
The Aggregating Algorithm and Predictive
Complexity

Yuri Kalnishkan

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

This is the final version incorporating examiners’ comments

Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX,
United Kingdom

e-mail: yura@cs.rhul.ac.uk

November 11, 2002



2



Abstract

This thesis is devoted to on-line learning. An on-line learning algorithm receives
elements of a sequence one by one and tries to predict every element before it
arrives. The performance of such an algorithm is measured by the discrepancies
between its predictions and the outcomes. Discrepancies over several trials sum
up to total cumulative loss.

The starting point is the Aggregating Algorithm (AA). This algorithm deals
with the problem of prediction with expert advice. In this thesis the existing
theory of the AA is surveyed and some further properties are established.

The concept of predictive complexity introduced by V. Vovk is a natural de-
velopment of the theory of prediction with expert advice. Predictive complexity
bounds the loss of every algorithm from below. Generally this bound does not
correspond to the loss of an algorithm but it is optimal ‘in the limit’. Thus it is an
intrinsic measure of ‘learnability’ of a finite sequence. It is similar to Kolmogorov
complexity, which is a measure of the descriptive complexity of a string indepen-
dent of a particular description method. Different approaches to optimality give
rise to different definitions of predictive complexity. The problem of determin-
ing the strongest complexity existing for a given loss function is addressed in this
thesis. Some positive and negative results related to this problem are derived.

The expectations of predictive complexity w.r.t. the Bernoulli distribution pro-
vide a powerful tool for the theory of predictive complexity. The relations between
these expectations and the loss functions are derived and the expectations are
applied to establishing tight linear inequalities between different predictive com-
plexities.

The final result of this thesis is the Unpredictability Property. It is a generali-
sation of the Incompressibility Property, which holds for Kolmogorov complexity.
The Unpredictability Property states that the predictive complexity of most strings
is close to a natural upper bound.
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Chapter 1

Introduction

In this thesis the general theory of on-line learning algorithms is investigated.
These algorithms try to predict elements of a given sequence. An algorithm
A obtains elements one by one and attempts to predict each element before
seeing it. If there is a discrepancy between the prediction and the outcome,
we say that the algorithm suffers loss; the loss over several trials adds up to
the total loss LossA. The exact description of a learning environment is a
triple consisting of a set of possible outcomes, a set of allowed predictions,
and a function measuring the loss; a triple of this kind is called a game. The
relevant rigorous definitions are formulated and discussed in Chapter 2.

One of the first natural problems emerging within this framework is the
problem of prediction with expert advice. Suppose that our learning al-
gorithm is given access to predictions of some ‘experts’ trying to predict
elements of the same sequence. Is it possible to merge experts’ predictions
in such a way as to achieve the total loss not greatly exceeding that of the
best expert? This problem is widely covered in the literature (see, e.g.,
[LW94, HKW98, CBFH+97]); its settings are discussed in more detail in
Chapter 2.

The Aggregating Algorithm (AA) introduced by V. Vovk and discussed
in Chapter 3 is a powerful tool for solving the problem of prediction with
expert advice. In fact, it is optimal in the following sense: if using any
merging technique an algorithm A achieves the loss

LossA ≤ c LossEbest
+a lnn (1.1)

for all possible sets of experts and all incoming sequences, where LossEbest
is

the loss of the best expert, n is the number of experts, and c and a are some

15



16 CHAPTER 1. INTRODUCTION

constants, then the same is achieved by the AA.
All material of Chapters 2 and 3 is not original except for Theorem 1;

only the arrangement and the presentation may be treated as new.
The constant c in the bound (1.1) is of great importance. Since the term

a lnn remains constant as new elements of a sequence arrive, the constant
c determines the asymptotic behaviour of the cumulative loss LossA. If c =
1, the learning algorithm predicts nearly as good as the best expert and
games with this property are called mixable. Chapter 4 is concerned with
the behaviour of c.

The geometric interpretation of [Vov90, Vov98b] underlies the develop-
ments of Chapter 4. This interpretation allows us to derive differential crite-
ria of mixability, which provide us with simpler proofs of mixability for some
games (Theorem 8). The criteria can also be applied to the study of games
which are not mixable. Although c does not necessarily attain the value 1,
we show that for a large class of games c(β) → 1 as β → 1, where β ∈ (0, 1)
is a parameter supplied to the AA. In many cases it is possible to determine
the rate of convergence. Intuitively it means that by taking the values of β
close to 1, we can approximate the ‘ideal’ situation with c = 1 to any degree
of precision. However there are situations where c(β) does not converge to
1; an example is provided by some unbounded games where c(β) is infinite
for all values of β.

The concept of predictive complexity and the study of this concept is
based on the theory of prediction with expert advice. The introduction of
this concept is motivated by the following considerations. It is natural to ask
whether it is possible to construct the best computable prediction strategy.
The answer to this question is negative unless the game is trivial since every
strategy is outperformed by some other strategy on some inputs. However if
we extend the class of computable strategies to certain ‘superstrategies’ (to
be more precise, superloss processes) we can often find an optimal element
in the class. This optimal element provides a lower bound on the loss of
every computable strategy that is tight in some sense; we call it predictive
complexity.

There is a similarity between predictive complexity and Kolmogorov com-
plexity. In fact, a variant of Kolmogorov complexity, namely, the negative
logarithm of Levin’s a priori semimeasure, is predictive complexity for the
so called logarithmic-loss game. Kolmogorov complexity is an inherent mea-
sure of how difficult it is to describe a string: the smaller the complexity the
easier it is to describe the string. Similarly, predictive complexity refers to
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‘predictability’ of a string: the smaller the complexity, the more predictable
the elements of a string are.

Predictive complexity was introduced in [VW98]. We refer to predictive
complexity defined in this paper as ‘simple predictive complexity’. If the
definition (namely, the approach to optimality) is relaxed, the definitions
of weaker complexities emerge. It is shown in [VW98] that predictive com-
plexity exists for mixable games. It remains an open problem to show that
mixability is a necessary condition. A more general problem may be formu-
lated in the following way. Given a game, construct the strongest version of
predictive complexity available for this game.

This problem is addressed in Chapter 5. Although the complete solution
has not been found, some steps towards it have been made. The results of
Chapter 4 about the behaviour of c(β) allow us to show that many games
specify weak complexities. Some negative results are also presented. The
construction from [VW98] is included for completeness.

The rest of the thesis consists entirely of original material. Chapter 6
discusses the expectations K(ξ

(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
n ), where K is predictive com-

plexity and ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with

the probability of 1 being equal to p. These expectations turn out to have a
simple geometrical interpretation and they provide an important tool for in-
vestigating predictive complexity. An example of a result that can be shown
by using this tool is the uniqueness theorem. It states that if two games
specify the same complexity, then their geometric images (sets of superpre-
dictions) coincide. In fact, games with the same set of superpredictions are
identical in respect to predictive complexity.

In Chapter 7 the method of expectation is applied to the study of in-
equalities of the form K1 ≥ K2, where K1 and K2 are predictive complexities
for different games. It turns out that these inequalities have probabilistic
and geometric interpretations. A simple criterion for the inequalities to hold
is formulated and later applied to the study of relations between two spe-
cific complexities, namely, logarithmic-loss complexity Klog and square-loss
complexity Ksq. The intuitive interpretation is that when we compare the
complexities of a string x given by different games, we compare the learn-
ability of x in different learning environments.

In Chapter 8 we formulate the Unpredictability Property. There is a nat-
ural upper bound on predictive complexity provided by a simple predicting
strategy. The Unpredictability Property states that most of the strings have
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complexity close to this upper bound. This property is the counterpart to
the Incompressibility Property for Kolmogorov complexity, which states that
most of the strings have complexity close to the maximal possible for their
lengths. Strings of this kind can be called random.

The following convention applies throughout this thesis. If a result is
new, it is named ‘Theorem’ or ‘Lemma’; this also applies to results which are
not essentially new but are given new independent proofs (e.g., Theorem 8).
If a result is not original and has been included for completeness sake, it is
named ‘Proposition’. Propositions bear references to the sources they were
taken from.

Some parts of the original contribution of this thesis have been produced
by joint work. Michael Vyugin co-authored original results from Chapters 4,
5, 6, and 8. Volodya Vovk co-authored original results from Chapters 6 and
8.

The results from this thesis appear in the following papers published by
the author:

• a journal paper:

– Y. Kalnishkan. General linear relations among different types of
predictive complexity. Theoretical Computer Science, 271: 181–
200, 2002.

• papers in conference proceedings:

– Y. Kalnishkan. Linear relations between square-loss and Kol-
mogorov complexity. In Proceedings of the Twelfth Annual Con-
ference on Computational Learning Theory, pages 226–232. Asso-
ciation for Computing Machinery, 1999.

– Y. Kalnishkan. General linear relations among different types of
predictive complexity. In Proc. 10th International Conference on
Algorithmic Learning Theory — ALT ’99, volume 1720 of Lecture
Notes in Artificial Intelligence, pages 323–334. Springer-Verlag,
1999.

– Y. Kalnishkan, M. Vyugin, and V. Vovk. Losses, complexities,
and the Legendre transformation. In Proceedings of The Twelfth
International Conference on Algorithmic Learning Theory, 12th
International Conference, ALT2001, volume 2225 of Lecture Notes
in Artificial Intelligence, Springer–Verlag, 2001.
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– Y. Kalnishkan and M. Vyugin. Mixability and the existence of
weak complexities. In Learning Theory, 15th Annual Conference
on Computational Learning Theory, COLT 2002, Sydney, Aus-
tralia, July 8-10, 2002, Proceedings, volume 2375 of Lecture Notes
in Artificial Intelligence, pages 105–120. Springer, 2002.

• a technical report:

– Y. Kalnishkan and V. Vovk. The existence of predictive complex-
ity and the Legendre transformation. Technical report, Computer
Learning Research Centre Royal Holloway College, 2000.

Some results have not been published yet; this refers to Chapters 4, 5 and
8. On the other hand,

• a paper in conference proceedings:

– Y. Kalnishkan. Complexity approximation principle and Rissa-
nen’s approach to real-valued parameters. In Proceedings of the
11th European Conference on Machine Learning, volume 1810 of
Lecture Notes in Artificial Intelligence, pages 203–210. Springer-
Verlag, 2000.

published by the author while doing research in predictive complexity has not
been included since it deals with essentially different aspects of the subject.
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Chapter 2

The Problem of On-line
Prediction

This thesis deals with different variations of the on-line learning framework.
In this chapter we discuss the most general on-line learning scheme and give
principal definitions. The terminology of ‘games’ and ‘losses’ will be used
throughout the thesis. One of the main problems about this framework, the
problem of prediction with expert advice, is also formulated here.

2.1 The Basic Protocol

Let some events or outcomes happen in discrete time. We have a sequence
of events

ω1, ω2, . . . , ωn, . . . ,

which occur in succession. For example, ωi may be a description of the
weather on day i after the beginning of an experiment. Our goal is to predict
each of the events. Before the event ωn happens, we (i.e., our prediction
method A) make a prediction γn. In other terms, A works according to the
following simple protocol:

Protocol 1.
FOR t = 1, 2, . . .
(1) A chooses a prediction γt

(2) A observes the outcome ωt

END FOR.

21



22 CHAPTER 2. ON-LINE PREDICTION

A prediction method does not have to be oblivious, i.e., it may keep track
of previous outcomes as well as some side information1 or its own internal
variables.

In order to develop a mathematical theory of this process, we need to
specify several things more precisely. To begin with, let us fix the ranges of
possible outcomes and predictions. Let Ω and Γ be the sets of, respectively,
all possible outcomes and all possible predictions. We will call them the
outcome space and the prediction space.

Now we need a way of assessing the quality of a prediction or a way to
measure the correlation between a prediction and an outcome. Unless we
have a measure of this kind, we cannot compare the performance of various
prediction methods. Let λ be a loss function, i.e., a scalar function of two
arguments, one of which is an outcome and another is a prediction. The in-
tuitive meaning of λ(ωi, γi) is the discrepancy between ωi and γi or deviation
of γi from ωi. Nevertheless in some situations we will allow λ to assume neg-
ative values. The infinite value +∞ will also be useful sometimes. Thus we
will consider functions λ with different ranges under different circumstances.

The loss over several trials sums up to the total loss. This total or cumu-
lative loss of a method A after T trials is the sum

Lossλ
A
(ω1, ω2, . . . , ωT ) =

T
∑

t=1

λ(ωt, γt) ,

where γt, t = 1, 2, . . . , T are predictions output by A on trials 1, 2, . . . , T . If
A is deterministic (we consider only deterministic strategies), Lossλ

A
specifies

a scalar function on Ω∗ (the set of all finite sequences of elements from Ω).

There are a number of points to be made to justify our convention to
distinguish between the outcome and prediction spaces. First it is common
in learning theory to consider different ‘target’ and ‘hypothesis’ classes (cf.
PAC-learning). Secondly by allowing Γ to be larger then Ω, we admit greater
flexibility in predictions. If, say, ωi ∈ Ω = {0, 1} represents the presence or
absence of rain on day i, it would be natural to allow γ to vary in the interval
from 0 to 1 and to represent the probability (in some loose sense of this word)
of rain.

1‘Side information’ is not covered in detail in this thesis; it appears only in Chapter 8,
where conditional complexity is used. However the problems associated with it are of
much interest.
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The third argument is the most important and it provides us with a new
insight to the process of prediction. We may treat γ as an action or a way of
behaviour we choose to follow. Now λ(ω, γ) becomes the result of an action
γ after it faces an ‘external’ phenomenon ω. In our meteorological example,
ω may be the state of the weather on a particular day, while γ may represent
the way one dresses in the morning. Inappropriate clothes will result in the
person catching a cold; at least you will get wet if you unwisely leave your
umbrella at home on a rainy day. A more elaborate example is provided by
the stock market. Here ω may represent share prices while γ may be the
investment we make in the hope that some particular trends will prevail in
the market. Here λ represents the change in our assets.

Despite this ‘action’ interpretation, borrowed from [VW98], we will pre-
serve the ‘prediction’ terminology since it is more common in the literature.

2.2 Games

A triple 〈Ω, Γ, λ〉 of elements described in the previous section is called a
game. In this section we will introduce and discuss several important games.

Arguably, the most natural way to measure the difference between two
scalar values a and b is to employ the squared deviation (a − b)2. It is used
all the time in mathematical statistics although it is not easy to trace the
origin of this convention. The popularity of this measure of difference should,
in my opinion, be attributed to the smoothness of the function y = x2, the
geometrical interpretation as the squared length, as well as nice properties
of the class of square integrable functions.

We will consider the loss function λ(ω, γ) = (ω−γ)2 on different domains.
The discrete square-loss game has binary outcomes (Ω = B = {0, 1}) while
predictions are allowed to range through the unit interval (Γ = [0, 1]). We
will mostly be interested in this discrete square-loss game and loosely call
it the square-loss game. In the continuous square-loss game the outcome is
allowed to range over the unit interval as well. This game also appears under
the name ‘Brier game’ in the literature (e.g., [Vov01]).

