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Batch Learning Problem

e suppose we are given a training set of pairs

(x1,¥1), (X2, ¥2), - - ., (X7, Y1), Where
— signals (examples, objects) x; come from a set X

— outcomes y; are reals
e the task is to predict labels for new yet unseen signals
xe X
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Kernels

e a kernel is a function of two arguments £ : X x X — R
which is
o symmetric, i.e., K(xq, x2) = K(x2, X1)
© positive-semidefinite, i.e.,
— the matrix (K(x;, x;))7";_; is always positive-semidefinite,
i.e.,
—foralln,all xq,x2,...,xp € Xand all uy, Up,..., U, €R
we have
n
> uiuk(x, x) > 0
ij=1
e if Cis a kernel and a > 0, then the matrix K + al is
positive-definite and therefore nonsingular
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Ridge Regression

e kernel ridge regression (KRR) suggests the function
fRr(x) = Y'(K + al)~k(x), where

K(x1,x1) K(xi,x) ... K(xy,x7)

| K, xq) K(xe,x2) ... K(xe,x1)

K(xrx1) K(xrxz) .. K(xr,xr)
K(x1,x) »
koo = | ey |
’C(X.T,X) }/.T

e ais a parameter called ridge and K is a kernel
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Examples of Kernels

e let X = R" (or a subset of R"); the following popular
kernels are used:
— linear kernel (x4, X2) = X{ X2
— Vapnik’s polynomial kernel ICq(x1, X2) = (1 + Xx]X2)
— radial-based (rbf) kernel K, (x1, x2) = el —%[?/7* (and
other functions depending on || x; — Xz||)
— ANOVA kernels
— spline kernels
— etc

d
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Justification

e ridge regression always specifies a function on the set of

signals X
e why use frr?

1. performs well in practice
2. functional analysis: frr is optimal in a certain class
3. probability theory: frr(x) is conditional expectation
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RKHS

e each kernel K specifies a unique reproducing kernel
Hilbert space (RKHS) F, which
o is a Hilbert space consisting of functions on X
o contains functions K(x, -) for all x € X

o has the scalar product (-, -) z satisfying the reproducing
property f(x) = (f,K(x,-))r forall f € Fand x € X

e F contains all K(x, -) and their linear combinations
2. Gk (X, )

— the combinations are dense in F
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2. Ridge Regression and Reproducing Kernel Hilbert Spaces
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Some References

e Aronszajn, N. La theorie generale des noyaux
reproduisants et ses applications (Proc. Cambridge Philos.
Soc, vol 39, 1943)

—in French

e Krein, M.G. Hermitian-Positive Kernels on Homogeneous
Spaces, Parts | and Il (AMS Translations, 1963, 34, 1)
— a translation of a 1940s Russian paper

e http://onlineprediction.net/
?n=Main.KernelMethods
— a tutorial | have written
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Optimality Evaluation Functional

* fre is a linear combination of K(x;, -) and therefore belongs « in RKHS the evaluation functional f — f(x) is the scalar
to 7 product by K(x, -)
e it is the minimum of — therefore it is continuous (on F)
T e this property characterises RKHSs: an RKHS is
allfl|% + > (f(x) — y)? — a Hilbert space of functions on X
—1 — such that the evaluation functional is continuous for
every x € X
overfe 7 . . « the continuity of the evaluation functional means that
— the later term is quadratic loss
f(x) - 0as ||f|l— 0

— the former term provides regularisation

e ridge regression can be thought of as curve fitting in the
RKHS

— the norm is consistent with the evaluation
e an RKHS is therefore ‘a reasonable Hilbert space’
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Feature Spaces

e let ® maps X into a Hilbert space H (feature space)

e for every h € H consider a ‘feature regressor’
fa(x) = (h, (X)) H
— what are the functions f,?

e the function 3. Regression in On-line Learning
K(x1,x2) = (®(x1), ®(x2)) 1

is a kernel
— and every kernel K can be represented in this way

¢ the set of functions f;, coincides with the RKHS F
corresponding to X and the norm can be given by

|1 = min 1Al
ni

thus RKHS consists of ‘regressors in a feature space’
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On-line Learning Protocol

¢ in on-line learning the learner tries to predict each outcome
y: before it becomes available

e protocol:
FORt=1,2,...
(1) 2 observes x;
(2) A outputs prediction ~;
(3) 2 observes true outcome y;
END FOR

