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Batch Learning Problem

• suppose we are given a training set of pairs
(x1, y1), (x2, y2), . . . , (xT , yT ), where
— signals (examples, objects) xt come from a set X
— outcomes yt are reals

• the task is to predict labels for new yet unseen signals
x ∈ X
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Ridge Regression

• kernel ridge regression (KRR) suggests the function
fRR(x) = Y ′(K + aI)−1k(x), where

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )

 ,

k(x) =


K(x1, x)
K(x2, x)

...
K(xT , x)

 , Y =


y1
y2
...

yT


• a is a parameter called ridge and K is a kernel
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Kernels

• a kernel is a function of two arguments K : X × X → R
which is

� symmetric, i.e., K(x1, x2) = K(x2, x1)
� positive-semidefinite, i.e.,

— the matrix (K(xi , xj))
n
i,j=1 is always positive-semidefinite,

i.e.,
— for all n, all x1, x2, . . . , xn ∈ X and all u1, u2, . . . , un ∈ R
we have

n∑
i,j=1

uiujK(xi , xj) ≥ 0

• if K is a kernel and a > 0, then the matrix K + aI is
positive-definite and therefore nonsingular
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Examples of Kernels

• let X = Rn (or a subset of Rn); the following popular
kernels are used:
— linear kernel K(x1, x2) = x ′1x2
— Vapnik’s polynomial kernel Kd(x1, x2) = (1 + x ′1x2)

d

— radial-based (rbf) kernel Kσ(x1, x2) = e‖x1−x2‖2/σ2
(and

other functions depending on ‖x1 − x2‖)
— ANOVA kernels
— spline kernels
— etc
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Justification

• ridge regression always specifies a function on the set of
signals X

• why use fRR?

1. performs well in practice
2. functional analysis: fRR is optimal in a certain class
3. probability theory: fRR(x) is conditional expectation
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RKHS

• each kernel K specifies a unique reproducing kernel
Hilbert space (RKHS) F , which

� is a Hilbert space consisting of functions on X
� contains functions K(x , ·) for all x ∈ X
� has the scalar product 〈·, ·〉F satisfying the reproducing

property f (x) = 〈f ,K(x , ·)〉F for all f ∈ F and x ∈ X

• F contains all K(x , ·) and their linear combinations∑
i ciK(xi , ·)

— the combinations are dense in F
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Some References

• Aronszajn, N. La theorie generale des noyaux
reproduisants et ses applications (Proc. Cambridge Philos.
Soc, vol 39, 1943)
— in French

• Krein, M.G. Hermitian-Positive Kernels on Homogeneous
Spaces, Parts I and II (AMS Translations, 1963, 34, 1)
— a translation of a 1940s Russian paper

• http://onlineprediction.net/
?n=Main.KernelMethods
— a tutorial I have written
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Optimality

• fRR is a linear combination of K(xi , ·) and therefore belongs
to F

• it is the minimum of

a‖f‖2
F +

T∑
t=1

(f (xt)− yt)
2

over f ∈ F
— the later term is quadratic loss
— the former term provides regularisation

• ridge regression can be thought of as curve fitting in the
RKHS
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Evaluation Functional

• in RKHS the evaluation functional f → f (x) is the scalar
product by K(x , ·)
— therefore it is continuous (on F)

• this property characterises RKHSs: an RKHS is
— a Hilbert space of functions on X
— such that the evaluation functional is continuous for
every x ∈ X

• the continuity of the evaluation functional means that
f (x) → 0 as ‖f‖F → 0
— the norm is consistent with the evaluation

• an RKHS is therefore ‘a reasonable Hilbert space’
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Feature Spaces
• let Φ maps X into a Hilbert space H (feature space)
• for every h ∈ H consider a ‘feature regressor’

fh(x) = 〈h,Φ(x)〉H
— what are the functions fh?

• the function

K(x1, x2) = 〈Φ(x1),Φ(x2)〉H

is a kernel
— and every kernel K can be represented in this way

• the set of functions fh coincides with the RKHS F
corresponding to K and the norm can be given by

‖f‖F = min
fh=f

‖h‖H

• thus RKHS consists of ‘regressors in a feature space’
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On-line Learning Protocol

• in on-line learning the learner tries to predict each outcome
yt before it becomes available

• protocol:
FOR t = 1, 2, . . .