Similarly, there are two variants of the A, B-bounded square-loss game,
namely, discrete and continuous. In the former, Ω = {A, B} and Γ = [A, B]
and in the latter Ω = Γ = [A, B]. Naturally we suppose that A < B.
Unbounded versions of the square-loss game may be considered and are of
interest but very little is known about them.



24 CHAPTER 2. ON-LINE PREDICTION

The next most natural measure of discrepancy between a and b is the
absolute deviation |a − b|. As above, we introduce the discrete absolute-loss
game

〈{0, 1}, [0, 1], |ω − γ|〉 ,

the continuous absolute-loss game

〈[0, 1], [0, 1], |ω − γ|〉 ,

the discrete A, B-bounded absolute-loss game

〈{A, B}, [A, B], |ω − γ|〉 ,

and, finally, continuous A, B-bounded absolute-loss game

〈[A, B], [A, B], |ω − γ|〉 .

We now proceed to the logarithmic loss function and the logarithmic-loss
game, which look less natural but are of fundamental importance. In the
logarithmic-loss game, we have Ω = {0, 1}, Γ = [0, 1] and

λ(ω, γ) =

{

− log(1 − γ) if ω = 0 ,
− log γ if ω = 1

(the notation log is a shorthand for the logarithm to the base 2, i.e., log2).
The importance of this game can be justified by the results we will obtain
about it. The following comment provides an insight into the nature of this
game.

Suppose we have the capital of £1. We split it into two parts, £γ1

and £(1 − γ1), and bet the first part on the outcome 1 and the second on
the outcome 0. After the event happens, we are allowed to keep only the
part of the capital we bet on the correct outcome. Thereafter we split the
remaining capital into proportions γ2 and (1 − γ2) and bet them on the
possible outcomes of the second trial and so on. (Note that in this dismal
game you can only lose; you may treat an act of betting as investing your
money into two banks which pay no interest and, moreover one of them
eventually goes bankrupt.) The capital we possess after trial T is the product
of proportions corresponding to correct guesses. Since our framework requires
an additive rather then multiplicative measure of the performance, we take
the logarithm of the capital; the pessimistic loss terminology leads us to the
negative logarithm.
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Another insight into the nature of this definition is given by the Shannon–
Fano optimal code.

Note that the case of ω = 0 and γ = 1 (or ω = 1 and γ = 0) is possible.
In this situation, the loss is +∞ as suggested by limx→0+(− log x). We do
not exclude this case and we rather prefer to allow λ and Lossλ to assume
the value +∞. No ambiguity occurs since we do not allow the value −∞
and thus we will not have to calculate the sum (+∞) + (−∞).

A simple generalisation of the logarithmic-loss game is the β-logarithmic-
loss game, where β ∈ (0, 1), with Γ = [0, 1] and

λ(ω, γ) =

{

logβ(1 − γ) if ω = 0 ,
logβ γ if ω = 1 .

Obviously, the usual logarithmic-loss game is 1/2-logarithmic-loss.
The logarithmic-loss game can be generalised to Cover’s game (introduced

in [CO96]; see also [VW98] for discussion). In this game, Ω = [0, +∞)N \
(0, 0, . . . , 0). The outcome ωt = (ω

(1)
t , ω

(2)
t , . . . , ω

(N)
t ) reflects the change in

stock prices between day t−1 and day t. Namely, ω
(n)
t is the ratio of the day

t closing price of the stock n to the day (t−1) closing price. The elements of
Γ ⊆ [0, 1]N are vectors γ = (γ(1), γ(2), . . . , γ(N)) such that

∑N
i=1 γ(i) = 1. The

entries of γt are the proportions of the total capital we invest in corresponding
stocks at the beginning of day t.

The ratio of our capital at the end of day t to our capital at the end of
day (t − 1) is the scalar product

γt · ωt =

N
∑

i=1

γ
(i)
t ω

(i)
t .

Arguing as above, we define the loss function λ(ω, γ) = − log(γ · ω).
The following simple game is also of interest. In this game only exact

predictions are of any good. Let Ω = Γ = {0, 1} and

λ(ω, γ) =

{

0 if ω = γ ,
1 otherwise .

We call it the simple prediction game. It reflects a standard machine learning
problem concerning the error count (note that the loss w.r.t. this game co-
incides with the number of errors). The problem is described e.g. in [LV93],
Section 5.4.3 (cf. Exercise 5.3.3 in the edition [LV97]).

In a context similar to ours this game was considered in [LW94].
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2.3 Prediction with Expert Advice

One of the central features of the approach of this thesis is that we do not
impose any restrictions on possible sequences of outcomes. No assumptions
such as i.i.d. or stochasticity are made. We do not restrict ourselves to strings
of a particular kind; within our approach everything may happen. One may
think that no mathematical theory of prediction is under such assumptions.
Indeed, every nontrivial guess about the outcome of a trial may be falsified by
some outcomes. Every prediction method would fail (i.e., suffer large loss) on
some sequence of events; if no sequence is more ‘likely’ than others, we have
no reason to prefer one method to another. Statements of this kind appear
in many parts of learning theory and go under names like the ‘no-free-lunch
theorem’.

In actual practice, when we encounter complete uncertainty, it is natural
to assign equal probability to every outcome. By doing this, we will end up
with some method which is optimal on average. For the absolute-loss, square-
loss, and logarithmic-loss games introduced above, this optimal method is to
predict 1/2 every time, but this trivial result is of little theoretical or practical
value.

Nevertheless it is possible to formulate and investigate sound problems
within our approach. One of the problems is that of prediction with expert
advice. We now proceed to formulating its settings.

Suppose that we have a pool of experts. Experts work according to
Protocol 1 and all try to predict elements of the same sequence. We admit
pools of an arbitrary size. Suppose that the pool is parametrised by θ,
which ranges over a set Θ. We will denote experts by Eθ, where θ ∈ Θ, and
sometimes identify Θ with the pool. If, say, Θ = {1, 2, . . . , N}, then we have
a finite pool E1, . . . , EN .

Let us make the experts’ predictions available to a prediction algorithm
A, the learner. The algorithm A observes the experts’ predictions every time
before it makes its own. The following protocol is used:

Protocol 2.
FOR t = 1, 2, . . .

(1) Eθ outputs a prediction γ
(θ)
t for all θ ∈ Θ

(2) A observes γ
(θ)
t for all θ ∈ Θ

(3) A chooses a prediction γt ∈ Γ
(4) A observes the outcome ωt ∈ Ω
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END FOR.

Note that while A is an algorithm, we make no assumption regarding the
computability of Eθ. They may be uncomputable or even receive some extra
information which is hidden from A. The ‘interior’ of experts is unknown
to us and we do not know how they come to their conclusions. The learner
has no access to the experts’ internal variables (if they have any) or other
particulars of their work; it only receives their predictions.

The problem of prediction with expert advice is to devise A to minimise

Lossλ
A(ω1, ω2, . . . , ωT ) − inf

θ∈Θ
Lossλ

Eθ
(ω1, ω2, . . . , ωT ) , (2.1)

where λ is some (fixed) loss function. Since we make no assumptions about
the nature of sequence ω1, ω2, . . . , ωT , the difference should be small for all
sequences. Different ways of looking at the value of T are possible. The
results we will use hold for every T .

We assume the worst-case scenario or, in other words, we consider an
antagonistic game2. In this game, A struggles to decrease the difference (2.1)
and its adversary, nature, which produces sequences of ωs and the predictions
of experts, tries to maximise it.

There are several remarks to be made about this game. First note that we
can treat the experts and the ‘side’ generating the outcomes ωt as one player
(to develop the meteorological example further, weather bureaus unite with
weather makers to trick people into going outdoor without an umbrella on a
rainy day). They do not have to be computable or satisfy other assumptions
and thus they do not have to be independent. Secondly while the learner has
a simple goal of minimising its loss, the goal of experts is more complicated.
They minimise the loss of the best expert while trying to deceive the learner
(i.e., weather bureau employees have to dress according to their forecasts but
they still try to deceive ordinary folk).

2.4 Regularity Assumptions

In this section we summarise the assumptions we need to make about the
games. These assumptions will be used in the treatment of the theory of
prediction with expert advice; further tasks we will consider later may require
different assumptions.

2Which is not one of the games defined in Subsect. 2.2 above!
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REG1 The range of λ is [0, +∞].

REG2 The prediction space Γ is a compact topological space.

REG3 For every ω ∈ Ω, the function λ(ω, γ) is continuous in the second
argument.

REG4 There exists γ ∈ Γ such that, for every ω ∈ Ω, the inequality
λ(ω, γ) < +∞ holds.

REG5 There is no γ such that, for all ω ∈ Ω, the equality λ(ω, γ) = 0 holds.

REG6 For every γ0 ∈ Γ, ω0 ∈ Ω such that λ(ω0, γ0) = +∞ there is a sequence
of γn ∈ Γ, n = 1, 2, . . ., such that γn → γ0 as n → ∞ and λ(ω0, γn) <
+∞.

Assumptions REG1–REG5 were introduced in [Vov98b, VW98]. As-
sumption REG6 essentially means that λ assumes the infinite value only in
exceptional situations; these situations may be approximated by final cases.

Clearly, it was the assumption REG4 that made us prohibit the outcome
(0, 0, . . . , 0) in Cover’s game.

In order to speak about the continuity of λ, we need a topology on [0, +∞].
We use the extended topology of [−∞, +∞], described in Appendix A.

In fact, continuity follows from computability. If we want the learner to be
computable, we need to assume that there is a definition of computability over
Ω×Γ and λ is computable according to some definition. Natural definitions
of computability imply continuity; still we preserve REG3 to highlight the
fact that the theory of prediction with expert advice may be considered and
still works without mentioning the algorithmic aspects.

The Aggregating Algorithm we are going to discuss involves dealing with
measures and integrals in the general case. Therefore we need some assump-
tions concerning integrability. Whenever we speak about measures over a
topological space, we will suppose that they are consistent with the topol-
ogy, i.e., all Borel sets are measurable. A probability distribution is a measure
µ such that µ(Γ) = 1.

We also assume that there is some fixed σ-algebra SΘ on Θ and, every
time the experts output predictions γ

(θ)
t , the function γt(θ) = γ

(θ)
t , which

maps Θ into Γ, is Borel measurable. Clearly, it is always true for a finite Θ
with the discrete topology.



Chapter 3

The Aggregating Algorithm

There are several approaches to the problem of prediction with expert ad-
vice and several methods to resolve it (cf. [CBFH+97] and [LW94]). The
Aggregating Algorithm is a method introduced in [Vov90]. It is proved to be
optimal (see [Vov98b]) in some exact sense and thus it provides a complete
solution for a very important and general case.

3.1 The Operation of the Aggregating Algo-

rithm

The Aggregating Algorithm (AA) was proposed in the pioneering paper
[Vov90]. We will describe a more general version from [VW98]; a simpler
special case will be formulated in parallel. This simple case is very impor-
tant for the thesis and I put it here for future reference. The rest of this
section is organised in the following manner. The text in the left column
will refer to the general situation with a game1 G = 〈Ω, Γ, λ〉 and an arbi-
trary pool of experts Θ. The right column describes the special case with
Ω = {0, 1}, Γ = [0, 1] and finite Θ = {1, 2, . . . , N}.

The AA accepts a parameter β ∈ (0, 1). Let us fix some β from this
range. We start with the definition of the number c(β).

1The set Γ is supposed to be a topological space; further assumptions will be made
later.

29
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A generalised prediction is the
function g : Ω → [0, +∞] defined
by the equality

g(ω) = logβ

∫

Γ

βλ(ω,γ)P (dγ)

for every ω, where P is a
probability distribution on Γ
(consistent with the topology of Γ
as described in Sect. 2.4)

A (simple) generalised prediction
is a pair g = (g(0), g(1)) such that

{

g(0) = logβ

∑k
i=1 piβ

λ(0,γk)

g(1) = logβ

∑k
i=1 piβ

λ(1,γk) ,
(3.1)

where k is some positive integer,
p1, p2, . . . , pk ∈ [0, 1],
γ1, γ2, . . . , γk ∈ Γ, and
p1 + p2 + · · ·+ pk = 1.

Pick a generalised prediction g and consider the number

cβ(g) = inf
γ∈Γ

sup
ω∈Ω

λ(ω, γ)

g(ω)
.

cβ(g) =

inf
γ∈Γ

max

(

λ(0, γ)

g(ω)
,
λ(1, γ)

g(ω)

)

.

(3.2)

On this particular instance we take the undefined ratio 0/0 to be equal 0.
Let c(β) be the supremum of cβ(g) over all g. If the supremum does not
exist, we put c(β) = +∞. If it is not clear from the context which game we
are referring to, we will write c(G, β) to specify the game.

Let us show that the definition in the ‘finite’ case is really a special case
of the general definition. We will prove a more general fact.

Theorem 1. Let β be a number from (0, 1) and G = 〈Ω, Γ, λ〉 be a game
satisfying REG1–REG5. If Ω is a compact topological space and λ(ω, γ) :
Ω×Γ → [0, +∞] is a continuous function (w.r.t. the extended topology) of two
arguments, then in the definition of c(β) the supremum of cg(β) can be taken
over the the generalised predictions induced by finite discrete distributions,
i.e., generalised predictions g of the form

g(ω) = logβ

k
∑

i=1

piβ
λ(ω,γi) , (3.3)

where k is a positive integer, pi ∈ [0, 1] (i = 1, 2, . . . , k) are such that
∑k

i=1 pi = 1, and γi ∈ Γ for every i = 1, 2, . . . , k.
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The proofs will be given in Section 3.2.
The idea behind c(β) is that every generalised prediction g(ω) may be

replaced by some prediction γ ∈ Γ whose loss is only c(β) times greater.

Proposition 1 ([VW98]). Let G = 〈Ω, Γ, λ〉 be a game satisfying REG1–
REG5 and β be a number from (0, 1) such that c(β) < +∞. Then for every
generalised prediction g there is γ ∈ Γ such that, for every ω ∈ Ω, the
inequality

λ(ω, γ) ≤ c(β)g(ω) (3.4)

holds. In the case of Ω = {0, 1} and g = (g(0), g(1)) this reduces to
{

λ(0, γ) ≤ c(β)g(0)

λ(1, γ) ≤ c(β)g(1) .

Let us now proceed to the algorithm itself. Throughout the process of
prediction, AA maintains a list of relative weights for experts. After trial t,
the weights are

a measure Wt on Θ.
an array of numbers
(

w
(1)
t , w

(2)
t , . . . , w

(N)
t

)

.

The initial weights are to some extent arbitrary and may be regarded as one
more parameter of AA. The weights

W0 are initialised by a probability
distribution P0 on Θ.

(

w
(1)
0 , w

(2)
0 , . . . , w

(N)
0

)

are

initialised by an array of numbers
p

(1)
0 , p

(2)
0 , . . . , p

(N)
0 ∈ [0, 1] such

that
∑N

i=1 p
(i)
0 = 1.

