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Protocol

• we try to predict elements of a sequence ω1, ω2, ω3, . . . ∈ Ω

• we output predictions γ1, γ2, γ3, . . . ∈ Γ

• we can make use of signals s1, s2, s3 . . .

• protocol:

FOR t = 1, 2, . . .
(1) Learner observes signal st
(2) Learner chooses a prediction γt ∈ Γ
(3) Learner observes the actual outcome ωt ∈ Ω
(4) Learner suffers loss λ(ωt , γt)

END FOR

• loss over T trials sums up to the cumulative loss

Loss(ω1, ω2, . . . , ωT ) =
T∑

i=1

λ(ωi , γi )
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Formalisation

• a game G is a triple 〈Ω, Γ, λ〉
� Ω is the outcome space
� Γ is the prediction space
� λ : Ω× Γ→ [0,+∞] is the loss function

• important special case: binary games
� Ω = B = {0, 1}
� Γ = [0, 1]
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Examples

• square-loss game: Ω = {0, 1}, Γ = [0, 1], λ(ω, γ) = (ω − γ)2

• absolute-loss game: Ω = {0, 1}, Γ = [0, 1], λ(ω, γ) = |ω − γ|
• logarithmic game: Ω = {0, 1}, Γ = [0, 1]

λ(ω, γ) =

{
− log2(1− γ) if ω = 0
− log2 γ if ω = 1

— can take the value +∞
• simple prediction game: Ω = Γ = {0, 1}

λ(ω, γ) =

{
0 if ω = γ
1 if ω 6= γ
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Experts

• suppose that we can see predictions of N Experts
E1,E2, . . . ,EN

FOR t = 1, 2, . . .
(1) Experts output γnt ∈ Γ, n = 1, . . . ,N
(2) Learner outputs γt ∈ Γ
(3) the outcome ωt ∈ Ω occurs
(4) Learner suffers loss λ(γt , ωt)
(5) Experts suffer losses λ(γnt , ωt), n = 1, 2, . . . ,N

END FOR

• we want to be sure not to suffer loss much greater than that
of the best expert
— i.e., we want a guarantee of the type Loss(T ) . LossEn(T )
for all n and T
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Aggregating Algorithm

• takes a parameter η > 0 (learning rate)

• maintains weights wn
t for experts

— they are initialised with a distribution q1, q2, . . . , qN (e.g.,
uniform qn = 1/N)
— after expert En suffers loss λ(γnt , ωt), its loss is updated as

wn
t+1 = wn

t e
−ηλ(γnt ,ωt)

• on step t normalised weights pnt = wn
t /
∑N

m=1 w
m
t are used to

work out Learner’s prediction γt satisfying

λ(γt , ω) ≤ −C (η)
1

η
ln

N∑

n=1

pnt e
−ηλ(γnt ,ω)

for all ω ∈ Ω

• C (η) is the smallest number such that γt can always be found
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Algorithm

parameters: η and initial distribution q1, q2, . . . , qN

(1) initialise wn
1 = qn, n = 1, 2, . . . ,N

FOR t = 1, 2, . . .
(2) read experts’ predictions γnt , n = 1, 2, . . . ,N

(3) normalise weights pnt = wn
t /
∑N

n=1 w
n
t

(4) solve the system (ω ∈ Ω):

λ(γ, ω) ≤ −C(η)
η ln

∑N
n=1 p

n
t e

−ηλ(γnt ,ω)

w.r.t. γ and output γt
(5) observe ωt

(6) update experts’ weights wn
t+1 = wn

t e
−ηλ(γnt ,ω), n = 1, 2, . . . ,N

END FOR
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The Guarantees

• for all sequences of outcomes ω1, ω2, . . . and experts’
predictions and every n = 1, 2, . . . ,N we get

Loss(t) ≤ C (η) LossEn(t) +
C (η)

η
ln

1

qn

— if the initial weights are uniform

Loss(t) ≤ C (η) LossEn(t) +
C (η)

η
lnN

• if C (η) = for some η, the game is called mixable
— for mixable games we get

Loss(t) ≤ LossEn(t) +
lnN

η

• the coefficients C (η) and C (η)/η are optimal
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Definition

• suppose that an expert can skip turns...

• a specialist expert can refrain from prediction on step t
— if it makes a prediction, we say that it is awake
— otherwise we say that it sleeps
— specialist experts can sleep a sleeping expert is sleeping
now

• how can we handle them?
— idea: let a sleeping expert follow awake ones

• literature:
— originated in [Y. Freund et al, Using and combining
predictors that specialize, Proceedings of STOC 1997]
— we follow [A.Chernov and V.Vovk, Prediction with expert
evaluators’ advice, Proceedings of ALT 2009]
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Algorithm (1)

• look at

e−ηλ(γt ,ω) ≥
N∑

n=1

pnt e
−ηλ(γnt ,ω)

— this is the exponentiated key inequality of the aggregating
algorithm for the mixable case

