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Abstract. This paper provides a probabilistic derivation of an identity
connecting the square loss of ridge regression in on-line mode with the
loss of a retrospectively best regressor. Some corollaries of the identity
providing upper bounds for the cumulative loss of on-line ridge regression
are also discussed.

1 Introduction

Ridge regression is a powerful technique of machine learning. It was introduced
in [9]; the kernel version of it is derived in [15].

Ridge regression can be used as a batch or on-line algorithm. This paper
proves an identity connecting the square losses of ridge regression used on the
same data in batch and on-line fashions. The identity and the approach to the
proof are not entirely new. The identity implicitly appears in [2] for the linear
case (it can be obtained by summing (4.21) from [2] in an exact rather than
estimated form). The proof method based essentially on Bayesian estimation
features in [10], which focuses on probabilistic statements and stops one step
short of formulating the identity. In this paper we put it all together, explic-
itly formulate the identity in terms of ridge regression, and give a simple proof
for the kernel case. The identity is obtained by calculating the likelihood in a
Gaussian processes model by different ways. Another proof of this fact is given
in unpublished technical report [18].

We use the identity to derive several inequalities providing upper bounds for
the cumulative loss of ridge regression applied in the on-line fashion. Corollaries 2
and 3 deal with ‘clipped’ ridge regression. The later reproduces Theorem 4.6 from
[2] (this result is often confused with Theorem 4 in [17], which, in fact, provides
a similar bound for an essentially different algorithm). Corollary 4 (reproduced
from [18]) shows that in the linear case the loss of (unclipped) on-line ridge
regression is asymptotically close to the loss of a retrospectively best regressor.

In the literature there is a range of specially designed regression-type algo-
rithms with better worst-case bounds or bounds covering wider cases. Aggre-
gating algorithm regression (also known as Vovk-Azoury-Warmuth predictor) is
described in [17], [2], and Section 11.8 of [6]. Theorem 1 in [17] provides an up-
per bound for aggregating algorithm regression, which is better than the bound
given by Corollary 3 for clipped ridge regression. The bound from [17] has also
been shown to be optimal. The exact relation between the performances of ridge



regression and aggregating algorithm regression is not known. Theorem 3 in [17]
describes a case where aggregating algorithm regression performs better, but in
the case of unbounded signals. An important class of regression-type algorithms
achieving different bounds is based on the gradient descent idea; see [5], [11], and
Section 11 in [6]. Algorithms in [8] and [4] provide regression-type algorithms
dealing with changing dependencies.

The paper is organised as follows. Section 2 introduces kernels and kernel
ridge regression in batch and on-line settings. We take the simplest approach
and use an explicit formula to introduce ridge regression. Section 3 contains the
statement of the identity and Section 4 discusses corollaries of the identity. The
rest of the paper is devoted to the proof of the identity. Section 5 introduces a
probabilistic interpretation of ridge regression in the context of Gaussian fields
and Section 6 contains the proof. Section 7 contains an outline of an alternative
proof based on the aggregating algorithm.

2 Kernel Ridge Regression in On-line and Batch Settings

2.1 Kernels

A kernel on a domain X, which is an arbitrary set with no structure assumed, is a
symmetric positive semi-definite function of two arguments, i.e., K : X×X → R
such that

1. for all x1, x2 ∈ X we have K(x1, x2) = K(x2, x1) and
2. for any positive integer T , any x1, x2, . . . , xT ∈ X and any real numbers

α1, α2, . . . , αT ∈ R we have
∑T

i,j=1K(xi, xj)αiαj ≥ 0.

An equivalent definition can be given as follows. There is a Hilbert space F of
functions on X such that

1. for every x ∈ X the function K(x, ·), i.e., K considered as a function of the
second argument with the first argument fixed, belongs to F and

2. for every x ∈ X and every f ∈ F the value of f at x equals the scalar
product of f by K(x, ·), i.e., f(x) = 〈f,K(x, ·)〉F ; this property is often
called the reproducing property.

The second definition is sometimes said to specify a reproducing kernel. The
space F is called the reproducing kernel Hilbert space (RKHS) for the kernel K
(it can be shown that the RKHS for a kernel K is unique). The equivalence of
the two definitions is proven in [1].

2.2 Regression in Batch and On-line Settings

Suppose that we are given a sample of pairs

S = ((x1, y1), (x2, y2), . . . , (xT , yT )) ,



where all xt ∈ X are called signals and yt ∈ R are called outcomes for the
corresponding signals. A pair (xt, yt) is called an example.