After trial t, AA modifies the weights:

Wt(E) =

∫

E

β
λ
(

ωt,γ
(θ)
t

)

Wt−1(dθ)

(3.5)
for every E ⊆ Θ (this is still a
measure; see, say, [Rud74],
Proposition 1.25).

w
(i)
t = w

(i)
t−1β

λ
(

ωt,γ
(i)
t

)

for i = 1, 2, . . . , N .

On trial t, after observing the experts’ predictions, AA normalises the
current weights:
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let

Pt−1(A) = Wt−1(A)/Wt−1(Θ)

for every A ⊆ Θ

let

p
(i)
t−1 = w

(i)
t−1/

N
∑

j=1

w
(j)
t−1 ,

where i = 1, 2, . . . , N ,

and averages the experts’ predictions into a generalised prediction

gt(ω) = logβ

∫

Θ

β
λ
(

ω,γ
(θ)
t

)

Pt−1(dθ).

(3.6)



























g
(0)
t = logβ

N
∑

j=1

β
λ
(

0,γ
(j)
t

)

p
(j)
t−1

g
(1)
t = logβ

N
∑

j=1

β
λ
(

1,γ
(j)
t

)

p
(j)
t−1 .

Now AA finds γt such that

λ(ω, γt) ≤ c(β)g(ωt) (3.7)

for all ω ∈ Ω

{

λ(0, γt) ≤ c(β)g
(0)
t

λ(1, γt) ≤ c(β)g
(1)
t

and outputs it. Such γt exists by Proposition 1.

The key property of AA is the following.

Proposition 2 ([Vov90, VW98]). Let β be a number from (0, 1) and G =
〈Ω, Γ, λ〉 be a game satisfying REG1–REG5. For every pool of experts Θ,
every positive integer T and every sequence ω1, ω2, . . . , ωT ∈ Ω, if a learner
A uses the AA, then the inequality

Lossλ
A(ω1, ω2, . . . , ωT ) ≤ c(β) logβ

∫

Θ

β
Lossλ

Eθ
(ω1,ω2,...,ωT )

P0(dθ) ,

where P0 is the initial distribution, holds.

If the pool is finite, the integral reduces to the sum. If we omit all terms
of this sum except for one, we obtain the following corollary.
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Corollary 1 ([Vov90]). If, under the conditions of Proposition 2, the pool Θ
is finite and Θ = {1, 2, . . . , N}, then, for every sequence ω1, ω2, . . . , ωT ∈ Ω,
if a learner A uses the AA, then the inequality

Lossλ
A
(ω1, ω2, . . . , ωT ) ≤ c(β) Lossλ

Ei
(ω1, ω2, . . . , ωT ) +

c(β)

ln(1/β)
ln
(

1/p
(i)
0

)

,

where p
(1)
0 , p

(2)
0 , . . . , p

(N)
0 are the initial weights, holds for all i = 1, 2, . . . , N .

The initial distribution is a parameter that can be altered. If we take the
uniform distribution, we will get the next corollary.

Corollary 2 ([Vov90]). If, under the conditions of Proposition 2, the pool Θ
is finite and Θ = {1, 2, . . . , N}, then, for every sequence ω1, ω2, . . . , ωT ∈ Ω, if
a learner A uses AA with the uniform initial distribution, then the inequality

Lossλ
A
(ω1, ω2, . . . , ωT ) ≤ c(β) Lossλ

Ei
(ω1, ω2, . . . , ωT ) +

c(β)

ln(1/β)
ln N

holds.

3.2 Proofs

In this section there are proofs of the statements from the previous section.

Proof of Theorem 1. Consider a generalised prediction g induced by a dis-
tribution P over Γ. We will start by showing that βg(ω) may be approxi-
mated uniformly in ω to any degree of precision by an expression of the form
∑k

i=1 piβ
λ(ω,γi), where k is a positive integer, pi ∈ [0, 1] (i = 1, 2, . . . , k) are

such that
∑k

i=1 pi = 1, and γi ∈ Γ for every i = 1, 2, . . . , k.
Take some ε > 0. It follows from the compactness of Ω and Γ that βλ(ω,γ)

is uniformly continuous and these sets can be represented as

Ω = ∪nε

i=1Ωi (3.8)

Γ = ∪mε

j=1Γj , (3.9)

where, for every i = 1, 2, . . . , nε and j = 1, 2, . . . , mε, if ω1, ω2 ∈ Ωi and
γ1, γ2 ∈ Γj, then

∣

∣βλ(ω1,γ1) − βλ(ω2,γ2)
∣

∣ < ε.
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Without loss of generality we may assume that all Γi are disjoint and
Borel. Let us pick some γj ∈ Γj and let pj = P (Γi), j = 1, 2, . . . , mε.
Clearly, for every ω ∈ Ωi, we have

∣

∣

∣

∣

∣

∫

Γ

βλ(ω,γ)P (dγ) −
k
∑

i=1

piβ
λ(ωi,γk)

∣

∣

∣

∣

∣

≤
k
∑

i=1

∣

∣

∣

∣

∣

∫

Γj

βλ(ω,γ)P (dγ) − βλ(ωi,γk)pi

∣

∣

∣

∣

∣

≤
k
∑

i=1

εpi

= ε .

Now let c(β) be the value obtained from the definition that uses all gener-
alised predictions. By restricting the definition to the generalised predictions
of the form (3.3), we can only increase the value. Consider c from the interval
(0, c(β)). Since c is less than sup{cg(β) | g is a generalised prediction}, there
is generalised prediction g such that

∀γ ∈ Γ∃ω ∈ Ω : λ(ω, γ) > cg(ω) .

The inequality may be rewritten as

βλ(ω,γ)/c < βg(ω) .

The theorem will follow if we replace βg(ω) in this formula with an expression
of the form

∑k
i=1 piβ

λ(ω,γi). It is sufficient to find some ε > 0 such that

∀γ ∈ Γ∃ω ∈ Ω : βλ(ω,γ)/c + ε < βg(ω) .

Consider f(ω, γ) = βg(ω) − βλ(ω,γ)/c. It is easy to check that βg(ω) is
continuous and thus f(ω, γ) is continuous in two arguments. For every γ ∈ Γ
there is ωγ such that f(ωγ, γ) = εγ > 0. Since the function f : Ω× Γ → R is
continuous, for every γ̃, there is an open Γγ̃ ⊆ Γ such that f(ωγ̃, γ) ≥ εγ̃/2
for every γ ∈ Γγ̃ . Since Γ is compact, {Γγ̃ | γ̃ ∈ Γ} contains a finite covering
of Γ, i.e., there is a positive integer n and some γ̃1, γ̃2, . . . , γ̃n ∈ Γ such that
Γ =

⋃n
i=1 Γγ̃i

. Let
ε = min

i=1,2,...,n
εγ̃i

/2 .

For completeness sake the following derivation has been included.
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Proof of Proposition 2. First note the following inequality for the loss on trial
t:

λ(ωt, γt) ≤ c(β) logβ

∫

Θ

βλ(ωt,γ
(θ)
t )Pt−1(dθ) .

The inequality follows immediately from (3.6) and (3.7). Using (3.5), we also
obtain

Wt(dθ) = βLossλ
Ei

(ω1,ω2,...,ωt)P0(dθ) .

The rigorous foundation for dealing with dθ in this fashion is provided by,
say, Theorem 1.29 and the subsequent remark in [Rud74].

Now let us prove the proposition by induction.

Lossλ
A
(ω1, ω2, . . . , ωT ) = Lossλ

A
(ω1, ω2, . . . , ωT−1) + λ(ωT , γT )

≤ c(β) logβ

∫

Θ

βLossλ
Eθ

(ω1,ω2,...,ωT−1)P0(dθ)

+ c(β) logβ

∫

Θ

βλ(ωT ,γ
(θ)
T )PT−1(dθ)

= c(β) logβ

∫

Θ

WT−1(dθ)

×
∫

Θ

βλ(ωT ,γ
(θ)
T )

WT−1(Θ)
WT−1(dθ)

= c(β) logβ

∫

Θ

βλ(ωT ,γ
(θ)
T )βLossλ

Eθ
(ω1,ω2,...,ωT−1)P0(dθ)

= c(β) logβ

∫

Θ

βLossλ
Eθ

(ω1,ω2,...,ωT )P0(dθ) .

3.3 Optimality of the Aggregating Algorithm

Proposition 2 together with Corollaries 1 and 2 describe the ability of AA
to merge experts’ predictions. Had they been the only results about the
performance of AA, its significance would have entirely depended on com-
parison with other techniques of merging, either theoretical (comparison of
bounds) or practical (comparison of losses on actual datasets). However AA
turns out to be a fundamental development of learning theory because it is
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optimal in many important situations. In this subsection, the results from
[Vov98b] concerning the optimality of AA are outlined.

Consider a game G = 〈Ω, Γ, λ〉 satisfying conditions REG1–REG5. Let
us formulate an optimality counterpart for Corollary 2.

Informally, optimality of AA means the following. Suppose that there is a
merging technique A that, for every finite pool Θ of n experts E1, E2, . . . , En,
every positive integer T , and every ω1, ω2, . . . , ωT ∈ Ω, achieves loss satisfying
the inequalities

Lossλ
A
(ω1, ω2, . . . , ωT ) ≤ c Lossλ

Ei
(ω1, ω2, . . . , ωT ) + a ln n (3.10)

for every i = 1, 2, . . . , n and some nonnegative constants c and a. Then there
is β ∈ (0, 1) such that the inequalities

c(β) ≤ c

c(β)

ln(1/β)
≤ a

hold. In other words, the pairs of (c, a) achieved by the AA are the best and
cannot be improved by other merging techniques.

This can be made more precise by utilising the antagonistic game from
Subsect. 2.3. Let G(c, a) be the following antagonistic perfect information
game. Initially, one player, called the Environment, chooses a positive integer
n (the number of experts). Then players act according to Protocol 2, where

the Environment generates the experts’ predictions γ
(θ)
t and outcomes ωt

while the second player, the Learner, acts as A from the protocol and outputs
predictions γt. The Environment wins if (3.10) ceases to be true for some
i = 1, 2, . . . , n on some trial T > 0. Otherwise the Learner wins. Note that
the Learner’s victory cannot be established on any trial. It can only win
after infinitely many trials have been completed.

Proposition 3 ([Vov98b]). For every c and a the game G(c, a) is deter-
mined, i.e., either the Environment or the Learner has a winning strategy2.

Let L be the set of all pairs (c, a) ∈ [0, +∞)2 such that the Learner has
a winning strategy in G(c, a). Clearly, if (c, a) ∈ L then (c′, a′) ∈ L for every

2Only deterministic strategies are considered.
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c′ ≥ c and a′ ≥ a. Let the separation curve be the boundary of L relative to
the quadrant (c, a) ⊆ [0, +∞)2 or, in other words, the set

{

(c, a) ∈ [0, +∞)2 | a = inf{a′ | (c, a′) ∈ L}
}

∪
{

(c, a) ∈ [0, +∞)2 | c = inf{c′ | (c′, a) ∈ L}
}

.

Here L refers to the closure of L w.r.t. the standard topology of R2 and
inf ∅ is regarded as nonexistent. On the other hand, consider the curve AA
defined as follows. It consists of all pairs (c(β), c(β)/ ln(1/β)), β ∈ (0, 1) and
the points (c(0), a(0)) and (c(1), a(1)), where

c(0) = lim
β→0+

c(β) , c(1) = lim
β→1−

c(β) ,

a(0) = lim
β→0+

c(β)

ln(1/β)
, c(1) = lim

β→1−

c(β)

ln(1/β)
,

provided the coordinates are finite (these limits may be shown to always
exist but they can be infinite). Proposition 2 implies that if c′ ≥ c(β) and
a′ ≥ c(β)/ log(1/β) for some β ∈ (0, 1), then the Learner wins in G(c′, a′) by
using AA.

Now optimality can be formulated.

Proposition 4 ([Vov98b]). The separation curve coincides with AA.

Other properties of L and c(β) include

Proposition 5 ([Vov98b]). (i) AA ⊆ L, i.e., L is closed w.r.t. the stan-
dard topology of R2,

(ii) L ⊆ [1, +∞) × [0, +∞),

(iii) c(β) is continuous on (0, 1), and

(iv) c(β) is non-increasing on (0, 1).
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Chapter 4

The Multiplicative Constant
c(β) and the Concept of
Mixability

The multiplicative constant c(β) is of fundamental importance for AA since it
determines its performance when the length of the outcome string tends to in-
finity. This constant determines how much worse the asymptotic performance
of the AA is than the performance of the best expert. It can be said that
the AA provides us with c(β)-competitive algorithms (see e.g. [BDBK+94]),
where we treat the loss as thecost of a prediction strategy.

Proposition 5, (ii) implies that c(β) ≥ 1. This is a very natural statement;
it means that a composition of experts’ predictions can not always work
better than the best expert.

If Γ is a metric compact, the proof is very simple. Starting from any
γ ∈ Γ, one can construct a sequence γ1, γ2, . . . ∈ Γ such that λ(ω, γi) ≥
c(β)λ(ω, γi+1) for every ω ∈ Ω and every positive integer i. There exists a
convergent subsequence of γ1, γ2, . . .; let γ0 be its limit. If c(β) < 1, then
λ(ω, γ0) = 0 for every ω ∈ Ω. This contradicts REG5.

Therefore the case c(β) = 1 is the best that can be achieved. Its impor-
tance motivates the following definitions (see [VW98]).

Definition 1. A game G is β-mixable if β ∈ (0, 1) and c(β) = 1.

Definition 2. A game G is mixable if it is β-mixable for some β ∈ (0, 1).

In this chapter we introduce the geometric interpretations of c(β) and the

39
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concept of mixability after [Vov90] and [Vov98b]. This interpretation allows
us to establish many important properties of c(β).

We restrict ourselves to the binary case Ω = B = {0, 1} until the final
section, where the contrary is explicitly stated. The games with Ω = B =
{0, 1} will be referred to as binary games.

4.1 Geometric Images of Binary Games

In the binary case Ω = B, many concepts connected with the AA have
a simple geometric interpretation. We are going to use it extensively. A
prediction γ ∈ Γ generates a pair of numbers (λ(0, γ), λ(1, γ)) and therefore
a point on the extended Euclidean plane [−∞, +∞]2. Elements of the set
P = {(λ(0, γ), λ(1, γ)) | γ ∈ Γ} may be identified with predictions.

Different continuous parametrisations of a given set P do not introduce
any change into the way AA operates. All of them are equivalent as far as
AA is concerned. In fact, the equivalence can be extended even further. We
need the following definition.

Definition 3. A superprediction w.r.t. a game G = 〈B, Γ, λ〉 is a pair of
numbers (s0, s1) ∈ [−∞, +∞]2 such that

λ(0, γ) ≤ s0 ,

λ(1, γ) ≤ s1

for some γ ∈ Γ.

Within the context of the geometrical interpretation the set S of all su-
perpredictions is the set of all points that lie to the ‘north-east’ of P . In
Fig. 4.1 you can see the sets P and S for the discrete square-loss game.