• let us single out the terms corresponding to sleeping and
awake experts

e−ηλ(γt ,ω) ≥
∑

n:En is awake

pnt e
−ηλ(γnt ,ω) +

∑

n:En sleeps

pnt e
−ηλ(γt ,ω)
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Algorithm (2)

• the sum over sleeping experts cancels out

e−ηλ(γt ,ω) ≥ 1

Zt

∑

n:En is awake

pnt e
−ηλ(γnt ,ω)

where Zt is the weight of experts awake on step t

• specialist experts can be handled with a minimum
modification of the algorithm:
— the summation is done over awake experts and their
weights are normalised to 1
— the sleeping experts output “the crowd’s” prediction γt ,
and so their weights are updated as wn

t+1 = wn
t e

−ηλ(γt ,ωt)

using the Learner’s γt
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Loss Bound

• in

Loss(T ) ≤ LossEn(T ) +
1

η
lnN

we can drop the terms where En sleeps

• we get

Loss
n
(T ) ≤ Loss

n
En

(T ) +
1

η
lnN

where the sum in Loss
n

is taken over steps where En was
awake
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Discussion

• new experts can be added on-the-fly
— e.g., a new expert can start predicting upon completing a
training stage

• the weight of a new expert joining at time T can be worked
out using our loss Loss(T − 1), because it was following us
while it was sleeping

• sleeping experts can be used to extract relevant historical
information
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Options

• an option on a share is a contract of the following kind:

The bearer of this may buy a share of ABC
ltd in December 2014 at a price of $10.

buy: an option that entitles its holder to buy at a fixed price is
called call, and an option that entitles to sell is called put

share: the financial instrument that is bought or sold is called the
underlying (asset); it can be a share, a futures, an index etc.

Dec 2014: the option shows the date when it can be exercised, i.e., when
the holder may use it; it is called maturity or expiration (it
makes sense to exercise this option if and only if the share
price in December 2014 exceeds $10)
— the stock exchange usually fixes four expiration dates in a
year and only allows options with those expiration dates

$10: the fixed price written in the option is called strike
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Mathematical Interpretation

• call option:

The bearer of this is entitled to the sum of
max(ST − X , 0) at the moment T .

• put option:

The bearer of this is entitled to the sum of
max(X − ST , 0) at the moment T .

• here:
T – expiration moment
ST – the price of the underlying at time T
X – strike price
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Black-Scholes Formulas

• what is the value of an option?

• call: c = SΦ(d1)− Xe−rTΦ(d2)

• put: p = Xe−rTΦ(−d2)− SΦ(−d1)

d1 = (ln(S/X ) + (r + σ2/2)T )/(σ
√
T )

d2 = (ln(S/X ) + (r − σ2/2)T )/(σ
√
T )

where:
X – strike
T – time of expiration/maturity
S – the price of the underlying
r – interest rate (often taken to be 0)
σ – volatility
Φ – the distribution function of the Gaussian distribution
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Volatility

• volatility is the only parameter that is not observed directly

• the Black-Scholes(-Merton) theory assumes that the logarithm
of the stock price ln St follows the generalised Brownian
motion so that the variance of (lnSt+∆t − lnSt) is σ2∆t

• the volatility σ can be estimated statistically from share price
observations
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Implied Volatility (1)

• the option price can actually be observed (we can see the
quote)

• let us use the B-S formula the other way round and work out
the volatility from the option price

• this estimate is called implied volatility
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Implied Volatility (2)

• the Black-Scholes volatility is specified by the share and
therefore does not depend on the option parameters

• in practice the implied volatility does and we get a function
σ(X ,T )
— there is no unique commonly recognised explanation to this

• the graph of σ(X ) for fixed T is called volatility smile

• implied volatility is a commonly used and intuitive (for
traders) parameter
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Predicting Implied Volatility

• we are given a log of option transactions (on a fixed
underlying with a fixed maturity)
— the data was provided by the Russian Trading System
Stock Exchange

• we want to predict implied volatility for the next transaction
— we can use the current stock price, strike, and time to
maturity (the interest rate is assumed to be 0) but not the
option price (as it immediately implies the volatility)

• we use square loss
— this is a mixable game (though not binary)

• consider shares of Russian Energy Systems maturing in
December 2006 (about 13000 transactions)
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Volatility vs Transaction Number, 1000-2000
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Volatility vs Transaction Number, 10000-11000
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Volatility vs Strike, 1000-2000
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Volatility vs Strike, 10000-11000
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Naive Algorithm

• let us predict implied volatility as the implied volatility from
the previous transaction with the same strike
— the list of transactions splits into separate time series
— inside every time series we use the “nearest neighbour”
approach

• we also used simple smoothing: a moving average with
exponentially decreasing weights
— this yields a slight improvement

• more advanced time series methods gave no improvement
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Vicinities

• for small and for large strikes transactions are few
— the previous transaction with the same strike may be far
away in time
— is not it better to take a more recent transaction from a
neighbouring strike?