¢ in machine learning the performance is usually assessed
by means of cumulative loss 3/ (7 — y)?

e prequential principle by Phil Dawid:
— performance should be judged by what has happened
and not by what could have happened
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e the main result of this talk:

T T
R — ) - 2 2
f — f
; 1+dt/a = min (;( (Xt) = y)~ + &l ”f)

= aYr(Kr+al)'Yr |

where d; = /C(Xt, Xt) - k;71 (Xt)(Kt,1 + al)_1kt,1 (Xt) >0
« the result holds for all sequences (x:, ;)
— it is not a probabilistic statement
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On-line Kernel Ridge Regression

e ridge regression can be applied in on-line mode
e onstep t:
— form a sample of known examples
(X1, 1), (X2, ¥2)s -+ s (Xe—1, Y1)
— populate matrices Y;_1, Ki_1, and k;_1(x¢)
— output the prediction 7RR = Y/ | (Ki—1 + al) " Tki_1(x)
e question: how does the on-line cumulative loss of ridge
regression z; (7t — ¥t)? compare against the optimal

loss 3= L (F(xt) — y1)°?
— how much do we loose by not knowing all (x;, y;) in
advance?
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4. Ridge Regression and Random Fields
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A Covariance is a Kernel

e arandom field (random process) on X is a collection of
random variables zy, x € X
— we need to postulate that any finite number of them has
a joint distribution
—letEzx =0

e the covariance (x4, X2) = E Zx, Zx, iS a kernel on X
— symmetry: obvious
— positive-semidefiniteness:

n 2 n n
0<E (Z u,-zx,> = Z Uil E Zx, Zx, = Z Uik (X, X;)

i=1 ij=1 ij=1
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Learning

o consider Gaussian noise ¢y such that
—we have Eex =0andvarey =o0? = a
— all 5 are independent from each other and from all z
(exists by Kolmogorov extension theorem)

¢ let us assume that outcomes y are a random process

VYx = Zx +ex
— we have E yx, Yx, = K(X1, X2) + adx, x,
« estimating yx given a sample (x1, 1), (X2, ¥2), - . .. (X7, ¥7)

becomes a probabilistic task
— note that xs are not stochastic: we just know the value
of the process at some non-random points
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A Kernel is a Covariance

« for every kernel K there is a Gaussian random field zy

such that KC(x1, X2) = E Zx, Zx,

proof:

— for every finite set xy, xo, ..., x, there is a multivariate
Gaussian distribution with means of 0 and covariances K
— the distributions can be ‘joined together’ by the
Kolmogorov extension (or existence) theorem

more on second order random functions and covariances:
— M. Loeve, Probability Theory Il, Springer, 1963
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Ridge Regression

« the conditional distribution of yy given that yx, = yj,

Yo =Y25 - Yxr = YTiS

— Gaussian

— has the mean frr(x)

— has the variance

dy + 02 = K(x,x) — K'(x)(K + )" k(x) + a
references:

— C. E. Rasmussen and C. K. |. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006
— C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006
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Repeating Signals

¢ in RKHSs there is no problem if some xs in the sample
coincide and in the probabilistic model this is impossible
— indeed, one cannot have two values for the same yx

e solution: let us replace X by X x {1,2,3,...}, define the

kernel by
K((x1,t), (X2, &) = K(X1, X2)

and pad each x; to (x;, t)
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Probability

e the proof is by calculating the joint density
Pys, gy (V15 Y2, - -, y7) In three ways:

1. as a chain of conditional probabilities;
2. by marginalisation;
3. directly.
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5. Proof of the Identity
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Conditional Probabilities

e by decomposing the density we get

p,VX1 WYxo s YxT (y17y27 s ayT) -
Py YT | Vs = Y1, Y06 = Yoo - - Yxr g = YT-1)"
Py YT 1V = Y1, Y0 = V2o s Yxr_p = YT-2)"

Py, (V1)

« each yy, has a Gaussian distribution with the mean of 7R}
and the variance d; + a
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Marginalisation (1) Marginalisation (2)

e let us compress yy,, ¥x,, - - -» Vxr 10 Yx;

— the same for Z e evaluation of the integral reduces to the following:

—let Q(6) = §'A0 + §'b + ¢, where the matrix A is

« the density is the integral of a joint density: symmetric positive-definite
— then p
= n
pYXT(YT) o /IRT pYXT’ZXT(YT’ ZT)dZT / e—Q(H)dg — e—Q(Ho)—W
RP VdetA
where where 6y = arg ming» Q.