By analogy with (3.1) we can define a generalised superprediction to be
a pair g = (g(0), g(1)) such that

{

g(0) = logβ

∑k
i=1 piβ

s
(0)
k

g(1) = logβ

∑k
i=1 piβ

s
(1)
k ,

where k is some positive integer, p1, p2, . . . , pk ∈ [0, 1] are such that p1 +

p2 + · · · + pk = 1, and s1 = (s
(0)
1 , s

(1)
1 ), s2 = (s

(0)
2 , s

(1)
2 ), . . . , sk = (s

(0)
k , s

(1)
k )

are superpredictions from S. By analogy with (3.2) for every generalised
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Figure 4.1: The sets of predictions and superpredictions for the discrete
square-loss game

superprediction g = (g(0), g(1)) the numbers inf(s(0),s(1))∈S max
(

s(0)

g(ω)
, s(1)

g(ω)

)

can

be considered. However it is easy to see that this approach provides us with
the same value of c(β).

The sets of superpredictions is the terminal point of our generalisation.
All games with the same set of superpredictions behave similarly from our
point of view. On the other hand, we will see below that games with different
sets of superpredictions are substantially different.

The regularity assumptions from Sect. 2.4 reduce to a set of geometrical
principles. The following theorem summarises them.

Theorem 2. Let S ⊆ (−∞, +∞]2 be a set such that for every (x, y) ∈ S
and every u, v ∈ [0, +∞] we have (x + u, y + v) ∈ S. Then it is a set of
superpredictions for some game G = 〈B, Γ, λ〉 satisfying REG1–REG5 if and
only if the following conditions hold:

BIN1 S ⊆ [0, +∞]2,

BIN2 (0, 0) /∈ S,

BIN3 S is closed w.r.t. the extended topology of [−∞, +∞]2, and

BIN4 S ∩ R2 6= ∅.

This game satisfies REG6 if and only if
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BIN5 The set S is the closure of its finite part S ∩ R2 w.r.t. the extended
topology of [−∞, +∞]2.

We say that a game satisfies a condition BINi from the list if its set of
superpredictions satisfies it.

An example of S prohibited by Condition BIN5 is S containing the ‘line
segment’ connecting the points (a, +∞), (b, +∞), where a, b ∈ R, but no
points below this segment, i.e., points (u, v) ∈ R2 such that a ≤ u ≤ b.

Different games with different loss functions may have the same set of
superpredictions S. They are essentially mere parametrisations of S. It
would be convenient to have a ‘parameter–independent’ way of describing S.
One0 possible solution to this problem is provided by the following concept.

We will say that f : I → R, where I = (a, b) ⊆ R is an open (perhaps
infinite) interval, is a canonical specification of a game G with the set of
superpredictions S, if

• f is non-increasing,

• f is semi-continuous from the right,

• f is not constant on every non-void interval (a′, b) ⊆ I, and

• S is a closure w.r.t. the extended topology of the set {(x, y) ∈ R2 |
∃x̃ ≤ x : f(x̃) ≤ y}.

Lemma 1. Let G be a game with the set of superpredictions S which satisfies
BIN1 and BIN4. Then S satisfies BIN3 and BIN5 if and only if either
S = [a, +∞]× [b, +∞] for some a, b ≥ 0 or there is a canonical specification
of G. If under the above conditions there is a canonical specification, it is
unique.

Proof. The ‘only if’ implication is trivial. Let us prove the ‘if’ part. Consider
G with S satisfying BIN1–BIN5. Let Ĩ = (0, +∞) and let f̃(x) = inf{y ∈
R | (x, y) ∈ S}, where inf ∅ = +∞. Let a = sup{x | f̃(x) = +∞} and
b = inf{b̃ | f̃ is constant on (b, +∞)} and consider I = (a, b). It is easy to
check that the restriction f̃ |I is a canonical specification of G.

Uniqueness follows from the observation that if f is a canonical represen-
tation of G, then f(x) = inf{y ∈ R | (x, y) ∈ S}.
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4.2 The Geometric Interpretation of c(β)

We begin with some notation.
Let us introduce several transformations of subsets of the plane. Consider

A ⊆ [−∞, +∞]2 and real numbers u, v, t. By A + (u, v) denote the shift of
A by the vector (u, v), i.e., the set {(x + u, y + v) | (x, y) ∈ A} and by tA
denote the result of the scaling by t, i.e., the set {(tx, ty) | (x, y) ∈ A}.

A slightly more complicated transformation is provided by the equation

Bβ(x, y) = (βx, βy) . (4.1)

Clearly, for every β ∈ (0, 1), this transformation is a homeomorphism from
(−∞, +∞]2 onto [0, +∞)2. It is also a homeomorphism from [0, +∞]2 onto
[0, 1]2. The inverse transformation is

B
−1
β (x, y) = (logβ x, logβ y) . (4.2)

Let us define a function on sets A ⊆ [0, +∞]2. Put Aθ = {t ∈ [0, +∞) |
(t cos θ, t sin θ) ∈ A} ⊆ R and

oscθ A =

{

1 if Aθ = ∅

sup Aθ/ inf Aθ otherwise
.

This function is a measure of how ‘thick’ the sections of A by the half-line
{(t cos θ, t sin θ) | t ≥ 0} are. Put

osc A = sup
θ∈[0,π/2]

oscθ A . (4.3)

Finally, given A, B ⊆ [−∞, +∞]2, the B-closure of A, denoted by clB A,
is the intersection of all shifts of B that contain A, i.e.

clB A =
⋂

u,v∈R:B+(u,v)⊇A

B + (u, v) . (4.4)

Now we can give an interpretation of c(β) which goes back to [Vov90].
Consider a game G with the set of superpredictions S satisfying BIN1–BIN4

and β ∈ (0, 1). Clearly, generalised superpredictions fill the convex hull of
the set Bβ(S). We use the notation C(A) from [Egg58] for the convex hull
of A ⊆ R2. It follows from the discussion in Sect. 4.1 above that

c(β) = osc
(

B
−1
β (C (Bβ(S))) \ S

)

. (4.5)
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Since S is closed by BIN3, the set Bβ(S) is also closed. According to a
fact from convex analysis, the convex hull of a closed bounded set A ⊆ R2 is
the intersection of all half-plains that contain A (see, say, [Egg58], Theorem
11). Note that Bβ establishes a correspondence between shifts of the curve
βx + βy = 1, i.e., the curves βx+a + βy+b = 1, where a, b are some constants,
and the straight lines Ax + By + C = 0, where A, B > 0 and C are some
constants. Put Bβ = {(x, y) ⊆ [0, +∞]2 | βx + βy ≤ 1}. We have proved the
following statement.

Proposition 6 ([Vov90, Vov98b]). If G is a game with the set of super-
predictions S satisfying BIN1–BIN4, then

c(β) = osc(clBβ
S \ S)

for every β ∈ (0, 1) .

Another important corollary of (4.5) is

Proposition 7 ([Vov90]). A game G with the set of superpredictions S
satisfying BIN1–BIN4 is β-mixable, where β ∈ (0, 1), if and only if Bβ(S)
is convex.

4.3 Some Simple Properties of c(β)

In this section we formulate and prove several (mostly trivial) properties of
c(β) and mixability for future reference.

We start with technical lemmas which describe some geometric properties
of Bβ = {(x, y) ⊆ [0, +∞]2 | βx + βy ≤ 1} and its boundary ∂B taken w.r.t.
the extended topology of [−∞,∞]2.

Lemma 2. Let β ∈ (0, 1). Then the following statements hold:

(i) For every two points (u1, v1), (u2, v2) ∈ (−∞, +∞]2 such that u1 < u2

and v2 < v1 there is only one shift of the curve Bβ such that ∂B (taken
w.r.t. the extended topology) passes through these points.

(ii) The boundaries (w.r.t. the extended topology) of two different shifts of
Bβ can have no more than 2 common points in [−∞, +∞].
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P

Q

∂S

S

∂B

Figure 4.2: The sets from Lemma 3

Proof. Statement (ii) follows from (i). To prove (i), consider the transfor-
mation Bβ. There is a unique straight line passing through Bβ(u1, v1) and
Bβ(u2, v2). Its equation may be written as ax + by + c = 0, where a, b > 0
and c are constants. It corresponds to a shift of ∂Bβ.

Lemma 3. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5, let β ∈ (0, 1). Consider two points P, Q ∈ ∂S. Suppose that
there is a shift B = Bβ + (a, b) such that P, Q ⊆ ∂B and the arc of ∂B
between P and Q lies outside S (except for the endpoints). Then the set
clBβ

(S) includes the interior of the region bound by arcs of ∂S and ∂B.

The informal meaning of the lemma is that if a shift of the curve βx+βy =
1 passes through two points on the boundary of S and the arc of the curve
lies outside S, then the ‘lens’ bound by the two arcs cannot be cut off by
other shifts of the curve (see Fig. 4.2, where the set S is shaded).

Proof. The lemma follows from the definition of clBβ
(S) as the inverse image

of the convex hull of Bβ(S). The image of the arc of ∂Bβ between P and Q
is the line segment connecting B(P ) and B(Q). The lemma follows.

It is easy to show that c(β) remains intact if we reflect S in the straight
line x = y. Indeed, little changes if we ‘swap’ the outcomes 0 and 1, i.e., if 0
is renamed 1 and 0 is renamed 1.

Lemma 4. Let G1 be a game with the set of superpredictions S and G2 be the
game with the set of superpredictions obtained by reflecting S in the bisector
of the positive quadrant. Then G1 satisfies any of the conditions BIN1–BIN5
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if and only if G2 satisfies them and, provided all the conditions are satisfied,
c(G1, β) = c(G2, β) for every β ∈ (0, 1).

The following theorem shows that convexity is a necessary condition for
mixability. However we will see below that it is not sufficient.

Theorem 3. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN4. If S ∩ R2 is not convex, there is δ > 0 such that c(β) > 1 + δ
for all β ∈ (0, 1) and thus G is not mixable.

Proof. There are points B0, B1 ∈ S such that the line segment l connecting
B0 and B1 is not a subset of S. Without restricting the generality we can
assume that B0, B1 ∈ ∂S and the intersection l ∩ S consists of B0 and B1.
Let A be the interior of the set bound by l and the arc of ∂S between B0

and B1. Since S is closed, A is not empty.

Lemma 3 implies that A ⊆ clBβ
S for every β ∈ (0, 1). Therefore

osc(clBβ
S \ S) ≥ osc A. It remains to note that osc A > 1.

The next theorem allows us to investigate ‘parts’ of a game separately.

Theorem 4. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5 and let f : (a, b) → R be its canonical representation. Let
c ∈ (a, b) and let f |(a,c) and f |(c,b) be the canonical representations of the
games G1 and G2, respectively. Then G is mixable if and only if G1 and G2

are mixable and S ∩ R2 is convex.

Proof. The ‘only if’ part is trivial. Let us prove the ‘if’ part. Let S1 and
S2 be the sets of superpredictions for G1 and G2, respectively. Since G1 and
G2 are mixable, there is β ∈ (0, 1) such that they are β-mixable and the
sets Bβ(S1) and Bβ(S2) are convex. Indeed, if G1 is β1-mixable and G2 is
β2-mixable, take β = max(β1, β2).

Let g : (βb, βa) → R be the function defined by g(x) = βf(logβ x), i.e.,
the graph of g is the image of the graph of f under the transformation Bβ.
The function g is concave on (βb, βc) and on (βc, βa). It is concave on the
whole interval (βb, βa) if and only if the following inequality for one-sided
derivatives holds:

g′
−(βc) ≥ g′

+(βc) .
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Since

dβy(t)

dβx(t)
=

ln β · βy(t)y′(t)

ln β · βx(t)x′(t)

= βy(t)−x(t) y
′(t)

x′(t)

(4.6)

holds, this inequality follows from f ′
+(c) ≥ f ′

+(c), which in turn follows from
the convexity of f .

Corollary 3. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5 and let f : (a, b) → R be its canonical representation. Let
c, d ∈ (a, b) are such that c < d and let f |(a,d) and f |(c,b) be the canonical
representations of the games G1 and G2, respectively. Then G is mixable if
and only if G1 and G2 are mixable.

4.4 Differential Criteria of Mixability

If the boundary of S is smooth, some simple criteria of mixability can be
derived. The following theorem is a restatement of a theorem from [HKW98].

Theorem 5. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5. Suppose that there are twice differentiable functions x, y : I →
R, where I ⊆ R is an open (perhaps infinite) interval, such that x′ > 0 and
y′ < 0 on I and S is the closure of the set {(u, v) ∈ R2 | ∃t ∈ I : x(t) ≤
u, y(t) ≤ v} w.r.t. the extended topology of [−∞, +∞]2. Then, for every
β ∈ (0, 1), the game G is β-mixable if and only if

ln
1

β
≤ y′′(t)x′(t) − x′′(t)y′(t)

x′(t)y′(t)(y′(t) − x′(t))
(4.7)

holds for every t ∈ I. The game G is mixable if and only if the fraction
(y′′x′−x′′y′)/x′y′(y′−x′) is separated from zero, i.e., there is ε > 0 such that

y′′x′ − x′′y′

x′y′(y′ − x′)
≥ ε (4.8)

holds on I.
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Proof. Convexity of Bβ(S) is equivalent to concavity of the function with the
graph {Bβ(x(t), y(t)) | t ∈ I}. Since the functions x(t) and y(t) are smooth,
this curve is concave if and only if

d2βy(t)

d (βx(t))
2 ≤ 0 (4.9)

holds on I. Further differentiation of (4.6) yields

d2βy(t)

d (βx(t))
2 =

1

ln β · βx(t)x′(t)

(

(y′(t) − x′(t)) lnβ · βy(t)−x(t) y
′(t)

x′(t)

+ βy(t)−x(t) y
′′(t)x′(t) − y′(t)x′′(t)

(x′(t))2

)

=
βy(t)−2x(t)

ln β · (x′(t))2

(

(y′(t) − x′(t))y′(t) ln β

+
y′′(t)x′(t) − y′(t)x′′(t)

x′(t)

)

.

Inequality (4.9) reduces to

(y′(t) − x′(t))y′(t) lnβ ≥ −y′′(t)x′(t) − y′(t)x′′(t)

x′(t)
. (4.10)

The theorem follows from the assumptions about the signs of the derivatives
x′ and y′.

Corollary 4. Let G be a game satisfying BIN1–BIN5 with the canonical
representation f : I → R. Suppose that f is twice differentiable on I. Then,
for every β ∈ (0, 1), the game G is β-mixable if and only if

ln
1

β
≤ f ′′(x)

f ′(x)(f ′(x) − 1)

holds for every x ∈ I. The game G is mixable if and only if the fraction
f ′′/f ′(1 − f ′) is separated from the zero, i.e., there is ε > 0 such that

f ′′

f ′(f ′ − 1)
≥ ε (4.11)

holds on I.
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Proof. The proof is by taking the parameter t = x in Theorem 5. Note that
the derivative of f does not vanish on I. Had it vanished at x0 ∈ I, the
function f would have been constant on I ∩ (x0, +∞).