(1) A observes xt
(2) A outputs prediction γt
(3) A observes true outcome yt

END FOR
• in machine learning the performance is usually assessed

by means of cumulative loss
∑T

t=1(γt − yt)
2

• prequential principle by Phil Dawid:
— performance should be judged by what has happened
and not by what could have happened
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On-line Kernel Ridge Regression

• ridge regression can be applied in on-line mode
• on step t :

— form a sample of known examples
(x1, y1), (x2, y2), . . . , (xt−1, yt−1)
— populate matrices Yt−1, Kt−1, and kt−1(xt)
— output the prediction γRR

t = Y ′
t−1(Kt−1 + aI)−1kt−1(x)

• question: how does the on-line cumulative loss of ridge
regression

∑T
t=1(γt − yt)

2 compare against the optimal
loss

∑T
t=1(f (xt)− yt)

2?
— how much do we loose by not knowing all (xt , yt) in
advance?
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Identity

• the main result of this talk:

T∑
t=1

(γRR
t − yt)

2

1 + dt/a
= min

f∈F

(
T∑

t=1

(f (xt)− yt)
2 + a‖f‖2

F

)
= aY ′

T (KT + aI)−1YT ,

where dt = K(xt , xt)− k ′t−1(xt)(Kt−1 + aI)−1kt−1(xt) > 0
• the result holds for all sequences (xt , yt)

— it is not a probabilistic statement
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A Covariance is a Kernel

• a random field (random process) on X is a collection of
random variables zx , x ∈ X
— we need to postulate that any finite number of them has
a joint distribution
— let E zx = 0

• the covariance K(x1, x2) = E zx1zx2 is a kernel on X
— symmetry: obvious
— positive-semidefiniteness:

0 ≤ E

(
n∑

i=1

uizxi

)2

=
n∑

i,j=1

uiuj E zx1zx2 =
n∑

i,j=1

uiujK(xi , xj)
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A Kernel is a Covariance

• for every kernel K there is a Gaussian random field zx
such that K(x1, x2) = E zx1zx2

• proof:
— for every finite set x1, x2, . . . , xn there is a multivariate
Gaussian distribution with means of 0 and covariances K
— the distributions can be ‘joined together’ by the
Kolmogorov extension (or existence) theorem

• more on second order random functions and covariances:
— M. Loève, Probability Theory II, Springer, 1963
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Learning

• consider Gaussian noise εx such that
— we have E εx = 0 and var εx = σ2 = a
— all εx are independent from each other and from all zx
(exists by Kolmogorov extension theorem)

• let us assume that outcomes y are a random process
yx = zx + εx
— we have E yx1yx2 = K(x1, x2) + aδx1,x2

• estimating yx given a sample (x1, y1), (x2, y2), . . . , (xT , yT )
becomes a probabilistic task
— note that xs are not stochastic: we just know the value
of the process at some non-random points
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Ridge Regression

• the conditional distribution of yx given that yx1 = y1,
yx2 = y2, . . . , yxT = yT is
— Gaussian
— has the mean fRR(x)
— has the variance
dx + σ2 = K(x , x)− k ′(x)(K + σ2I)−1k(x) + a

• references:
— C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006
— C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006

KRR Identity, Slide 24/44 CLRC and DCS, RHUL



Repeating Signals

• in RKHSs there is no problem if some xs in the sample
coincide and in the probabilistic model this is impossible
— indeed, one cannot have two values for the same yx

• solution: let us replace X by X × {1, 2, 3, . . .}, define the
kernel by

K((x1, t1), (x2, t2)) = K(x1, x2)

and pad each xt to (xt , t)
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Probability

• the proof is by calculating the joint density
pyx1 ,yx2 ,...,yxT

(y1, y2, . . . , yT ) in three ways:

1. as a chain of conditional probabilities;
2. by marginalisation;
3. directly.

KRR Identity, Slide 27/44 CLRC and DCS, RHUL

Conditional Probabilities

• by decomposing the density we get

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·

pyxT−1
(yT | yx1 = y1, yx2 = y2, . . . , yxT−2 = yT−2)·

· · ·
pyx1

(y1)

• each yxt has a Gaussian distribution with the mean of γRR
t

and the variance dt + a
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Marginalisation (1)

• let us compress yx1 , yx2 , . . . , yxT to YXT

— the same for Z
• the density is the integral of a joint density:

pYXT
(YT ) =

∫
RT

pYXT
,ZXT

(YT , ZT )dZT

where

pYXT
,ZXT

(YT , ZT ) = pYXT
(YT | ZT )pZXT

(ZT )
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Marginalisation (2)

• evaluation of the integral reduces to the following:
— let Q(θ) = θ′Aθ + θ′b + c, where the matrix A is
symmetric positive-definite
— then ∫

Rn
e−Q(θ)dθ = e−Q(θ0)

πn/2
√

det A
where θ0 = arg minRn Q.

