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Papers

• conference version:
Y. Kalnishkan, V. Vovk and M. V. Vyugin. Generalised
Entropy and Asymptotic Complexities of Languages. In
Learning Theory, 20th Annual Conference on Learning
Theory, COLT 2007, volume 4539 of Lecture Notes in
Computer Science, pages 293-307, Springer 2007.
— limited to two games
— inaccuracies in the main result

• full version accepted for publication in Information and
Computation
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Protocol

• we try to predict elements of a sequence ω1, ω2, ω3, . . . ∈ Ω

• we output predictions γ1, γ2, γ3, . . . ∈ Γ

• protocol:
FOR t = 1,2, . . .

(1) A chooses a prediction γt ∈ Γ
(2) A observes the actual outcome ωt ∈ Ω

END FOR
• the quality of predictions is measured by a loss function
λ(ω, γ)
— loss over T trials sums up to the cumulative loss

LossA(ω1, ω2, . . . , ωT ) =
T∑

i=1

λ(ωi , γi)
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Formalisation

• a game G is a triple 〈Ω, Γ, λ〉
— Ω is the outcome space
— Γ is the prediction space
— λ : Ω× Γ→ [0,+∞] is the loss function

• in this talk
— Ω = {ω(0), ω(1), . . . , ω(M−1)} is finite
— Γ is compact
— λ is continuous
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Prediction Strategy

• A : Ω∗ → Γ maps finite sequences of previous outcomes to
predictions

• we can consider various classes of strategies, e.g.,
computable and polynomial-time computable
— but the ultimate goal is to study predictability
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Loss as Complexity

• the loss of a strategy A on a sequence x = (ω1, ω2, . . . , ωn)
is

LossA(x) =
n∑

i=1

λ(ωi ,A(ω1, ω2, . . . , ωi−1))

• this can be thought of as complexity of x w.r.t. A

• can we define complexity irrespective of A?
— if we take ‘optimal’ A, we can consider its loss as
‘intrinsic’ complexity of x
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Difficulties

• for every fixed sequence there is a strategy that knows it
already
— unless we take computability into account...

• every strategy is beaten by some other strategy on some
sequences
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Predictive Complexity

• a solution: predictive complexity [Vovk and Watkins, 1998]
— a class of semi-computable semi-strategies is
considered
— it usually has an optimal element
— we can define predictive complexity of a sequence up to
a constant

• the theory of predictive complexity is very similar to
Kolmogorov complexity

• existence for various classes of losses is partly an open
problem
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Asymptotic Complexity

• let us consider complexity of languages (= sets of strings)
instead of individual sequences

• let us consider loss per element
• let us consider limits
• we get something like

AC(L) = inf
A

lim
n→+∞

max
x∈L∩Ωn

LossA(x)

n
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Questions

• so
AC(L) = inf

A
lim

n→+∞
max

x∈L∩Ωn

LossA(x)

n
• what if there are no xs of length n?

— skip that n
• what if there are no xs of length n from some length on?

— no complexity for finite languages
• what if the limit does not exist?

— let us consider upper and lower limits instead
• if the sequence is infinite, we can first take the limit

limn→+∞ along the sequence and then supx∈L
— two more variations of complexity
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Finite Sequences

• let L ⊆ Ω∗ (L is a set of finite sequences)
— let L be infinite

• upper (uniform) complexity:

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)

n

• lower (uniform) complexity:

AC(L) = inf
A

lim inf
n→+∞

max
x∈L∩Ωn

LossA(x)

n
• in the former definition we assume max ∅ = 0 and in the

later max ∅ = +∞
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Infinite Sequences

• let L ⊆ Ω∞ (L is a set of infinite sequences)
• we can consider the set of all finite prefixes of all

sequences from L; it has upper and lower complexities; let
us call them upper uniform complexity AC(L) and lower
uniform complexity AC(L)

• upper non-uniform complexity:

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x |n)

n

• lower non-uniform complexity:

AC(L) = inf
A

sup
x∈L

lim inf
n→+∞

LossA(x |n)

n
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Problem

• suppose we have games G1,G2, . . . ,GK with same set of
possible outcomes Ω

• what are the relations among AC1,AC2, . . . ,ACK ?
• we shall describe the set
{(AC1(L),AC2(L), . . . ,ACK (L))} on RK

— here L ranges over all non-trivial languages
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Weak Mixability

• a game is weakly mixable if for any two strategies A1 and
A2 there is a strategy A such that

LossA(x) ≤ min (LossA1(x),LossA2(x)) + o(|x |)
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Convexity

• let us take the set
P = {(λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)) | γ ∈ Γ} ⊆ RM

— images of points from Γ in RM

• a point (s0, s1, . . . , sM−1) ∈ RM is a superprediction if there
is p = (p0,p1, . . . ,pM−1) such that

p0 ≤ s0

p1 ≤ s1

. . .

pM−1 ≤ sM−1

• superpredictions are located ‘above and to the right’ from
points of P

• weak mixability is equivalent to convexity of S
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Entropy

• let p be a probability distribution on Ω
— p = (p0,p1, . . . ,pM−1), where

∑
pi = 1

• generalised entropy

H(p) = min
γ∈Γ

Epλ(ω, γ) = min
γ∈Γ

M−1∑

i=0

piλ(ω(i), γ)

— suppose we know that the next outcome is distributed
according to P
— we will be looking for γ ∈ Γ to minimise the expected
loss
— the minimum of the expected loss is the entropy H(p)

• discussed in [Grünwald and Dawid, 2004]
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Entropy Hull

• suppose we have games G1,G2, . . . ,GK (with the same Ω)
— they specify entropies H1,H2, . . . ,HK

• consider the set
{(H1(p),H2(p), . . . ,HK (p)) | p is a distribution}

• G1/G2/ . . . /GK -entropy hull is its convex hull
• this is nearly the solution to our problem...
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Lattices
• a set M ⊆ RK is a sublattice of RK if for every two points

x , y ∈ M

max(x , y) ∈ M
min(x , y) ∈ M

• a set M ⊆ RK is a upper subsemisublattice of RK if for
every two points x , y ∈ M

max(x , y) ∈ M

• a sublattice closure is the smallest sublattice of RK

containing M
— upper subsemilattice closure is defined similarly
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Example

M is not a lattice the upper subsemilattice
closure of M
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Main Theorem (1)

• let G1,G2, . . . ,GK be weakly mixable with the same set of
possible outcomes

• then the set of all pairs (AC1(L),AC2(L), . . . ,ACK (L)),
where
— AC is one of the complexities AC or AC
— L ranges over all non-empty sets of infinite sequences
or all infinite sets of finite sequences accordingly

• coincides with the upper subsemilattice closure of the
G1/G2/ . . . /GK -entropy hull
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Main Theorem (2)

• the set of all pairs (AC1(L),AC2(L), . . . ,ACK (L)), where
— AC is one of the complexities AC or AC
— L ranges over all non-empty sets of infinite sequences
or all infinite sets of finite sequences accordingly

• coincides with the sublattice closure of the
G1/G2/ . . . /GK -entropy hull
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Building the Set

entropy curve→ entropy hull→ upper subsemilattice closure
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Recalibration

• let A1,A2, . . . ,AK be strategies for weakly mixable games
G1,G2, . . . ,GK

• then for every weakly mixable G and ε > 0 there is a
strategy S and a function f (n) = o(n) as n→∞ such that
for every finite string x ∈ Ω∗ there are
— distributions p1,p2, . . . ,PN
— distribution q = (q1,q2, . . . ,qN) such that

N∑

i=1

qiHk (pi) ≤
LossGk

Ak
(x)

|x | + ε

LossG
S(x) ≤ |x |

(
N∑

i=1

qiH(pi) + ε

)
+ f (|x |)
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