Theorem 4 implies a similar statement for piecewise twice-differentiable
functions.

Corollary 5. Let G be a game with the canonical representation f : I → R.
Suppose that f is piecewise twice differentiable on I, i.e., there are numbers
a = x1 < x2 < . . . < xn = b, where n is some positive integer, such that f
is twice differentiable on every open interval (xi, xi+1), i = 1, 2, . . . , n − 1.
Then G is β-mixable, where β ∈ (0, 1), if and only if

• f is convex, and

• for every x ∈ I, the inequality

ln
1

β
≤ f ′′(x)

f ′(x)(f ′(x) − 1)

holds.

We need the following definition to simplify the statements of theorems.
Let G be a game with the set of superpredictions S satisfying BIN1–BIN5

and let f : (a, b) → R be the canonical representation of G. If there is c < b
such that the game with the set of superpredictions S∩ [c, +∞]× (−∞, +∞]
is mixable, we say that G has a mixable 0-edge. If the game obtained by
reflecting S in the straight line x = y has a mixable 0-edge, we say that G

has a mixable 1-edge.
The concept of a mixable edge allows us to formulate the following crite-

rion of mixability.

Theorem 6. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5 and let f : (a, b) → R be its canonical representation. Suppose
that f is twice differentiable on (a, b). Then G is mixable if and only if f ′′(x)
does not vanish on (a, b) and G has mixable 0 and 1-edges.

Proof. The ‘only if’ part immediately follows from Theorem 4 and Corol-
lary 4.

Let us prove the ‘if’ part. There are c, d ∈ (a, b) such that the games with
canonical representations f |(a,c) and f |(d,b) are mixable. Take c′ ∈ (a, c) and
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d′ ∈ (d, b). Since the continuous function f ′′/f ′(f ′ − 1) does not vanish on
the closed interval [c′, d′], it is separated from 0 on this interval. Corollary 4
implies that the game with the canonical representation f |(c′,d′) is mixable.
Now we apply Corollary 3.

In order to make this theorem practical, we need to develop sufficient
conditions for the property of having a mixable edge. Particularly simple
conditions may be formulated for bounded games.

Let G be a game with the set of superpredictions S satisfying BIN1–BIN5

and let f : (a, b) → R be the canonical representation of G. If b < +∞, we
say that G has a bounded 0-edge. If the game obtained by reflecting S in
the straight line x = y has a bounded 0-edge, we say that G has a bounded
1-edge. If a game has bounded 0 and 1-edges, it is bounded. If an edge is not
bounded, it is said to be unbounded.

An equivalent definition of a bounded game is a game with the set of
superpredictions that can be specified by a bounded loss function.

If G has a bounded 0-edge, we may extend f to the segment (a, b]. Let
f̄ : (a, b] → R be the function which coincides with f on (a, b) and defined
by the equation

f̄(b) = lim
x→b−

f(x) (4.12)

at b.

Theorem 7. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5 and let f : (a, b) → R be its canonical representation. Let G

have a bounded 0-edge and let f̄ be an extension of f specified by (4.12). If f̄
is twice continuously differentiable1 on (c, b], where c is a number from (a, b),
and any of the following conditions hold, then G has a mixable 0-edge:

1. f̄ ′′(b) > 0, or

2. The derivative f̄ ′(b) vanishes and there is a positive integer k > 2 such
that f̄(x) has derivatives up to the order k at b and f (m)(b) = 0 for
every m = 1, 2, . . . , k − 1, but f (k)(b) is of sign (−1)k.

Proof. If (1) holds, then f ′′ is separated from 0 in a punctured vicinity of b
and so is the fraction f ′′/f ′(f ′ − 1). Thus we can apply Theorem 4.

1By the derivative at the point b we mean the left derivative f ′

−
(b).
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By Taylor’s theorem, f̄ ′′(x) = α(x − b)k + o
(

(x − b)k
)

as x → b−, where
k is a positive integer and α > 0. It is easily shown that f̄ ′(x) = α(x −
b)k+1/(k + 1) + o

(

(x − b)k+1
)

and therefore

lim
x→b−0

f ′′(x)

f ′(x)
= −∞ .

This implies that f ′′/f ′(1 − f ′) is separated from 0 in a punctured vicinity
of b.

The results concerning the mixable 0-edge can be summarised in the
following ‘procedure’ for checking the mixability. Let f : (a, b) → R be the
canonical representation of G with a set of superpredictions S and a bounded
0-edge and let f̄ be as above. Suppose that f̄ is infinitely differentiable at b.
Then:

• if f̄ ′′(b) > 0 then G has a mixable 0-edge

• if f̄ ′′(b) < 0 then G does not have a mixable 0-edge and moreover S is
not convex

• if f̄ ′′(b) = 0 then:

– if f̄ ′(b) < 0 then G does not have a mixable 0-edge

– if f̄ ′(b) = 0 then:

∗ if ∃k > 2 : f̄ ′(b) = 0, f̄ ′′(b) = 0, . . . , f̄ (k−1)(b) = 0 and f̄ (k)(b)
is of sign (−1)k, then G has a mixable 0-edge

∗ if ∃k > 2 : f̄ ′(b) = 0, f̄ ′′(b) = 0, . . . , f̄ (k−1)(b) = 0 and
f̄ (k)(b) < 0 is of sign (−1)k+1, then G does not have a mixable
0-edge and moreover S is not convex.

If all derivatives vanish at b, this procedure comes to no conclusion; we
need to analyse the behaviour of the fraction f ′′(x)/f ′(x) as x approaches b.
The same applies to the case when there is not enough derivatives at b.

4.5 Mixability of Specific Games

Let us now apply our statements to check whether some specific games are
mixable. There are many ways to prove the following theorem (see [Vov90],
[Vov98a]); our theory gives a more straightforward method.
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Theorem 8. (i) The β-logarithmic-loss game is β ′-mixable if and only if
β ′ ∈ [β, 1); the logarithmic-loss game is β ′-mixable if and only if β ′ ∈
[1/2, 1).

(ii) The discrete A, B-bounded square-loss game is β-mixable if and only if
β ∈ [e−2/(B−A)2 , 1); the discrete square-loss game is β-mixable if and
only if β ∈ [e−2, 1).

Proof. The proof is by Theorem 5. We take x(t) = λ(0, t) and y(t) = λ(1, t),
where λ is the loss function from the definition, for the β-logarithmic-loss
and the discrete square-loss games.

The discrete A, B-bounded square-loss game can be scaled and thus re-
duced to the game with Ω = Γ = {0, 1} and λ(ω, γ) = (B −A)2(ω− γ)2.

Similarly, Theorem 5 implies that the discrete absolute-loss games are not
mixable. We will obtain a more precise result about them later.

We know from Proposition 5, (iv) that c(β) does not increase in β in
the general case. Theorem 8 allows us to obtain a simple derivation of this
property for the binary case.

Corollary 6. For every A ⊆ (−∞, +∞]2, 0 < β1 ≤ β2 < 1, and θ ∈ [0, 2π)
we have oscθ clBβ2

A ≤ oscθ clBβ1
A.

Proof. Indeed, the set Bβ is the set of superpredictions for the β-logarithmic-
loss game. Since β1-logarithmic-loss game is β2-mixable, clBβ2

Bβ1 = Bβ1.
Therefore clBβ2

A ⊆ clBβ1
A.

4.6 Non-mixable Games

We now move on to investigating the behaviour of c(β) in the general case. In
this section we show that in many cases c(β) → 1 as β → 1− and investigate
the type of convergence. A notable exception is provided by a class of games
with c(β) ≡ +∞.

4.6.1 Absolute-Loss Games

Let us evaluate c(β) for the absolute-loss game.
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Theorem 9. For the discrete A, B-absolute-loss game we have

c(β) =
|B − A| ln 1/β

2 ln 2
β|B−A|+1

for every β ∈ (0, 1). Consequently, for the discrete absolute-loss game and
every β ∈ (0, 1) we have

c(β) =
ln 1

β

2 ln 2
β+1

.

We will derive this from a more general statement of independent interest.
Take a, b > 0. Let G

a,b
abs be the game with the set of superpredictions

Sa,b
abs = {(x, y) ∈ [0, +∞]2 | bx + ay > ab}. Informally, this is a game with

the set of predictions coinciding with the line segment connecting the points
(a, 0) and (0, b). The set Sa,b

abs is shaded darker on Fig. 4.3.

Lemma 5. For all a, b > 0, we have

c(Ga,b
abs, β) =

ab ln β

a ln a(1−βa+b)
(a+b)(1−βa)

+ b ln b(1−βa+b)
(a+b)(1−βb)

.

Proof. Fix β ∈ (0, 1). The curve

βx(1 − βb) + βy(1 − βa) = 1 − βa+b (4.13)

is the shift of βx + βy = 1 passing through (a, 0) and (0, b). If follows from
Lemma 3 that D = clBβ

(Sa,b
abs)\S

a,b
abs is bounded by the line segment connecting

the points (a, 0) and (0, b) and the arc of the curve (4.13) between these
points.

Let us evaluate osc D. Consider the point (x̃, ỹ) where the tangent to
the curve (4.13) is parallel to the chord connecting (a, 0) and (0, b). It fol-
lows from the Thales theorem of plane geometry that osc D is achieved on
θ such that the half-line lθ = {(t cos θ, t sin θ) | t ≥ 0} passes through (x̃, ỹ).
Figure 4.3 illustrates the proof. The set D is shaded lighter and the set of
superpredictions darker.

The derivative of the implicit function y(x) specified by (4.13) is

dy

dx
= −βx−y 1 − βb

1 − βa
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a

b

(x0, y0)D

(x̃, ỹ)

Figure 4.3: The drawing for Lemma 5

and thus x̃, ỹ may be found from the system

{

βx̃(1 − βb) + β ỹ(1 − βa) = 1 − βa+b

−β x̃−ỹ 1−βb

1−βa = − b
a

.

This system can easily be reduced to a system linear in β x̃ and β ỹ. The
solution is

x̃ = logβ

b(1 − βa+b)

(a + b)(1 − βb)
,

ỹ = logβ

a(1 − βa+b)

(a + b)(1 − βa)
.

Now let (x0, y0) be the intersection of lθ with the line segment connect-
ing (a, 0) and (0, b). Simple considerations from plane geometry imply that
osc D = x0/x̃. It is easy to check that

x0 =
ab

a ỹ
x̃

+ b
.

The substitutions complete the proof.

4.6.2 Convergence

One may notice that for the discrete logarithmic-loss game, c(β) → 1 as
β → 1. This observation is a special case of a more general statement.



4.6. NON-MIXABLE GAMES 55

Theorem 10. Let G be a game with a set of superpredictions S satisfying
BIN1–BIN5. If G is bounded and S∩R2 is convex, then c(β) → 1 as β → 1.

Proof. In this proof and several subsequent proofs we will use the notation

cθ(G, β) = oscθ

(

B
−1
β (C (Bβ(S))) \ S

)

. (4.14)

Clearly, c(G, β) = supθ∈[0,π/2] cθ(G, β). Let us show that cθ(G, β) → 1 uni-
formly in θ.

It is easy to see that cθ(β) is continuous in θ if S satisfies BIN1–BIN5.
On the other hand, for every fixed θ the function cθ(β) is non-increasing in
β (cf. Corollary 6). It follows from Dini’s theorem (see, e.g., Theorem 7.13
from [Rud76]) that it is sufficient to show that cθ(G, β) → 1 pointwise. The
uniform convergence will follow.

Let f : (a, b) → R be a canonical representation of G. Fix θ ∈ [0, π/2].
If the half-line lθ = {(t cos θ, t sin θ) | t ≥ 0} does not intersect S (this can
only happen for θ = 0 and θ = π/2), there is nothing to prove. Otherwise
let (xθ, yθ) ∈ [0, +∞] be the point where lθ first meets S, i.e., (xθ, yθ) =
(t0 cos θ, t0 sin θ), where t0 = inf{t ≥ 0 | (t cos θ, t sin θ) ∈ S}.

If xθ /∈ (a, b), then cθ(G, β) = 1. Indeed, consider a point P = (x, y) such
that x ≥ b and P /∈ S. It is easy to see that P /∈ clβ S for each β ∈ (0, 1).

Now let xθ ∈ (a, b). The convex set S ∩ R2 has a hyper-plane of support
at (xθ, yθ). This hyper-plane is a straight line with the equation that may
be reduced to the form qx + ry = s, where q, r > 0. Let (c, 0) and (0, d)
be the points where this line intersects the coordinate axes. We have S ⊆
Sc,d

abs = {(x, y) ∈ [0, +∞] | qx + ry > s}, where the latter set is the set of

superpredictions for the game G
c,d
abs. The inequalities

1 ≤ cθ(G, β)

≤ cθ(G
c,d
abs, β)

≤ c(Gc,d
abs, β)

hold. Since c(Gc,d
abs, β) → 1 as β → 1−, we obtain that cθ(G, β) → 1 as

β → 1−.

In many cases it is possible to determine the type of convergence. Note
that the game in the following theorem is not necessarily bounded.
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Theorem 11. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5. Let f : (a, b) → R be its canonical representation. Suppose
that S ∩ R2 is convex and the following conditions hold:

• at least one of the following is true

– G has a mixable 0-edge or

– G has a bounded 0-edge and there is ε > 0 such that f ′
−(x) ≤ −ε

holds on (a, b), and

• at least one of the following is true

– G has a mixable 1-edge or

– G has a bounded 1-edge and there is T < +∞ such that f ′
+(x) ≥

−T holds on (a, b).

Then c(β) = 1 + O (ln (1/β)) as β → 1−.

Intuitively the conditions mean the following. The theorem applies if
each edge is mixable; it still applies if edges are not mixable, but they are
bounded and there is no tangency with vertical and horizontal lines.

Proof. The proof is an elaboration of the proof of Theorem 10. We will show
that there is C ∈ R such that the inequality

cθ(G, β) ≤ 1 + C ln(1/β) (4.15)

holds for every θ ∈ [0, π/2].
Suppose that there are 0 < ε < T < +∞ such that −T ≤ f ′

−(x) ≤
f ′

+(x) ≤ −ε for every (a, b) (this implies that G is bounded). By analogy
with the proof of Theorem 10, for every θ ∈ [0, π/2] consider a half-line lθ
and let (xθ, yθ) be the point where it meets S provided it intersects S at all.
Let mxθ

be a support line to S ∩R2 passing through (xθ, yθ). For the sake of
definitiveness, let mxθ

be the line with the equation y = (x − xθ)(f
′
−(xθ) +

f ′
+(xθ))/2 + f(xθ) if xθ ∈ (a, b). All θ such that xθ /∈ (a, b) can be ignored

since cθ(G, β) = 1 for them for every β anyway.
Let θ be such that xθ = b and θ be such that xθ = a. We should find

C ∈ R such that (4.15) holds for every θ ∈ (θ, θ). For every θ ∈ (θ, θ) let
(cθ, 0) and (0, dθ) be the points where mxθ

cuts the coordinate axis. Since
G is bounded and slopes of mxθ

are separated from −∞ and 0, there are
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c, d > 0 and c, d < +∞ such that c ≤ cθ ≤ c and d ≤ dθ ≤ d for every
θ ∈ [θ, θ].