PYXT,ZXT(YTvZT) _ PYXT(YT | ZT)pZXT(ZT) ¢ hence the infimum in the middle term of the identity
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Direct Evaluation A Determinant Identity

e it remains to take the logarithm and to apply the following
identity to kill off extra terms:

e all ys are Gaussian with the covariance ) 5 » »
E Vx.Yx = K(Xi, X)) + a@dx, x, (di + 0°)(do + 0°)...(dT + 0°) = det(Kt + o)

e the density can be written down easily e the identity follows from Frobenius’s identity

A u\ _ 1 p—1
det(v, d)-(d—vA u)detA |
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6. Corollaries
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Clipped Regression

e suppose that true outcomes are bounded: |y| < Y
— it makes no sense to output prediction outside [- Y/, Y].
— clipped ridge regression outputs the ridge regression
prediction if it is inside the interval or the closest point of
the interval otherwise
— we have (YRRY — )2 < 4y?

e we get:

-
RR,Y

Z — ) <

t=T1

-
min (Z(f(xt) ¥+ all"H%) +4Y2Indet (/ + éKT)

feF
< t=1
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Multiplicative Bound

o let K(x,x) <cronX
— this constant uniformly bounds the norm of the
evaluation functional
— for the existence of a finite c# it is sufficient for X to be
compact and K to be continuous on X2

e then

T 02 T
> (ifR-y)? < (1 + f) min (Z(f(xt) —yi)f+ a||f||§r) =

t=1 t=1
(a+c2)Yr(Kr+al)~ 'Yy
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Finite-Dimensional Case

o let X =R"and K(xq, X2) = X{ X2
— the RKHS is R” with the quadratic norm

e for the clipped regression we get

T

Z (%{R Y

t=1

T TB?
- Ry 2 2
s (E (0'xe — y1)* + allo|| ) +4Y<nin (1 +— )

— )P <

where || x¢|| < B
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Asymptotic Comparison (1)

e let X be a compact metric space and a kernel K be

continuous on X?
e consider a sequence (X1, ¥1), (X2, ¥2), ...
e if there is f € F such that

oo

> (e = f(x))? < 400

t=1

then

o0

> = 1FR)? < 400
t=1

— this follows from the multiplicative bound
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7. An Alternative Proof
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Asymptotic Comparison (2)

e if for all f € F we have
> (e —f(x))? = +o0
t=1

then

“m ZITZ'I (yt - ’VIRR)Z
T minge s (X (v — F00))2 + al )

— this holds because d; — 0 for continuous kernels on
compact domains

=1
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Prediction with Expert Advice

e in prediction with expert advice the learner reads to
experts’ predictions before making its own:

fort=1,2,...
experts and the learner observe x;
experts # € © announce predictions 7? el
learner outputs prediction ~; € T
reality announces outcome y; € Q
each expert 0 € © suffers loss A\(7Y, y1)
learner suffers loss \(v, yt)

endfor

e aloss function A : I x Q — [0, +00) measures the deviation
between predictions and outcomes
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Game

e it is important that the sets of outcomes and predictions
may differ

e we take 2 = R and I to be the set of all continuous density
functions, i.e., continuous £ : R — [0, +00) such that
[T e(t)at =1

e the loss is logarithmic likelihood:

A&, y) = —In&(y)
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Merging

e the aggregating algorithm assigns weights to experts,
updates the weights on every trial and mixes the experts
with the current weights

« for this game the aggregating algorithm amounts to the
Bayesian mixture

e assume the prior

T oloiz/2

po(0) = (27r)”/2

 the learner will then output Gaussian distribution with the
mean of vRR and the variance d; + o2
— the kernel is linear

KRR Identity, Slide 43/44 CLRC and DCS, RHUL

Experts

« let the signals be real vectors from R"
e let the experts be Gaussian densities: an expert 0 predicts

0 1 _@'x=y?
gt (y) = \/me 202
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|dentity

¢ a key lemma about the aggregating algorithm states
Losst = —In/ e~ Losst0) py(db).
S

e this leads to the linear case of the identity

 the general kernel formula can be obtained using a
standard procedure
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