorem 1, let T be known in advance.
For every positive d and ε, if ‖D1‖ ≤ d and, for t = 2, . . . , T , ‖Dt‖ ≤ d

T 0.5+ε , we
can choose a1, . . . , aT such that

LT (KAARCh) ≤ LT (D) + O
(
Tmax(0.5,(1−ε))

)
= LT (D) + o(T ) .

This result can also be achieved if we assume that there are only a few nonzero
Dt, for t = 2, . . . , T . In this case, the nonzero Dt can have greater flexibility.

Implementation Notes. For simplicity, we may take all equal a1, a2, . . . , aT =
a. In this case, (4) becomes

γT = ỹ′
(
K̆ + aI

)−1

k̆ , (5)

where

K̆ =


1k(x1,x1) 1k(x1,x2) 1k(x1,x3) · · · 1k(x1,xT )
1k(x2,x1) 2k(x2,x2) 2k(x2,x3) · · · 2k(x2,xT )
1k(x3,x1) 2k(x3,x2) 3k(x3,x3) · · · 3k(x3,xT )

...
...

...
. . .

...
1k(xT ,x1) 2k(xT ,x2) 3k(xT ,x3) · · · Tk(xT ,xT )

 , k̆ =


1k(x1,xT )
2k(x2,xT )
3k(x3,xT )

...
Tk(xT ,xT )

 .

Recalling that a scalar multiplied by a kernel is still a kernel, and making al-
lowances such that steps in time can be skipped (for instance there is no data
available for some steps), the coefficients 1, . . . , T in K̆ and k̆ can be replaced
with any increasing, positive real numbers t1, . . . , tT , representing the real-world
time at which examples arrive.
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Fig. 1. The behaviour of θt with time (a), approximating Brownian motion, and the cu-
mulative loss suffered by KRR, WeCKAAR and KAARCh on the artificial dataset (b).

4 Empirical results

In this section we measure the empirical performance of our methods on an
artificial dataset and on a real-world dataset on options implied volatility.

4.1 Artificial Dataset

Let w1, . . . , wT ∈ R be T normally distributed random variables with mean 0
and variance σ2, and θt =

∑t
i=1 wi. Drawing xt ∈ R from the interval [0, 1] using

a uniform distribution, we generate a dataset by the equation yt = θ′txt. In our
experiments, we set T = 200 and σ = 0.01, and repeated the procedure 20 times
on such randomly generated datasets. The typical behaviour of a resulting θt

with time can be seen in Fig. 1 (a). In the normal regression setting (where the
dependency does not change with time) this graph would simply be a flat line. In
Fig. 1 (b) we show the mean over all runs of the cumulative square loss suffered
by KRR, WeCKAAR and KAARCh using a linear kernel on these datasets.

4.2 Options Implied Volatility Data

The Russian Trading System Stock Exchange (RTSSE) have provided us with
data containing the details of option transactions on several underlying assets.
Options are types of derivative securities that give the right to buy or sell assets
for a particular strike price in the future (see [1] for more details). The accurate
pricing of these options is an important problem. The most popular approach
to pricing options is based on the Black-Scholes (B-S) theory. This assumes that
the asset price follows an exponential Wiener process with constant volatility σ
which cannot be directly observed but can be estimated from historical data.
In practice this model is often violated. Given the current prices of options and
the underlying asset we can find σ that satisfies the B-S equations. This σ is



Table 1. Results on options implied volatility data. All mean square losses reported
are ×10−3, apart from the ones for EERU1206 which are ×10−2.

RTSI1206 (10126 transactions) RTSI0307 (8410 transactions)
RTSSE: 2.91 RTSSE: 2.78

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 36.56 2.19 (2.16) Poly 8.29 2.40 2.38
Spline 2.63 (2.23) (2.24) Spline 3.49 2.29 2.29
RBF 3.31 2.33 2.31 RBF 3.87 2.33 2.32

GAZP1206 (9382 transactions) GAZP0307 (10985 transactions)
RTSSE: 1.29 RTSSE: 2.13

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 1.59 1.54 1.53 Poly 3.16 2.45 2.45
Spline 5.21 1.49 1.49 Spline 2.85 2.47 2.47
RBF 1.59 1.47 1.48 RBF 3.53 2.49 2.49

EERU1206 (13152 transactions) EERU0307 (14776 transactions)
RTSSE: 1.47 RTSSE: 4.74

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 162.43 1.71 1.72 Poly 5.49 4.58 4.52
Spline 1.92 1.65 1.66 Spline 5.07 4.49 4.50
RBF 6.36 1.65 1.65 RBF 5.83 (4.46) 4.49

known as the implied volatility and exhibits a dependence on the strike price
and time. There is no generally recognised theory explaining the phenomenon of
implied volatility; however, it remains a useful parameter and traders often use
it to quote option prices. We are interested in using learning theory methods to
predict implied volatility without assuming any model for its behaviour. In our
experiments we treat the implied volatility of a transaction as the outcome and
the parameters of the transaction and other market information as the signal.

For WeCKAAR’s d1, . . . , dT and KAARCh’s t1, . . . , tT , we used a real number
representing the time at which the transactions occurred. The kernels used were
the spline, polynomial degree 2, and RBF with σ = 1 (see, for example, [5]). We
employed a sliding window (of size 50) approach. The parameter a (see (1), (3),
and (5)) was updated every 50 steps by finding a value that works well on
previous examples. Due to computational limitations, we ran experiments on
100 randomly selected segments containing 200 transactions from every dataset.

In Table 1 we give the results obtained on different options data. EERU and
GAZP are options on futures of liquid stocks and RTSI is related to options on
futures of a popular RTSSE index (the appended numbers specify different trans-
action periods). The results show the mean square loss suffered by WeCKAAR,
KAARCh and KRR, and also that of the proprietary method used at the RTSSE
for comparison. To measure the statistical significance of the difference between
the results of our methods and that of the RTSSE we used the Wilcoxon signed
rank test. When there is no statistical significance in the difference (we use the
conventional 5% threshold) the corresponding loss is enclosed in parentheses.



5 Discussion

KAARCh’s performance on the artificial dataset is much better than that of
WeCKAAR and KRR. We attribute this to KAARCh’s superior theoretical prop-
erties. Six real-world datasets on options implied volatility were also considered.
The results achieved by KAARCh and WeCKAAR on these datasets are always
better than those of KRR and very close to those of the RTSSE (and slightly
better in half of them). The proprietary method used at the RTSSE was specif-
ically designed for this application and is constantly monitored and tuned by
experts to predict better. Therefore, it is remarkable that our methods perform
comparably. These results show that our new methods KAARCh and (to a lesser
extent) WeCKAAR are capable of handling changing dependencies and, in this
context, are an improvement on standard regression techniques.
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