For every θ ∈ [θ, θ], we have in much the same way as in the proof of
Theorem 10

cθ(G, β) ≤ cθ(G
cθ ,dθ

abs , β) (4.16)

≤ (Gcθ ,dθ

abs , β) . (4.17)

It remains to show the following. If

g(t, c, d) = − tcd

c ln c(1−e−t(c+d))
(c+d)(1−e−tc)

+ d ln d(1−e−t(c+d))
(c+d)(1−e−td)

then g(t, c, d) = 1 + O(t) as t → 0+ and the O(t) term is uniform in (c, d) ∈
[c, c] × [d, d]. Indeed, for every t > 0 we have

g(t, c, d) = 1 +
c + d

8
t + t2r2(t, c, d) ,

where

r2(t, c, d) =
1

2

∂2g

∂t2
(ξ, c, d)

for some ξ = ξ(t) ∈ [0, t]. Since the derivative ∂2g/∂t2 is uniformly bounded
when (c, d) ∈ [c, c] × [d, d] and 0 ≤ t ≤ t0, we get the desired result.

The remaining cases can be reduced to the one we have considered. Sup-
pose that G has, say, a mixable 0-edge. We will find b′ ∈ (a, b) and β ′ ∈ (0, 1)
such that for every θ, if xθ ≥ b′, then cθ(G, β) = 1 for every β ∈ [β ′, 1).

It follows from the definition of a mixable 0-edge that there is b′′ ∈ (a, b)
such that the game with the canonical representation f |(b′′,b) is mixable. Sup-
pose that it is β1–mixable. Let l be a support hyper-plane to S ∩R2 passing
through M = (b′′, f(b′′)) and let N be the intersection of l with the coordinate
axis x = 0 (see Fig. 4.4).

Pick b′ ∈ (b′′, b). For every β ∈ [β1, 1) there is a shift B of the set Bβ such
that S ∩ ([b′′, +∞]×R) ⊆ B and (b′, f(b′)) ∈ ∂B. For every sufficiently large
β ∈ [β1, 1) the segment connecting the points M and N belongs to B.

In order to show this, consider the shift of the curve βx +βy = 1 touching
a fixed line y = −sx, where s > 0, at the origin. It is easy to check by direct
calculation that the equation of this shift is

y(x) =
ln(1 + t(1 − βx))

ln β
.
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bb′b′′

∂B

l

M

N S

Figure 4.4: The drawing for Theorem 11

For any fixed s > 0 and x ∈ R, the expression y(x) tends to −sx as β → 1.
Thus for all M ′ and N ′ above the line y = −sx the segment [M ′, N ′] will lie
above the shift for all values of β close to 1.

Pick some β ∈ (β1, 1) such that M and N are inside B. Consider the
game with the set of superpredictions

S ′ = (S ∩ [b′, +∞] × R) ∪ (B ∩ [0, b′] × [0, +∞]) .

It follows from Theorem 4 that this game is mixable, say, β ′-mixable. This
implies that for every point P ∈ ∂(S ′ ∩ R2) there is a shift B of Bβ′ such
that P ∈ ∂B and S ⊆ S ′ ⊆ B.

4.6.3 Infinite values of c(β)

If a game does not have bounded edges, c(β) does not necessarily behave
nicely. The following theorem shows that c(β) assumes the value +∞ for a
large class of games. Consider a game with the smooth canonical represen-
tation f : (a, +∞) → R. If the fraction f ′′(x)/f ′(x) is separated from 0 as
x → +∞ then so is the fraction f ′′(x)/f ′(x)(f ′(x) − 1) and the game has a
mixable 0-edge. The case f ′′(x)/f ′(x) → 0 is completely different.

Theorem 12. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN5 and an unbounded 0-edge. Let the canonical representation f
be twice differentiable on (a, +∞) for some a ∈ R. If the following conditions
hold

• limx→+∞ f(x) = 0 and
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• limx→+∞
f ′′(x)
f ′(x)

= 0

then c(β) = +∞ for every β ∈ (0, 1).

Proof. Pick β ∈ (0, 1) and consider the image of S under Bβ. It is easy
to check by evaluating the second derivative (cf. (4.10) and Corollary 4)
that the boundary of Bβ(S) in a vicinity of the point (0, 1) is the graph
of a convex (not concave) function. There exists u0 > 0 such that the line
segment connecting the points (0, 1) and (u0, β

f(logβ(u0))) lies above the arc
of the boundary of Bβ(S) between these points (see Fig. 4.5). The inverse
image of the corresponding straight line is a shift y = b(x) of the curve
βx + βy = 1. It is easy to see that b(x) = logβ(1 − βx+C) for some C ∈ R;
we have 0 < b(x) < f(x) for every x ∈ (logβ(u0), +∞) and b(x) → 0 as

x → +∞. A decomposition yields b(x) =
(

−βx+C + O
(

β2(x+C)
))

/ lnβ as
x → +∞.

Now let us pick an arbitrary β1 ∈ (0, 1) and show that cθ(G, β1) → +∞
as θ → 0 (see 4.14 for the definition of cθ) . We have proved that there is
a function b1(x) = logβ(1 − βx+C1), where C1 ∈ R, and u0 ∈ R such that
f(u0) = b1(u0) but 0 < b1(x) < f(x) for x > u0. It follows from Lemma 3
that the part of subgraph of y = b1(x) to the left of u0 belongs to the β1-
closure of S, i.e., {(x, y) ∈ R2 | x ≥ u0 and y ≥ b1(x)} ⊆ clβ1 S.

Consider some β2 ∈ (β1, 1). Clearly, there is b2(x) = logβ(1 − βx+C2),
where C2 ∈ R, such that for all sufficiently large values of x ∈ R the inequal-
ities

0 < b1(x) < b2(x) < f(x) (4.18)

hold. Pick an angle θ > 0 and let x1 and x2 be such that

b1(x1)

x1
=

b2(x2)

x2
= tan θ (4.19)

(see Fig. 4.6). Suppose that θ is sufficiently small for (4.18) to hold for x = x1

as well as x = x2.
If x0 ∈ R is such that f(x0)/x0 = tan θ, i.e. (x0, f(x0)) is the point where

the half-line with the gradient θ meets S, then cθ(G, β1) ≥ x0/x1 ≥ x1/x2.
Taking the logarithm of (4.19) yields

ln tan θ = (x1 + C1) lnβ1 − ln ln (1/β1) + O
(

βx1+C1
)

− ln x1

= x1 ln β1 + o(x1)

= x1 ln β1(1 + o(1))
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Figure 4.5: The drawing of Bβ(S)
for Theorem 12
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Figure 4.6: The drawing of S,
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1 for Theorem 12

as θ → 0 and, respectively, x1 → +∞. Likewise we have

ln tan θ = x2 ln β2(1 + o(1))

and thus

x2

x1

=
ln β1

ln β2

(1 + o(1))

as θ → 0. Since we can chose β2 to be as close to 1 as is wished, the theorem
follows.

A simple example of a game satisfying this theorem is provided by the
game with the canonical representation f(x) = 1/x, x ∈ (0, +∞). Indeed,
we have f ′(x) = −1/x2 and f ′′(x) = 2/x3; thus

f ′′(x)

f ′(x)
=

2

x
→ 0

as x → +∞. The theorem implies that c(β) ≡ +∞ for this game.

The first example of a game with c(β) ≡ +∞ was constructed in [Vov98b],
Example 6, but the construction was rather artificial and the set of super-
predictions of the resulting game was not convex.
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4.7 Continuous Games

This section of the chapter stands out because we are considering non-binary
games here. We will not investigate them deeply; we just reproduce a theorem
from [HKW98] which allows us to reduce the problem of finding c(β) for
continuous games introduced above to the question concerning corresponding
discrete games.

Proposition 8 ([HKW98]). Take a game G = 〈[0, 1], [0, 1], λ〉. Consider
Gbin = 〈B, [0, 1], λbin〉, where λbin is the restriction λ|B×[0,1]. Let β ∈ (0, 1)
and c(β) = c for Gbin. Consider a function

g(ω, γ1, γ2) =

(

λ(ω, γ1) −
λ(ω, γ2)

c

)

ln β .

If
∂2g(ω, γ1, γ2)

∂ω2
+

(

∂g(ω, γ1, γ2)

∂ω

)2

≤ 0 (4.20)

holds for all ω, γ1, γ2 ∈ [0, 1], then c(β) = c for G.

Proof. Take a positive integer k, a set of weights p1, p2, . . . , pk ∈ [0, 1] such
that

∑k
i=1 pi = 1, and k predictions γ1, γ2, . . . , γk ∈ [0, 1]. It follows from the

definition of c(β) that there is γ ∈ [0, 1] such that

{

λ(0, γ) ≤ c logβ

∑k
i=1 piβ

λ(0,γk)

λ(1, γ) ≤ c logβ

∑k
i=1 piβ

λ(1,γk) .
(4.21)

Now consider the inequality

λ(ω, γ) ≤ c logβ

k
∑

i=1

piβ
λ(ω,γk) . (4.22)

It is equivalent to

β−λ(ω,γ)
c

k
∑

i=1

piβ
λ(ω,γk) ≤ 1

and therefore to
k
∑

i=1

pie
g(ω,γi,γ) ≤ 1 . (4.23)
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Consider the left-hand side as a function of ω. Equation 4.20 implies
that it is convex in ω and (4.21) means that (4.23) holds for ω = 0, 1. This
proves that (4.23 holds for every ω ∈ [0, 1] and thus (4.22) holds for every
ω ∈ [0, 1].

Note the constructive nature of the proof (cf. [Vov98a]). Suppose we
have a formula or an algorithm which constructs γ given experts’ predictions
γ1, γ2, . . . , γk and weights p1, p2, . . . , pk and ensures that (4.21) is true for a
discrete game (a substitution rule from [Vov98a]). The proof of the proposi-
tion implies that the same rule may be used for the corresponding continuous
game provided the conditions of the proposition are satisfied.



Chapter 5

Predictive Complexity:
Definitions and Existence

We have seen that the Aggregating Algorithm is a powerful tool for merging
different pools of prediction strategies. The question arises of whether it is
possible to merge all strategies. Indeed, there are countably many algorithms
working according to Protocol 1. If we could merge them all we would end
up with a universal prediction method. Similar ideas (in a different context)
were proposed by Solomonoff back in sixties; see [LV97] for an overview of
Solomonoff’s research.

Unfortunately, the straightforward approach fails for most games. It fol-
lows from simple diagonalization-style considerations, every predicting algo-
rithm is significantly outperformed by some other algorithm on some strings.
Indeed, consider, say, the discrete square-loss game and a prediction algo-
rithm A. Let us construct an infinite sequence x = (x1, x2, . . .) ∈ B∞ and
a strategy A0 performing better then A on finite prefixes of x. On the first
trial A suffers loss of at least 1/4 on at least one of the outcomes 0 or 1. We
can effectively find such an outcome (if both 0 and 1 qualify, let us take 0
for definiteness sake) and choose x1 being equal to this outcome. The same
procedure can be repeated over consecutive trials and thus x is constructed
by induction. The loss suffered by A on prefixes of x satisfies the inequality

Losssq
A

(x1, x2, . . . , xn) ≥ n

4

for every positive integer n. On the other hand, since the sequence x is

63
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computable, we may consider A0 which predicts xk on trial k1. Thus

Losssq
A0

(x1, x2, . . . , xn) = 0 .

This problem can be overcome at a certain cost. We widen the set of all
computable strategies to the class of ‘superstrategies’. For many important
games, this larger class exhibits nicer properties and contains an element
universal in some natural sense. In this chapter we define these superstrate-
gies, introduce several notions of universality and investigate under which
conditions universal superstrategies exist.

We restrict ourselves to binary games although many definitions and con-
structions can be easily extended to the non-binary case.

5.1 Weaker Regularity Assumptions

It is natural to develop some parts of the theory of predictive complexity
under assumptions that are weaker than those for the theory of the AA.
Sometimes the conditions REG1 and REG5 or their equivalents BIN1 and
BIN2 can be relaxed. While it makes no sense to consider negative losses in
the theory of prediction with expert advice, they may be acceptable in the
theory of predictive complexity.

Consider the following condition:

BIN ′
1 There are a, b ∈ R such that S ⊆ [a, +∞] × [b, +∞].

This requirement is equivalent to allowing a loss function λ to assume
values from [r, +∞], where r is some finite number (perhaps negative). In
some situations we will consider BIN ′

1 instead of BIN1 and BIN2.

5.2 Loss and Superloss Processes

Let G = 〈B, Γ, λ〉 be a game with the set of superpredictions S satisfying
BIN ′

1 and BIN3–BIN4. We will speak about finite sequences of outcomes,
i.e., finite strings of binary digits, and denote them by bold lowercase letters,
e.g., x, y, or z.

1The algorithm A0 is oblivious; the outcomes do not affect its predictions.
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A function L : B∗ → (−∞, +∞] is a loss process if there is an algorithm
A working according to Protocol 1 such that L = Lossλ

A. In other words, the
set of all loss processes coincides with the set of losses of algorithms. Note
that a loss process is computable.

The discussion at the beginning of this chapter explains the need to extend
this class. A function L : B∗ → (−∞, +∞] is a superloss process if

• L(Λ) = 0, where Λ is the empty string,

• L is semi-computable from above, and

• for every x ∈ B∗ there is γ ∈ Γ such that

{

L(x0) − L(x) ≥ λ(γ, 0) ,

L(x1) − L(x) ≥ λ(γ, 1) .
(5.1)

The last condition means that the pair (L(x0) − L(x), L(x1) − L(x)) is a
superprediction.

Note that every loss process is a superloss process. Indeed, if L is a
loss process, it satisfies (5.1); moreover the inequalities may be replaced by
equalities. One may use the prediction output by A on input x as γ for (5.1).

One of the key properties of superloss processes is the following.

Proposition 9 ([VW98]). Let G = 〈B, [0, 1], λ〉 be a game with the set of
superpredictions S satisfying BIN ′

1 and BIN3–BIN4. Then the set of all
superloss processes for G is enumerable, i.e., there is a computable sequence
L1, L2, . . . of superloss processes w.r.t. G which contains all of them.

Proof. We give the proof from [VV01].
The computability of λ(ω, γ) implies that there is a computable sequence

of functions λt : [0, 1] ∩ Q → Q ∪ {+∞} (t = 1, 2, . . .) decreasing in t (i.e.,
λt+1(ω, γ) ≤ λt(ω, γ) for every positive integer t, each ω ∈ B, and each
γ ∈ [0, 1] ∩ Q) and converges to λ (i.e., limt→+∞ λt(ω, γ) = λ(ω, γ) for every
ω ∈ B and γ ∈ [0, 1] ∩ Q).