The task of regression is to fit a function (usually from a particular class) to
the data. The method of kernel ridge regression with a kernel K and a real reg-
ularisation parameter a > 0 suggests the function fRR(x) = Y ′(K + aI)−1k(x),
where Y = (y1, y2, . . . , yT )′ is the column vector of outcomes,

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . . . . .
K(xT , x1) K(xT , x2) . . . K(xT , xT )


is the kernel matrix and

k(x) =


K(x1, x)
K(x2, x)

...
K(xT , x)

 .

Note that the matrix K is positive-semidefinite by the definition of a kernel,
therefore the matrix K + aI is positive-definite and thus non-singular.

It is easy to see that fRR(x) is a linear combination of functions K(xt, x)
(note that x does not appear outside of k(x) in the ridge regression formula)
and therefore it belongs to the RKHS F specified by the kernel K. It can be
shown that on this f the minimum of the expression

∑T
t=1(f(x)− yt)2 + a‖f‖2

F
(where ‖ · ‖F is the norm in F) over all f from the RKHS F is achieved.

Suppose now that the sample is given to us example by example. For each
example we are shown the signal and then asked to produce a prediction for
the outcome. One can say that the learner operates according to the following
protocol:

Protocol 1.
for t = 1, 2, . . .

read signal xt

output prediction γt

read true outcome yt

endfor

This learning scenario is called on-line or sequential. The scenario when the
whole sample is given to us at once as before is called batch to distinguish it
from on-line.

One can apply ridge regression in the on-line scenario in the following nat-
ural way. On step t we form the sample St from the t − 1 known examples
(x1, y1), (x2, y2), . . . , (xt−1, yt−1) and output the prediction suggested by the
ridge regression function for this sample.

For the on-line scenario we will use the same notations as in the batch mode
but with the index t denoting the time. Thus Kt is the kernel matrix on step t



(note that its size is (t−1)×(t−1)), Yt is the vector of outcomes y1, y2, . . . , yt−1,
and kt is k(x) for step t. We will be referring to the prediction output by on-line
ridge regression on step t as γRR

t .

3 The Identity

Theorem 1. Take a kernel K on a domain X and a parameter a > 0. Let F
be the RKHS for the kernel K. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) let
γRR
1 , γRR

2 , . . . , γRR
T be the predictions output by ridge regression with the kernel

K and the parameter a in the on-line mode. Then

T∑
t=1

(γRR
t − yt)2

1 + dt/a
= min

f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2
F

)
= aY ′(KT+1 + aI)−1Y ,

where dt = K(xt, xt)− k′t(xt)(Kt + aI)−1kt(xt) > 0 and all other notation is as
above.

The left-hand side term in this equality is close to the cumulative squared loss
of ridge regression in the on-line mode. The difference is in the denominators 1+
dt/a. The values dt have the meaning of variances of ridge regression predictions
according to the probabilistic view discussed below.

Note that the minimum in the middle term is attained on f specified by
batch ridge regression knowing the whole sample. It is thus nearly the squared
loss of the retrospectively best fit f ∈ F .

The right-hand side term is a simple closed-form expression.

4 Corollaries

In this section we use the identity to obtain upper bounds on cumulative losses
of on-line algorithms.

It is easy to obtain a basic multiplicative bound on the loss of on-line ridge
regression. The matrix (Kt+aI)−1 is positive-definite as the inverse of a positive-
definite, therefore k′t(xt)(Kt+aI)−1kt(xt) ≥ 0 and dt ≤ K(xt, xt). Assuming that
there is cF > 0 such that K(x, x) ≤ c2

F on X (i.e., the evaluation functional on
F is uniformly bounded by cF ), we get

T∑
t=1

(γRR
t − yt)2 ≤

(
1 +

c2
F
a

)
min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2
F

)
=

a

(
1 +

c2
F
a

)
Y ′(KT+1 + aI)−1Y . (1)

More interesting bounds can be obtained on the following assumption. Sup-
pose that we know in advance that outcomes y come from an interval [−Y, Y ],
and Y is known to us. It does not make sense then to make predictions outside



of the interval. One may consider clipped ridge regression, which operates as fol-
lows. For a given signal the ridge regression prediction γRR is calculated; if it
falls inside the interval, it is kept; if it is outside of the interval, it is replaced
by the closest point from the interval. Denote the prediction of clipped ridge re-
gression by γRR,Y . If y ∈ [−Y, Y ] indeed holds, then (γRR,Y − y)2 ≤ (γRR − y)2

and (γRR,Y − y)2 ≤ 4Y 2.