• let us consider vicinities of strikes
— we predict implied volatility using the last transaction from
a vicinity

• what is the right size for a vicinity?
— we should use small vicinities in the middle and larger
vicinities on the sides

• but how small and how large?
— which neighbour is nearer to us, that in time or that in
space?
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Specialist Experts

• consider all sets of contiguous strikes {X1,X2, . . . ,Xk}, where
k is a “diameter” parameter

• every vicinity specifies three experts:
1. the expert working on transactions with strikes from this
vicinity
— when it sees a transaction with a strike from the vicinity, it
outputs volatility from the previous transaction from the
vicinity
— when it sees a transaction with a strike from outside the
vicinity, it sleeps
2. the expert working on transactions with call options with
strikes from this vicinity
3. the expert working on transactions with put options with
strikes from this vicinity
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Results

• the following options were considered:
1. Options on shares of Russian Energy Systems maturing in
December 2006, 13K transactions
2. Options on shares of Gazprom maturing in March 2007,
11K transactions
3. Options on the RTSSE index (index is a portfolio of a
special type) maturing in March 2007, 8.5K transactions

• we plot the adjusted loss

Loss(T )− LossRTSSE(T )

where LossRTSSE(T ) is the loss of a proprietary strategy
(based on a parametric approximation for σ(X ))
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Russian Energy Systems
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Gazprom
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RTSSE Index
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Discussion (1)

• results are comparable to those of a sliding window regression
— regression is a standard way to model implied volatility

• as the maximum allowed diameter increases, the loss drops
and then starts slowly going up
— the regret is proportional to ln(number of experts) and
grows very slowly
— taking to many experts is rarely a problem: the algorithm
will converge on the right ones
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Discussion (2)

• vicinities of diameter 5 alone produce a poor result; but
adding them to vicinities of sizes 1 to 4 improves the result.
— even poor predictors work well somewhere
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Dataset

• a kaggle challenge “What do we know”

• 4.851.475 examples

• each example is a record of a student answering a question
— a log from some system training students for ACT, GMAT,
and SAT
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Data Fields

• timestamp

• student id

• question id

• track, subtrack, tags
— what kind of question it is

• outcome: question answered or not

Sleeping Experts, 1, Slide 41/52 Department of Computer Science, RHUL

Game

• outcome space Ω = {0, 1}
• prediction space Γ = [0, 1]

— probability of the student answering correctly

• loss function: capped logarithmic loss (log10)
— we can think that predictions are truncated to [0.01, 0.99]
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Batch Setup

• all students who answered more than 6 questions are taken

• for each student the stream is cut at a random point > 6; the
last record becomes a test example and all later records are
discarded

• all remaining records form the kaggle training set
— we have access to the future (but not for the same student)
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Benchmark Method

• for each student there is a parameter αi (meaning: student’s
strength)

• for each question there is a parameter βj (meaning: question
difficulty)

Pr(correct answer) =
eαi−βj

1 + eαi−βj

• the parameters αi , βj are fitted on the training set

• this is known as the Rasch model
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Batch Results

• Rasch model mean loss on the kaggle test set is 0.2566

• the leader in kaggle competition achieves 0.2452

• for comparison log10 2 = 0.3010
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On-line Mode

• we read the dataset example by example predicting the next
outcome as we go along
— we can only do this on the kaggle training set

• no access to the future
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Constant Experts

• take a grid {0.1, 0.2, . . . , 0.9} of s numbers

• for every student take s experts making constant predictions
for this student (irrespective of questions)
— interpretation: each expert takes a view regarding the
student’s strength

• for every question take s experts making constant predictions
for this question (irrespective of students)
— interpretation: each expert takes a view regarding the
question difficulty

• we take a uniform prior
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Trofimov-Krichevsky

• for large s (s = 9 is OK) this is very similar to having a
Trofimov-Krichevsky predictor for each student and for each
each question

• a T-K is the Bayesian estimate for the probability of success
in the Bernoulli model
— a T-K predictor for student i predicts

the number of correct answers the student has made so far + 1

the number of questions the student has answered so far + 2
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Results

• on the training set aggregating algorithm with constant
experts suffers mean loss per element 0.2532

• on the kaggle test set the mean loss per element is 0.2717

• recall that the Rasch model loss on the kaggle test set is
0.2566
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A comparison

• let us pick a retrospectively best constant expert for each
question (”true difficulty”)
— the mean loss per question is 0.2631

• now let us pick a retrospectively best expert for each student
(”true strength”)
— the mean loss per element is 0.2736

• and the loss of the aggregating algorithm is 0.2533
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Tag Experts

• a tag expert watches a particular tag; when it occurs, the
expert uses the T-K predictor on the current student
predictions on questions with this tag

• a tag expert takes a view that its tag is informative; it
represents a particular topic or subject and each student has a
fixed strength in that subject

• aggregating algorithm with tag experts is generally inferior
but...
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Loss Structure

• this picture shows loss per element for students who answered
more than a particular number of questions
— the algorithm was still run on the whole dataset; the lower
bound on the length is for reporting only
— at the end averaging includes a small number of students
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