It follows from the existence of the universal enumerable set that there
is an enumerable set W ⊆ N × B∗ × (Q ∪ {+∞}) such that the set of its
sections Wi = {(x, q) | (i, x, q) ∈ W}, i = 1, 2, . . ., coincides with the set of
all enumerable subsets of B∗ × (Q ∪ {+∞}). Let W t be a finite subset of W
enumerable in t steps and W t

i = {(x, q) | ∃q′ ≤ q : (i, x, q′) ∈ W t}.
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Let us define a computable set of functions Lt
i : B∗ → (Q ∪ {+∞}) (i, t

are positive integers) decreasing in t (Lt+1
i (x) ≤ Lt

i(x) for every positive
integers i, t and every x ∈ B∗). Suppose that L1

i , L
2
i , . . . , L

t−1
i has already

been constructed. Consider all functions L such that

• the graph of L is a subset of W t
i ,

• for every x ∈ B∗ there is rational γ ∈ [0, 1] such that
{

L(x0) − L(x) ≥ λt(γ, 0) ,

L(x1) − L(x) ≥ λt(γ, 1) ,

and

• Lt(x) ≤ Lt−1
i (x) for every x ∈ B∗.

Let Lt
i be a minimal one of these functions, i.e., let Lt

i be such that there is
no L satisfying the conditions and x ∈ B∗ such that L(x) < Lt

i(x) (if there
are many such L we just take the first in an enumeration).

Now it is possible to define a computable sequence of functions Li : B∗ →
(Q ∪ {+∞}) (i = 1, 2, . . .). Put Li(x) = inft∈N Lt

i(x). Every Li is a superloss
process. On the other hand, if L is a measure of predictive complexity, its
subgraph coincides with Wi for some i. One can check that L coincides with
Li.

5.3 Simple Predictive Complexity

In this section we introduce the most important form of predictive complex-
ity. We will refer to it as to simple predictive complexity or just predictive
complexity.

5.3.1 Definition

Definition 4 ([VW98]). A superloss process K w.r.t. a game G = 〈Ω, Γ, λ〉
is called (simple) predictive complexity w.r.t. G if for every other superloss
process L w.r.t. G there is a constant C such that the inequality

K(x) ≤ L(x) + C (5.2)

holds for every x ∈ Ω∗.
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We will use the notation KG for complexity w.r.t. a game G if it is not
clear from the context which game we are referring to.

Note that if there is a superloss process satisfying Definition 4, it is not
unique. However the absolute value of the difference between two such su-
perloss processes is uniformly bounded by a constant.

A similar situation occurs in the case of Kolmogorov complexity. There
are many universal functions and complexities any two of them define dif-
fer by a constant. There are two approaches that can be taken. The first
one is to fix a particular universal function and to define complexity using
that particular universal function. Another one is to thing of Kolmogorov
complexity as defined up to an additive constant.

The first approach involves specifying a particular universal function and
usually raises the issue of the complexity of a universal function. However
within that approach we can actually speak of the complexity of an individual
object. The theory built using the second approach is necessarily asymptotic.
The value of complexity of a particular sequence x makes little sense and only
the relations among the values of complexity for infinitely many strings may
be the subject of a non-trivial mathematical investigation. This is the price
we pay for generality and universality.

In this thesis we are following the second approach. We say that predictive
complexity is a universal superloss process. We do not bother constructing a
particular universal superloss process; instead, we are formulating our results
in the asymptotic fashion.

Since every loss process is a superloss process, (5.2) hold for loss processes
as well. In other words, for every prediction strategy A there is a constant
C such that for every x ∈ Ω∗ the inequality

KG(x) ≤ Lossλ
A(x) + C (5.3)

holds. Thus KG bounds the loss w.r.t. G of every prediction strategy from
below aand this bound is tight in a certain sense. We may say that predictive
complexity is an intrinsic measure of predictability of a string in the same
way as Kolmogorov complexity is an intrinsic measure of complexity of a
string independent of a particular description method.

5.3.2 Existence

The problem of the existence of predictive complexity has not been fully
resolved yet. We will formulate some sufficient and necessary conditions
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below and in subsequent sections, but our results do not form a complete
solution.

The theory of prediction with expert advice provides a sufficient condition
for the existence of predictive complexity.

Proposition 10 ([VW98]). If a game G with the set of superpredictions S
satisfying BIN1–BIN4 is mixable, then there is simple predictive complexity
w.r.t. G.

Proof. Suppose that G is β-mixable, where β ∈ (0, 1). By Proposition 9,
there is an enumerable sequence L1, L2, . . . of all superloss processes w.r.t.
G. Pick a positive sequence q1, q2, . . . ≥ 0 such that

∑+∞
i=1 qi = 1 (e.g.,

qi = 1/2i). Let us define the function K : B∗ → R by the following formula:

K(x) = logβ

+∞
∑

i=1

qiβ
Li(x) .

First we will show that K is a superloss process. Indeed,

K(xω) − K(x) = logβ

∞
∑

i=1

qiβ
Li(xω) − logβ

∞
∑

i=1

qiβ
Li(x)

= logβ

∞
∑

i=1

βLi(x)

1
qi

∑∞
j=1 qjβLi(x)

βLi(xω)−Li(x) ,

where ω = 0, 1. The point Bβ(K(x0) − K(x),K(x1) − K(x)) belongs to
Bβ(S) since a convergent convex mixture of a countable number of points
from a convex set in R2 belongs to the set.

Secondly since logβ t is a decreasing function of t, for every positive integer
i we have

K(x) ≤ logβ qiβ
Li(x)

= Li(x) + logβ qi .

5.3.3 Some Specific Complexities

It follows from Proposition 10 and Theorem 8 that there is simple predictive
complexity for some games we have introduced.
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The discrete square-loss game is mixable and thus simple predictive com-
plexity w.r.t. this game exists. We will denote it by Ksq.

Another mixable game we have introduced is the logarithmic-loss game.
It defines logarithmic-loss complexity Klog. It is remarkable that this function
has been known for mathematicians for some time. It is easy to see (just by
comparing the definitions) that it coincides with a variant of Kolmogorov
complexity, namely, the negative logarithm of Levin’s a priori semimeasure
or KM, which is described in [V’y94, LV97].

Let us perform the derivation. The definition of Levin’s a priori semimea-
sure is as follows. A function Q : B∗ → [0, 1] is an (enumerable continuous)
semimeasure if

• Q(Λ) ≤ 1, where Λ is the empty string,

• for every x ∈ B∗, we have Q(x0) + Q(x1) ≤ Q(x) and

• Q is enumerable from below.

It is shown in [V’y94, LV97] that there is a semimeasure M such that for
any other semimeasure Q there is a constant c > 0 such that cQ(x) ≤ M(x)
holds for all x ∈ B∗. By definition, put KM = − log2 M.

Now for each semimeasure Q consider the function LQ = − log Q. The
class of all LQ, as Q ranges over the class of all semimeasures, is the class of
all functions L : B∗ → [0, +∞] such that

• L(Λ) ≥ 0, where Λ is the empty string,

• for every x ∈ B∗, we have 2−L(x0) + 2−L(x1) ≤ 2−L(x) and

• Q is enumerable from above.

Clearly, KM has the following property. For every L there is a constant C
such that KM(x) ≤ L(x) + C.

Now consider the definition of a superloss process w.r.t. the logarithmic-
loss game. A superloss process L is semicomputable from above and for every
x ∈ B∗ there is γ ∈ [0, 1] such that

{

L(x0) − L(x) ≥ − log(1 − γ) ,

L(x1) − L(x) ≥ − log γ .
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Excluding γ from the system provides us with with the condition 2−L(x0) +
2−L(x1) ≤ 2−L(x). Thus KM equals Klog up to an additive constant.

Note that KM differs from other variants of Kolmogorov complexity,
namely, plain complexity K, prefix complexity KP, and monotone complexity
Km, by terms bounded by C log |x|, where C is a constant.

5.4 Weaker Predictive Complexities

Definition 4 can be weakened in many ways. The reasons for considering
weaker complexities are as follows. First they help to clarify the problem of
the existence of predictive complexity. Proposition 10 shows that mixability
is a sufficient condition for the existence of predictive complexity. There are
reasons to believe that it is also necessary (e.g., the role of mixability in pre-
diction with expert advice and the optimality of the Aggregating Algorithm)
though the problem remains open. Weaker versions of predictive complexity
provide an approach to solving this problem. Secondly weaker complexities
are of independent interest. When we cannot construct simple complexity,
we sometimes can still use weaker versions.

Consider a game G and superloss processes w.r.t. G. We will weaken
Definition 4 by introducing extra non-constant terms. The easiest way to
do it is to consider terms depending on the length of strings x.

A superloss process K is predictive complexity up to f(n), where f : N →
[0, +∞), if for every other superloss process L there is a constant C such
that the inequality K(x) ≤ L(x) + Cf(|x|) holds for every x ∈ B∗.

Assumption BIN4 implies that there is a process L such that L(x) =
O(n) as n → +∞ and thus the definition becomes most interesting in the
case f(n) = o(n) as n → +∞.

This consideration motivates the definition of predictive complexity up
to o(n). A superloss process K satisfies this definition if for every L we have
K(x) ≤ L(x) + o(|x|). The term o(|x|) does not have to be uniform in L.

Another approach is to consider functions of K as extra terms. Definition
of complexities up to f(K) or o(K) may be given in much the same way as
the definitions up to f(n) or o(n). However we will not discuss these variants
of complexity since few facts are known about them.

An interesting variant of complexity is complexity up to M · K. We say
that a superloss process K is complexity w.r.t. G up to M · K, where M is a
positive number, if for every superloss process L there is a constant C such
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that the inequality

K(x) ≤ L(x) + MK(x) + C (5.4)

holds for every x ∈ B∗. This definition makes sense only if M ∈ (0, 1). If
this is the case, (5.4) can be rewritten as

K(x) ≤ 1

1 − M
L(x) +

C

1 − M
(5.5)

or, since C is arbitrary, as

K(x) ≤ 1

1 − M
L(x) + C . (5.6)

One can easily see that the coefficient 1/(1 − M) is greater than or equal to
1; it tends to 1 as M tends to 0 and tends to +∞ as M tends to 1.

We can define complexity up to the multiplicative constant m (m ≥ 1)
by the requirement that for every superloss process L there is a constant C
such that K(x) ≤ mL(x) + C for every x ∈ B∗. Clearly, K is complexity
up to M · K if and only if it is complexity up to the multiplicative constant
1/(1 − M).

5.5 Complexities and Shifts

Let G1 be a game with the set of superpredictions S1 and G2 be a game
with the set of superpredictions S2 = S1 + (u, v), where u, v are some real
constants. Any L : B∗ → (0, +∞] is a superloss process w.r.t. G if and only if
L(x)+u]0x+ v]1x is a superloss process w.r.t. G2. The notation ]0x stands
for the number of 0s in a string x ∈ B∗; the notation ]1x stands for the
number of 1s, respectively. Therefore there is simple predictive complexity
w.r.t. G1 if and only if there is simple predictive complexity w.r.t. G2 and KG1

is simple predictive complexity w.r.t. G1 if and only if KG1(x)+ u]0x + v]1x

is simple predictive complexity w.r.t. G2. The same applies to complexities
w.r.t. f(n) and o(n).

5.6 On the Existence of Weak Complexity

Let us start with a simple elaboration of Proposition 10.
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Theorem 13. Let G be a game with the set of superpredictions S satisfy-
ing BIN1–BIN4. If c = c(β) < +∞ for some β, then there is predictive
complexity up to the multiplicative constant c w.r.t. G.

Proof. Consider K defined by the formula

K(x) = c logβ

+∞
∑

i=1

qiβ
Li(x) ,

where Li is an enumeration of all superloss processes and
∑+∞

i=1 qi = 1.
It is a superloss process since

K(xω) − K(x) = c

(

logβ

∞
∑

i=1

qiβ
Li(xω) − logβ

∞
∑

i=1

qiβ
Li(x)

)

= c logβ

∞
∑

i=1

βLi(x)

1
qi

∑∞
j=1 qjβLi(x)

βL(xω)−L(x) ,

for the both values ω = 0, 1, and thus (K(x0)−K(x),K(x1)−K(x)) belongs
to S.

For every positive integer i we have

K(x) ≤ c logβ qiβ
Li(x)

= cLi(x) + logβ qi .

If the set of superpredictions is not convex, we cannot construct an essen-
tially stronger complexity. This is implied by the following negative result.

Theorem 14. Let G be a game with the set of superpredictions S satisfying
BIN1–BIN4. If S ∩ R2 is not convex, then there is no predictive complexity
up to o(n) w.r.t. G.

Proof. Assume the converse. Consider a game G with the set of superpredic-
tions S such that S ∩ R2 is not convex but there exists complexity K w.r.t.
G.

There exist points B0, B1 ∈ S such that the segment connecting B0 and
B1 is not a subset of S. Without loss of generality (cf. Sect. 5.5) we may
assume that B0 = (b0, 0) and B1 = (0, b1) (see Fig. 5.1).
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a0
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y
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l′

Figure 5.1: The drawing for Theorem 14. The set S is shaded

Let us denote the line containing this segment by l and let us assume that
it has the equation α0x + α1y = ρ, where α0, α1, ρ > 0. There exists a point
A = (a0, a1) ∈ ∂S, where a0, a1 > 0, that lies above the straight line l, i.e.,
α0a0 + α1a1 = ρ + δ > ρ.

Since b0]0x and b1]1x are superloss processes, the inequalities

K(x) ≤ b0]0x + f(|x|) (5.7)

K(x) ≤ b1]1x + f(|x|) (5.8)

hold for every x ∈ B∗, where f(n) = o(n) as n → +∞. At the same time,
there is a sequence of strings x1, x2, . . . such that for any n ∈ N we have
|xn| = n and

K(xn) ≥ a0]0xn + a1]1xn . (5.9)

Indeed, xn can be constructed by induction. Let x0 = Λ. Suppose we have
constructed xn. The point (K(xn0) −K(xn),K(xn1) −K(xn)) should lie in
at least one of the half-planes {(x, y) | x ≥ a0} or {(x, y) | y ≥ a1}, i.e., at
least one of the inequalities

K(xn0) − K(xn) ≥ a0 (5.10)

K(xn1) − K(xn) ≥ a1 (5.11)

holds. We define xn+1 to be either xn0 or xn1 depending on whichever
inequality holds.

Combining (5.7), (5.8) and (5.9), we get

a0]0xn + a1]1xn ≤ b0]0xn + f(n) (5.12)

a0]0xn + a1]1xn ≤ b1]1xn + f(n) (5.13)
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as n → +∞. If we multiply (5.12) by α0/a1, (5.13) by α1/a0 and then add
them together, we obtain

δ

a1
]0xn +

δ

a0
]1xn ≤ f(n)

as n → +∞. This is a contradiction since at least one of the values ]0xn and
]1xn is greater than or equal to n/2 for infinitely many n ∈ N.

An example of a game with the non-convex set of superpredictions is
provided by the simple prediction game. It has the set of superpredictions
S = {(x, y) ∈ [0, +∞]2 | x ≥ 1 or y ≥ 1}.