Corollary 2. Take a kernel K on a domain X and a parameter a > 0. Let F be
the RKHS for the kernel K. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) such that
yt ∈ [−Y, Y ] for all t = 1, 2, . . . , T , let γRR,Y

1 , γRR,Y
2 , . . . , γRR,Y

T be the predictions
output by clipped ridge regression with the kernel K and the parameter a in the
on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤

min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2
F

)
+ 4Y 2 ln det

(
I +

1
a
KT+1

)
,

where KT+1 is as above.

Proof. We have
1

1 + dt/a
= 1− dt/a

1 + dt/a

and
dt/a

1 + dt/a
≤ ln(1 + dt/a) ;

indeed, for b ≥ 0 the inequality b/(1 + b) ≤ ln(1 + b) holds and can be checked
by differentiation. Therefore

T∑
t=1

(γRR,Y
t − yt)2 =

T∑
t=1

(γRR,Y
t − yt)2

1
1 + dt/a

+
T∑

t=1

(γRR,Y
t − yt)2

dt/a

1 + dt/a

≤
T∑

t=1

(γRR
t − yt)2

1
1 + dt/a

+ 4Y 2
T∑

t=1

ln(1 + dt/a) .

Lemma 7 proved below yields

T∏
t=1

(1 + dt/a) =
1
aT

det(KT+1 + aI) = det
(

I +
1
a
KT+1

)
.

ut

There is no sublinear upper bound on the regret term 4Y 2 ln det
(
I + 1

aKT+1

)
in the general case; indeed, consider the kernel

δ(x1, x2) =

{
1 if x1 = x2;
0 otherwise.



However we can get good bounds in special cases.
It is shown in [16] that for the radial-basis kernel K(x1, x2) = e−b‖x1−x2‖2 ,

where x1, x2 ∈ Rd, we can get an upper bound on average. Suppose that all
xs are independently identically distributed according to the Gaussian distribu-
tion with the mean of 0 and variance of cI. Then for the expectation we have
E ln det

(
I + 1

aKT+1

)
= O((lnT )d+1) (see Section IV.B in [16]). This yields a

bound on the expected loss of clipped ridge regression.
Consider the linear kernel K(x1, x2) = x′1x2 defined on column vectors from

Rn. We have K(x, x) = ‖x‖2, where ‖ · ‖ is the quadratic norm in Rn. The
reproducing kernel Hilbert space is the set of all linear functions on Rn. We
have Kt = X ′

tXt, where XT+1 is the design matrix made up of column vectors
x1, x2, . . . , xT . The Sylvester determinant identity (see, e.g., [7]) implies that

det
(

I +
1
a
X ′

T+1XT+1

)
= det

(
I +

1
a
XT+1X

′
T+1

)
= det

(
I +

1
a

T∑
t=1

xtx
′
t

)
.

Estimating the determinant by the product of its diagonal elements (see, e.g.,
Theorem 7 in Chapter 2 of [3]) and assuming that all coordinates of xt are
bounded by B, we get

det

(
I +

1
a

T∑
t=1

xtx
′
t

)
≤
(

1 +
TB2

a

)n

.

We get the following corollary.

Corollary 3. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ), where xt ∈ [−B,B]n

and yt ∈ [−Y, Y ] for all t = 1, 2, . . . , T , let γRR,Y
1 , γRR,Y

2 , . . . , γRR,Y
T be the pre-

dictions output by clipped linear ridge regression with a parameter a > 0 in the
on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤ min

θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + a‖θ‖2

)
+ 4Y 2n ln

(
1 +

TB2

a

)
.

It is an interesting problem if the bound is optimal. As far as we know, there
is a gap in existing bounds. Theorem 2 in [17] shows that Y 2n lnT is a lower
bound for any learner and in the constructed example ‖xt‖∞ = 1. Theorem 3 in
[17] provides a stronger lower bound, but at a cost of allowing unbounded xs.

For the linear kernel the expression dt/a in the denominator of the identity
can be rewritten as follows:

dt

a
=

1
a

[
K(xt, xt)− k′t(xt)(Kt + aI)−1kt(xt)

]
=

1
a

[
x′txt − (x′tXt)(X ′

tXt + aI)−1(X ′
txt)

]
.