• hence the infimum in the middle term of the identity
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Direct Evaluation

• all ys are Gaussian with the covariance
E yxi yxj = K(xi , xj) + aδxi ,xj

• the density can be written down easily
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A Determinant Identity

• it remains to take the logarithm and to apply the following
identity to kill off extra terms:

(d1 + σ2)(d2 + σ2) . . . (dT + σ2) = det(KT + σ2I)

• the identity follows from Frobenius’s identity

det
(

A u
v ′ d

)
= (d − v ′A−1u) det A ,
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Multiplicative Bound

• let K(x , x) ≤ cF on X
— this constant uniformly bounds the norm of the
evaluation functional
— for the existence of a finite cF it is sufficient for X to be
compact and K to be continuous on X 2

• then

T∑
t=1

(γRR
t −yt)

2 ≤
(

1 +
c2
F
a

)
min
f∈F

(
T∑

t=1

(f (xt)− yt)
2 + a‖f‖2

F

)
=

(a + c2
F )Y ′

T (KT + aI)−1YT
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Clipped Regression

• suppose that true outcomes are bounded: |y | ≤ Y
— it makes no sense to output prediction outside [−Y , Y ].
— clipped ridge regression outputs the ridge regression
prediction if it is inside the interval or the closest point of
the interval otherwise
— we have (γRR,Y − y)2 ≤ 4Y 2

• we get:

T∑
t=1

(γRR,Y
t − yt)

2 ≤

min
f∈F

(
T∑

t=1

(f (xt)− yt)
2 + a‖f‖2

F

)
+ 4Y 2 ln det

(
I +

1
a

KT

)
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Finite-Dimensional Case

• let X = Rn and K(x1, x2) = x ′1x2
— the RKHS is Rn with the quadratic norm

• for the clipped regression we get

T∑
t=1

(γRR,Y
t − yt)

2 ≤

min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)
2 + a‖θ‖2

)
+ 4Y 2n ln

(
1 +

TB2

an

)
where ‖xt‖ ≤ B
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Asymptotic Comparison (1)

• let X be a compact metric space and a kernel K be
continuous on X 2

• consider a sequence (x1, y1), (x2, y2), . . .

• if there is f ∈ F such that

∞∑
t=1

(yt − f (xt))
2 < +∞

then
∞∑

t=1

(yt − γRR
t )2 < +∞

— this follows from the multiplicative bound
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Asymptotic Comparison (2)

• if for all f ∈ F we have

∞∑
t=1

(yt − f (xt))
2 = +∞

then

lim
T→∞

∑T
t=1(yt − γRR

t )2

minf∈F

(∑T
t=1(yt − f (xt))2 + a‖f‖2

) = 1

— this holds because dt → 0 for continuous kernels on
compact domains

KRR Identity, Slide 38/44 CLRC and DCS, RHUL

1. Ridge Regression

2. Ridge Regression and Reproducing Kernel Hilbert Spaces

3. Regression in On-line Learning

4. Ridge Regression and Random Fields

5. Proof of the Identity

6. Corollaries

7. An Alternative Proof

KRR Identity, Slide 39/44 CLRC and DCS, RHUL

Prediction with Expert Advice

• in prediction with expert advice the learner reads to
experts’ predictions before making its own:

for t = 1, 2, . . .
experts and the learner observe xt
experts θ ∈ Θ announce predictions γθ

t ∈ Γ
learner outputs prediction γt ∈ Γ
reality announces outcome yt ∈ Ω
each expert θ ∈ Θ suffers loss λ(γθ

t , yt)
learner suffers loss λ(γt , yt)

endfor

• a loss function λ : Γ×Ω → [0,+∞) measures the deviation
between predictions and outcomes
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Game

• it is important that the sets of outcomes and predictions
may differ

• we take Ω = R and Γ to be the set of all continuous density
functions, i.e., continuous ξ : R → [0,+∞) such that∫ +∞
−∞ ξ(t)dt = 1

• the loss is logarithmic likelihood:

λ(ξ, y) = − ln ξ(y)
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Experts

• let the signals be real vectors from Rn

• let the experts be Gaussian densities: an expert θ predicts

ξθ
t (y) =

1√
2πσ2

e−
(θ′xt−y)2

2σ2
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Merging

• the aggregating algorithm assigns weights to experts,
updates the weights on every trial and mixes the experts
with the current weights

• for this game the aggregating algorithm amounts to the
Bayesian mixture

• assume the prior

p0(θ) =
1

(2π)n/2 e−‖θ‖
2/2

• the learner will then output Gaussian distribution with the
mean of γRR

t and the variance dt + σ2

— the kernel is linear
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Identity

• a key lemma about the aggregating algorithm states

Losst = − ln
∫

Θ
e−Losst (θ)P0(dθ).

• this leads to the linear case of the identity
• the general kernel formula can be obtained using a

standard procedure
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