We can apply the matrix identity A(BA+ I)−1 = (AB + I)−1A (it holds if both
the inversions can be performed and can be proven by multiplying both the sides



by BA + I and AB + I and opening up the brackets) and further obtain

dt

a
=

1
a

[
x′txt − x′t(XtX

′
t + aI)−1XtX

′
txt

]
=

1
a

[
x′t(I − (XtX

′
t + aI)−1XtX

′
t)xt

]
= x′t(XtX

′
t + aI)−1xt

We will denote XtX
′
t + aI by At. One can easily see that

At = aI +
t−1∑
i=1

xix
′
i = a

n∑
i=1

eie
′
i +

t−1∑
i=1

xix
′
i ,

where ei are unit vectors from the standard basis. If one assumes that the norms
‖xt‖, t = 1, 2, . . . are bounded, one can apply Lemma A.1 from [12] and infer
that x′tA

−1
t xt → 0 as t → ∞. Note that this convergence does not hold in the

general kernel case. Indeed, if K = δ defined above and all xt are different, we
get dt = 1.

The leftmost side of the identity is thus asymptotically close to the cumulative
loss of on-line ridge regression and the regularised loss of the retrospectively best
regressor in the linear case. We will reproduce a corollary from [18] formalising
this intuition.

Corollary 4. Let xt ∈ Rn, t = 1, 2, . . . and supt=1,2,... ‖xt‖ < ∞; let γRR
t be

the predictions output by on-line ridge regression with the linear kernel and a
parameter a > 0. Then

1. if there is θ ∈ Rn such that
∑∞

t=1(yt − θ′xt)2 < +∞ then

∞∑
t=1

(yt − γRR
t )2 < +∞ ;

2. if for all θ ∈ Rn we have
∑∞

t=1(yt − θ′xt)2 = +∞, then

lim
T→∞

∑T
t=1(yt − γRR

t )2

minθ∈Rn

(∑T
t=1(yt − θ′xt)2 + a‖θ‖2

) = 1 . (2)

Proof. Part 1 follows from bound (1).
Let us prove Part 2. First note that x′tA

−1
t xt ≥ 0 implies

T∑
t=1

(yt − γRR
t )2 ≥

T∑
t=1

(yt − γRR
t )2

1 + x′tA
−1
t xt

= min
θ∈Rn

(
T∑

t=1

(yt − θ′xt)2 + a‖θ‖2

)

and thus the fraction in (2) is always greater than or equal to 1.
Let us show that minθ∈Rn

(∑T
t=1(yt − θ′xt)2 + a‖θ‖2

)
→ +∞ as t → ∞.

Suppose that this does not hold. Then there is a sequence Tk and θTk
such



that the expressions
∑Tk

t=1(yt − θ′Tk
xt)2 + a‖θTk

‖2 are bounded. Hence there
is C < +∞ such that

∑Tk

t=1(yt − θ′Tk
xt)2 ≤ C for all k = 1, 2, . . . and the

norms of θTk
are also bounded uniformly in k. Therefore the sequence θTk

has
a converging subsequence. Let θ0 be the limit of this subsequence. Let us show
that

∑Tk

i=1(yt − θ′0xt)2 ≤ C. Indeed, let
∑Tk

i=1(yt − θ′0xt)2 > C. For sufficiently
large m the sum

∑Tk

i=1(yt − θ′Tm
xt)2 is sufficiently close to

∑Tk

i=1(yt − θ′0xt)2 so
that

Tm∑
i=1

(yt − θ′Tm
xt)2 ≥

Tk∑
i=1

(yt − θ′Tm
xt)2 > C ,

which contradicts
∑Tm

t=1(yt−θ′Tm
xt)2 ≤ C. In the limit we get

∑∞
i=1(yt−θ′0xt)2 ≤

C < +∞, which contradicts the condition of Part 2.
Take ε > 0. There is T0 such that for all T ≥ T0 we have 1+x′T A−1

T xT ≤ 1+ε
and

T∑
t=1

(yt − γRR
t )2 =

T0∑
t=1

(yt − γRR
t )2 +

T∑
t=T0+1

(yt − γRR
t )2

≤
T0∑
t=1

(yt − γRR
t )2 + (1 + ε)

T∑
t=1

(yt − γRR
t )2

1 + x′T A−1
T xT

=
T0∑
t=1

(yt − γRR
t )2 + (1 + ε) min

θ∈Rn

(
T∑

t=1

(yt − θ′xt)2 + a ‖θ‖2

)
.

Therefore for all sufficiently large T the fraction in (2) does not exceed 1+ε. ut

5 Probabilistic Interpretation

We will prove the identity by means of the probabilistic interpretation of ridge
regression.

Suppose that we have a Gaussian random field1 zx with the means of 0 and
the covariances cov(zx1 , zx2) = K(x1, x2). Such a field exists. Indeed, for any fi-
nite set of x1, x2, . . . , xT our requirements imply the Gaussian distribution with
the mean of 0 and the covariance matrix of K. These distributions satisfy the
consistency requirements and thus the Kolmogorov extension (or existence) the-
orem (see, e.g., [13], Appendix 1 for a proof sketch2) can be applied to construct
a field over X.

Let εx be a Gaussian field of mutually independent and independent of zx

random values with the variance σ2. The existence of such a field can be shown
1 We use the term ‘field’ rather than ‘process’ to emphasise the fact that X is not

necessarily a subset of R and its elements do not have to be moments of time; some
textbooks still use the word ‘process’ in this case.

2 Strictly speaking, we do not need to construct the field for the whole X in order to
prove the theorem; is suffices to consider a finite-dimensional Gaussian distribution
of (zx1 , zx2 , . . . , zxT ).



using the same Kolmogorov theorem. Now let yx = zx + εx. Intuitively, εx can
be thought of as random noise introduced by measurements of the original field
zx.

The learning process can be thought of as estimating the values of the field yt

given the values of the field at sample points. One can show that the conditional
distribution of zx given a sample S = ((x1, y1), (x2, y2), . . . , (xT , yT )) is Gaussian
with the mean of γRR

x = Y ′(K + σ2I)−1k(x) and the variance dx = K(x, x) −
k′(x)(K + σ2I)−1k(x). The conditional distribution of yx is Gaussian with the
same mean and the variance σ2 + K(x, x) − k′(x)(K + σ2I)−1k(x) (see [14],
Section 2.2, p. 17).

If we let a = σ2, we see that γRR
t and a + dt are, respectively, the mean and

the variance of the conditional distributions for yxt
given the sample St.

Remark 5. Note that in the statement of the theorem there is no assumption
that the signals xt are pairwise different. Some of them may coincide. In the
probabilistic picture all xs must be different though, or the corresponding prob-
abilities make no sense. This obstacle may be overcome in the following way. Let
us replace the domain X by X ′ = X ×N, where N is the set of positive integers
{1, 2, . . .}, and replace xt by x′t = (xt, t) ∈ X ′. For X ′ there is a Gaussian field
with the covariance function K′((x1, t1), (x2, t2)) = K(x1, x2). The argument
concerning the probabilistic meaning of ridge regression stays for K′ on X ′. We
can thus assume that all xt are different.

6 Proof of the Identity

The proof is based on the Gaussian field interpretation. Let us calculate the
density of the joint distribution of the variables (yx1 , yx2 , . . . , yxT

) at the point
(y1, y2, . . . , yT ). We will do this in three different ways: by decomposing the
density into a chain of conditional densities, marginalisation, and, finally, direct
calculation. Each method will give us a different expression corresponding to a
term in the identity. Since all the three terms express the same density, they
must be equal.

6.1 Conditional Probabilities

We have

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·

pyx1 ,yx2 ,...,yxT−1
(y1, y2, . . . , yT−1) .

Expanding this further yields

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·

pyxT−1
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−2) · · · pyx1

(y1) .



As we have seen before, the distribution for yxt
given that yx1 = y1, yx2 =

y2, . . . , yxt−1 = yt−1 is Gaussian with the mean of γRR
t and the variance of

dt + σ2. Thus

pyxT
(yt | yx1 = y1, yx2 = y2, . . . , yxt−1 = yt−1) =

1√
2π

1√
dt + σ2

e
− 1

2
(yt−γRR

t )2

dt+σ2

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
(d1 + σ2)(d2 + σ2) . . . (dT + σ2)

e
− 1

2

PT
t=1

(γRR
t −yt)

2

dt+σ2 .

6.2 Dealing with Singular Kernel Matrix

The expression for the second case looks particularly simple for non-singular K.
Let us show that this is sufficient to prove the identity.

All the terms in the identity are in fact some continuous functions of T (T +
1)/2 values of K at the pairs of points xi, xj , i, j = 1, 2, . . . , T . Indeed, the values
of γRR

t in the left-hand side expression are ridge regression predictions given by
respective analytic formula. Note that the coefficients of the inverse matrix are
continuous functions of the original matrix.

The optimal function minimising the second expression is in fact fRR(x) =∑T
t=1 ctK(xt, x), where the coefficients ct are continuous functions of the values

of K. The reproducing property implies that

‖fRR‖2 =
T∑

i,j=1

cicj〈K(xi, ·),K(xj , ·)〉F =
T∑

i,j=1

cicjK(xi, xj) .

We can thus conclude that all the expressions are continuous in the values
of K. Consider the kernel Kα(x1, x2) = K(x1, x2) + αδ(x1, x2), where

δ(x1, x2) =

{
1 if x1 = x2;
0 otherwise

and α > 0. Clearly, δ is a kernel and thus Kα is a kernel. If all xt are differ-
ent (recall Remark 5), kernel matrix for Kα equals K + αI and therefore it is
nonsingular.

However the values of Kα tend to the corresponding values of K as α → 0.

6.3 Marginalisation

The method of marginalisation consists of introducing extra variables to ob-
tain the joint density in some manageable form and then integrating over the



extra variables to get rid of them. The variables we are going to consider are
zx1 , zx2 , . . . , zxT

.
Given the values of zx1 , zx2 , . . . , zxT

, the density of yx1 , yx2 , . . . , yxT
is easy

to calculate. Indeed, given zs all ys are independent and have the means of
corresponding zs and variances of σ2, i.e.,

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1) =

1√
2π

1
σ

e−
1
2

(y1−z1)2

σ2
1√
2π

1
σ

e−
1
2

(y2−z2)2

σ2 · · · 1√
2π

1
σ

e−
1
2

(yT −zT )2

σ2 =

1
(2π)T/2σT

e−
1

2σ2
PT

t=1(yt−zt)
2

The density of zx1 , zx2 , . . . , zxT
is given by

pzx1 ,zx2 ,...,zxT
(z1, z2, . . . , zT ) =

1
(2π)T/2

√
detKT+1

e−
1
2 Z′K−1

T+1Z ,

where Z = (z1, z2, . . . , zT ), provided KT+1 is nonsingular.
Using

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT ) =

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1)·

pzx1 ,zx2 ,...,zxT
(z1, z2, . . . , zT )

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =∫

RT

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT )dZ

we get

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2σT

1
(2π)T/2

√
detKT+1

∫
RT

e−
1

2σ2
PT

t=1(yt−zt)
2− 1

2 Z′K−1
T+1ZdZ .

To evaluate the integral we need the following lemma (see [3], Theorem 3 of
Chapter 2) .

Lemma 6. Let Q(θ) be a quadratic form of θ ∈ Rn with the positive definite
quadratic part, i.e., Q(θ) = θ′Aθ + θ′b + c, where the matrix A is symmetric
positive definite. Then ∫

Rn

e−Q(θ)dθ = e−Q(θ0)
πn/2

√
det A

,

where θ0 = arg minRn Q.



The quadratic part of the form in our integral has the matrix 1
2K−1

T+1 + 1
2σ2 I and

therefore

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T σT

√
detKT+1

πT/2√
det( 1

2K−1
T+1 + 1

2σ2 I)
×

e−minZ( 1
2σ2

PT
t=1(yt−zt)

2− 1
2 Z′K−1

T+1Z)

We have

√
det KT+1

√
det
(

1
2
K−1

T+1 +
1

2σ2
I

)
=

√
det
(

1
2
I +

1
2σ2

KT+1

)
=

1
2T/2σT

√
det(KT+1 + σ2I) .

Let us deal with the minimum. We will link it to

M = min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + σ2‖f‖2
F

)
.

The representer theorem implies that the minimum in the definition of M is
achieved on f from the linear span of K(x1, ·),K(x2, ·), . . . ,K(xT , ·), i.e., on a
function of the form f(x) =

∑T
t=1 ctK(xt, ·). For the column vector Z(x) =

(f(x1), f(x2), . . . , f(xT ))′ we have Z(x) = KT+1C, where C = (c1, c2, . . . , cT )′.
Since KT+1 is supposed to be non-singular, there is a one-to-one correspon-
dence between C and Z(x); we have C = K−1

T+1Z(x) and ‖f‖2
F = C ′KT+1C =

Z ′(x)K−1
T+1Z(x). Thus

min
Z

(
1

2σ2

T∑
t=1

(yt − zt)2 +
1
2
Z ′K−1

T+1Z

)
=

1
2σ2

M .

For the density we get the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT+1 + σ2I)

e−
1

2σ2 M .

6.4 Direct Calculation

One can easily calculate the covariances of ys:

cov(yx1 , yx2) = E(zx1 + εx1)(zx2 + εx2)
= Ezx1zx2 + Eεx1εx2

= K(x1, x2) + σ2δ(x1, x2) .



Therefore, one can write down the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT+1 + σ2I)

e−
1
2 Y ′

T+1(KT+1+σ2I)−1YT+1 .

6.5 Equating the Terms

It remains to take the logarithms of the densities calculated in different ways.
We need the following matrix lemma.

Lemma 7.

(d1 + σ2)(d2 + σ2) . . . (dT + σ2) = det(KT+1 + σ2I)

Proof. The lemma follows from Frobenius’s identity (see, e.g., [7]):

det
(

A u
v′ d

)
= (d− v′A−1u) detA ,

where d is a scalar and the submatrix A is non-singular.
We have

det(KT+1 + σ2I) = (K(xT , xT ) + σ2 − k′T (xT )(KT + σ2I)−1kT (xT ))·
det(KT + σ2I)

= (dT + σ2) det(KT + σ2I)
= . . .

= (dT + σ2)(dT−1 + σ2) . . . (d2 + σ2)(d1 + σ2) .

ut

We get

T∑
t=1

(γRR
t − yt)2

dt + σ2
=

1
σ2

M = Y ′(KT+1 + σ2I)−1Y .

The theorem follows.

7 Alternative Derivations for the Linear Case

In this section we outline alternative ways of obtaining the identity in the linear
case.

A Gaussian field zx with the covariance function x′1x2 on Rn can be obtained
as follows. Let θ be an n-dimensional Gaussian random variable with the mean
of 0 and the covariance matrix I; let zx = θ′x and yx = zx + εx, where εx is



independent Gaussian with the mean of 0 and the variance of σ2 (recall that we
let σ2 = a). Estimating yx given a sample of pairs (xt, yt) can be thought of as
going from the prior distribution for θ to a posterior distribution. The learning
process described in Section 5 can thus be thought of as Bayesian estimation. It
can be performed in an on-line fashion (the term ‘sequential’ is more common
in Bayesian statistics): the posterior distribution serves as the prior for the next
step. This procedure leads to the Gaussian distribution for y with the mean
equal to the on-line ridge regression prediction. The linear case is thus a special
case of the kernel case.

There is an entirely different way to look at this procedure; it is based on
the aggregating algorithm (described, e.g., in [17]). Consider the following game
between a predictor and the reality. On step t the reality produces xt; the pre-
dictor sees it and outputs a prediction, which is a Gaussian distribution on R
with the density function pt. Then the reality announces yt and the predictor
suffers loss − ln pt(yt). Suppose that there is a set of experts who play the same
game and we are able to see their predictions before making ours. The aim of
aggregating algorithm is to merge experts’ predictions so as to suffer cumulative
loss comparable to that of the best expert. The game we have described happens
to be perfectly mixable, so the merging can be done relatively easily.

Let us consider a pool of experts Eθ, θ ∈ Rn, such that on step t expert Eθ

outputs the Gaussian distribution with the mean of θ′xt and the variance σ2. The
aggregating algorithm requires a prior distribution on the experts. Let us take
the Gaussian distribution with the mean of 0 and the covariance matrix I. The
distribution is updated on each step; one can show that the update corresponds
to the Bayesian update of the distribution for θ. Finally, it is possible to show that
the distribution output by the aggregating algorithm on step t is the Gaussian
distribution with the mean γt = YtXtA

−1
t xt, i.e., the ridge regression prediction,

and the variance σ2xtA
−1
t xt + σ2, i.e., the conditional variance of yt in the

estimation procedure.
The equality between the first two terms in the identity from Theorem 1 can

be derived from a fundamental property of the aggregating algorithm, namely,
Lemma 1 in [17], which links the cumulative loss of the predictor to experts’
losses. For more details see [18].

An advantage of this approach is that we do not need to consider random
fields, estimation, prior and posterior distributions etc. All probabilities are no
more than weights or predictions. This is arguably more intuitive.
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