It is easy to see that, if c(β) → 1 as β → 1, then for every ε > 0
there is complexity up to the multiplicative constant 1 + ε. However the
convergence of c(β) to 1 implies the existence of stronger types of complexity.
The following theorem generalises a result from [V’y02]; the idea of varying
the values of β in the proof goes back to [CBFH+97].

Theorem 15. Let G be a game with the set of superpredictions satisfying
BIN1–BIN4. If

• G is bounded and

• c(β) → 1 for G as β → 1

then there exists predictive complexity w.r.t. G up to f(n), where

f(n) =
√

n +
n
∑

k=1

(

1 − 1

c(e−1/
√

k)

)

(5.14)

= o(n) as n → +∞ . (5.15)

Proof. The proof is similar to a proof from [V’y02].
We may assume that G = 〈B, Γ, λ〉 and there is l > 0 such that λ(ω, γ) ≤ l

for every ω ∈ Ω and γ ∈ Γ.
Put βn = e−1/

√
n, n = 1, 2, . . .. Let Li, i = 1, 2, . . ., be an effective

enumeration of all superloss processes w.r.t. G. Let the sequence L∗
i be

defined by

L∗
i (x) = Li(x) + l

|x|−1
∑

k=1

(

1 − 1

c(βn)

)

,
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for every x ∈ B∗. Pick a sequence pi > 0, i = 1, 2, . . ., such that
∑+∞

i=1 pi = 1
and consider the function defined by

K(x) = logβn

+∞
∑

i=1

piβ
L∗

i (x)
n

for every x of length n, n = 1, 2, . . ..
Let us check that K is a superloss process w.r.t. G.
Fix some arbitrary n ∈ N and x of length n. We have

βK(x)
n =

+∞
∑

i=1

piβ
L∗

i (x)
n (5.16)

and, for each ω = 0, 1,

β
K(xω)
n+1 =

+∞
∑

i=1

piβ
L∗

i (x)
n+1 . (5.17)

We cannot manipulate with these formulae because they include different
bases βn and βn+1. This obstacle can be overcome with the following trick.
Since the function y = xa is convex on [0, +∞) for every a ≥ 1, the inequal-
ity (

∑

i piti)
a ≤

∑

i pit
a
i holds for every t1, t2, . . . ≥ 0 and every sequence

p1, p2, . . . ≥ 0 which sums up to 1. This implies

βK(xω)
n =

(

β
K(xω)
n+1

)logβn+1
βn

(5.18)

≤
+∞
∑

i=1

pi

(

β
L∗

i (x)
n+1

)logβn+1
βn

(5.19)

=
+∞
∑

i=1

piβ
L∗

i (xω)
n (5.20)

for each ω = 0, 1. Combining (5.16) and (5.20), we obtain

βK(xω)−K(x)
n ≤

+∞
∑

i=1

qiβ
L∗

i (xω)−L∗
i (x)

n (5.21)

for each ω = 0, 1, where

qi =
piβ

L∗
i (x)

n
∑+∞

k=1 pkβ
L∗

k
(x)

n

.
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Since all Li are superloss processes, these exists a sequence of superpre-
dictions (s

(0)
1 , s

(1)
1 ), (s

(0)
2 , s

(1)
2 ), . . . ∈ S such that for every i = 1, 2, . . . and each

ω = 0, 1 we have

L∗
i (xω) − L∗

i (x) = Li(xω) − Li(x) + l

(

1 − 1

c(βn)

)

(5.22)

≥ s
(ω)
i + l

(

1 − 1

c(βn)

)

. (5.23)

It can be assumed that s
(ω)
i ≤ l for all i and ω.

If we combine (5.21) with (5.23) and take into account the definition of
c(β), we obtain

βK(xω)−K(x)
n ≤ β

(1− 1
c(βn))

n

+∞
∑

i=1

qiβ
s
(ω)
i

n (5.24)

≤ β
(1− 1

c(βn))+ s(ω)

c(βn)
n (5.25)

= β
s(ω)+(l−s(ω))(1− 1

c(βn))
n (5.26)

≤ βs(ω)

(5.27)

for each ω = 0, 1, where (s(0), s(1)) is a superprediction. This implies the
inequalities

K(x0) −K(x) ≥ s(0) ,

K(x1) −K(x) ≥ s(1) .

Thus K is a superloss process.
It follows from our definition of K that for every x of length n and every

i = 1, 2, . . . we get

K(x) ≤ L∗
i (x) + logβn

pi (5.28)

= Li(x) +

n−1
∑

k=1

(

1 − 1

c(βk)

)

+
√

n ln
1

pi
. (5.29)

A simple lemma from calculus completes the proof.

Lemma 6. Let an ≥ 0, n = 1, 2, . . . be such that an = o(1) as n → +∞.
Then

∑n
k=1 ak = o(n) as n → +∞.
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Now Theorems 10 and 11 can be used to establish the existence of pre-
dictive complexity.

Corollary 7. Let G be a game with a set of superpredictions S satisfying
BIN1–BIN5. If G is bounded and S ∩R2 is convex, there is f : N → R such
that f(n) = o(n) as n → +∞ and there is complexity up to f(n) w.r.t. G.

Corollary 8. Let G be a bounded game with the set of superpredictions S
satisfying BIN1–BIN5. Let f : (a, b) → R be its canonical representation.
Suppose that S ∩ R2 is convex and the following conditions hold:

• G has a mixable 0-edge or there is ε > 0 such that f ′
−(x) ≤ −ε holds

on (a, b), and

• G has a mixable 1-edge or there is T < +∞ such that f ′
+(x) ≥ −T

holds on (a, b).

Then there is complexity w.r.t. G up to
√

n.

Note that we had to require G to be bounded; this was not necessary in
Theorem 11, which still holds for some unbounded functions. However this
construction does not work for them.
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Chapter 6

Expectations of Predictive
Complexity

While discussing the problem of prediction with expert advice and the prop-
erties of the Aggregating Algorithm, we emphasised the absence of any law
generating the outcomes. Indeed, the independence of any restriction of this
kind is a very important feature of the AA.

On the other hand, it is interesting to study how our constructions be-
have when outcomes are generated by a certain mechanism. Suppose that we
have constructed predictive complexity K for some game. We may treat its
argument as a random variable with a particular distribution. We will con-
sider the Bernoulli distribution. Let ξ1, ξ2, . . . , ξn be independent variables
and let each of them assume the value 1 with probability p and the value 0
with probability 1−p; we will refer to this scheme as to Bernoulli trials. The
random variable K(ξ1, ξ2, . . . , ξn) turns out to be a useful tool for studying
predictive complexities.

In this chapter we evaluate the expectations EK(ξ1, ξ2, . . . , ξn) and show
that the expectations and the loss function are mutually related; the relation
is established by the Legendre transformation. This result allows us to prove
a uniqueness theorem. It states that if two games specify the same predictive
complexity, they are equivalent in a very strong sense, namely, they have the
same set of superpredictions.
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S

py + (1 − p)x = t

Figure 6.1: The drawing of S
above the straight line py + (1 −
p)x = t for Lemma 7

S

s0

py + (1 − p)x = t

s1

Figure 6.2: The drawing of S inter-
secting the straight line py + (1 −
p)x = t for Lemma 8

6.1 The Main Lemmas on Expectations

In this section we evaluate the expectations of K when the argument is dis-
tributed as results of Bernoulli trials. We will evaluate the expectations by
revealing their geometric meaning.

The following lemma provides a lower estimate which holds for the expec-
tation of every superloss process w.r.t. G. This does not require predictive
complexity w.r.t. G to exist in any sense.

Lemma 7. Let L be a superloss process and S be the set of superpredictions
w.r.t. a game G = 〈B, Γ, λ〉. If p ∈ (0, 1) and t ∈ R are such that

py + (1 − p)x ≥ t (6.1)

holds for every (x, y) ∈ S, then

EL(ξ
(p)
1 , ξ

(p)
2 . . . ξ(p)

n ) ≥ tn , (6.2)

where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the prob-

ability of 1 being equal to p.

Geometrically (6.1) means that S lies ‘north-east’ of the straight line
py + (1 − p)x = t (see Fig. 6.1).

Proof. Consider a string x. The point (L(x0)−L(x), L(x1)−L(x)) = (s0, s1)
is a superprediction. We have

E(L(xξ(p)) − L(x)) = ps1 + (1 − p)s0 ≥ t ,
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where ξ(p) is a result of one Bernoulli trial with the probability of 1 being
equal to p. It now follows that

EL(ξ
(p)
1 . . . ξ(p)

n ξ
(p)
n+1) =

∑

ω1,...,ωn,ωn+1∈B

Pr{(ω1 . . . ωnωn+1)}L(ω1 . . . ωnωn+1)

=
∑

ω1,...,ωn∈B

Pr{(ω1 . . . ωn)}EL(ω1 . . . ωnξ(p))

≥ t +
∑

ω1,...,ωn∈B

Pr{(ω1 . . . ωn)}L(ω1 . . . ωn)

= t + EL(ξ
(p)
1 . . . ξ(p)

n ) ,

where Pr{(ω1 . . . ωk)} stands for the probability of the event {(ξ(p)
1 . . . ξ

(p)
k ) =

(ω1 . . . ωk)}. The lemma follows.

The next lemma provides an upper estimate on the expectation of pre-
dictive complexity.

Lemma 8. Let G = 〈B, Γ, λ〉 be a game with the set of superpredictions S
satisfying BIN ′

1 and BIN3–BIN5, let a pair of computable numbers (s0, s1) ∈
R2 be a superprediction w.r.t. G, and

ps1 + (1 − p)s0 = t , (6.3)

where p ∈ (0, 1). Then

• if K is simple predictive complexity w.r.t. G, then there is a constant
C such that

EK(ξ
(p)
1 . . . ξ(p)

n ) ≤ tn + C

holds for every n ∈ N,

• if K is predictive complexity w.r.t. G up to f(n), then there is a constant
C such that

EK(ξ
(p)
1 . . . ξ(p)

n ) ≤ tn + Cf(n)

holds for every n ∈ N, and

• if K is predictive complexity w.r.t. G up to o(n), then there is f : N → R

such that f(n) = o(n) as n → +∞ and

EK(ξ
(p)
1 . . . ξ(p)

n ) ≤ tn + f(n) ,

holds for every n ∈ N,
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where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the prob-

ability of 1 being equal to p,

Equation (6.3) means that the straight line py + (1 − p)x = t intersects
S (see Fig. 6.2).

Proof. The proof is by considering the superloss process L(x) = s0]0x +
s1]1x.

6.2 Expectations and the Legendre Transfor-

mation

The lemmas from the previous section suggest that the shape of the set of
superpredictions S determines expectations and vice versa. The following
theorem makes the relation explicit. The Legendre transformation and the
concept of the conjugate function emerge naturally; Appendix B provides a
brief introduction to the theory of the Legendre transformation.

Theorem 16. Let G be a game with the set of superpredictions S satisfying
BIN ′

1 and BIN3–BIN5. If K is complexity w.r.t. G up to o(n), then for
every p ∈ (0, 1)

(i) there exists a finite limit

f̃(p) = lim
n→∞

EK(ξ
(p)
1 . . . ξ

(p)
n )

n
, (6.4)

where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to p,

(ii) the equality

f̃(p) = −pf ∗
(

p − 1

p

)

,

holds, where f ∗ is the function conjugate to f specified by f(x) = inf{y |
(x, y) ∈ S}1 for every x ∈ R, and

1We assume that inf ∅ = +∞.
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(iii) if G = 〈B, Γ, λ〉, then the equality

f̃(p) = inf
γ∈Γ

((1 − p)λ(0, γ) + pλ(1, γ)) (6.5)

holds.

Proof. It follows from Lemmas 7 and 8 that for every p ∈ (0, 1) we have

α(p)n ≤ EK(ξ
(p)
1 . . . ξ(p)

n ) ≤ α(p)n + o(n) , (6.6)

as n → +∞, where

α(p) = inf
(x,y)∈S

[(1 − p)x + py]

= inf
x∈R

[(1 − p)x + pf(x)]

= −p sup
x∈R

[

p − 1

p
x − f(x)

]

= −pf ∗
(

p − 1

p

)

.

Depending on the ‘quality’ of complexity, the o(n) term in (6.6) can be
specified more precisely. If K is simple predictive complexity, this term may
be replaced by a constant; if K is predictive complexity up to g(n) such that
g(n) = o(n) as n → +∞, then the term may be replaced by Cg(n), where C
is some constant.

The function f̃(p) defined by (6.5) is called generalised entropy in the lit-
erature. In the case of the logarithmic-loss game it coincides with the regular
entropy. We will use this concept in our study of predictive complexity.

6.3 The Uniqueness Theorem

Reversibility of the Legendre transformation allows us to prove the following
theorem.

Theorem 17 (Uniqueness Theorem). Let G1 and G2 be two games with
sets of superpredictions S1 and S2 satisfying BIN ′

1 and BIN3–BIN5 and let
K1 and K2 be the complexities w.r.t G1 and G2, respectively, up to o(n). If
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there is a function δ(n) = o(n) as n → ∞ such that for every x ∈ B∗ the
inequality

|K1(x) −K2(x)| ≤ δ(|x|)
holds, then S1 = S2.

Proof. For every p ∈ (0, 1) we have
∣

∣

∣

∣

∣

∣

E
[

K1(ξ
(p)
1 . . . ξ

(p)
n ) − K2(ξ

(p)
1 . . . ξ

(p)
n )
]

n

∣

∣

∣

∣

∣

∣

≤ δ(n)

n
= o(1)

as n → ∞, where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials

with the probability of 1 being equal to p. This implies that for every p ∈
(0, 1) the equality f̃1(p) = f̃2(p) holds, where f̃1 and f̃2 are defined for the
games G1 and G2 by (6.4). Thus f ∗

1 (t) = f ∗
2 (t) for all t ∈ (−∞, 0), where

f1 and f2 are defined in the same way as f in Theorem 16, (ii). We have
f ∗

1 (0) = f ∗
2 (0) since f ∗

1 and f ∗
2 are convex and closed (see Appendix B).

For every t > 0 the equality f ∗
1 (t) = f ∗

2 (t) = +∞ holds. It follows from
a fundamental property of conjugate functions, namely, f ∗∗ = f , that the
functions f1 and f2 coincide, where f1 and f2 are defined in the same way as
f in (ii) of Theorem 16. This implies that S1 = S2.

Theorem 17 has a remarkable corollary.

Corollary 9. There is no game specifying plain Kolmogorov complexity K,
prefix complexity KP, or monotone complexity Km as its predictive complex-
ity.

Proof. The difference between any of this functions and the negative loga-
rithm of Levin’s a priori semimeasure is bounded by a term of logarithmic
order of the length of a string. If one of the functions had been predic-
tive complexity for a game, this game would have been equivalent to the
logarithmic-loss game, which has

λ(ω, γ) =

{

− log(1 − γ) if ω = 0
− log γ if ω = 1

,

γ ∈ [0, 1], and complexity would have coincided with logarithmic complexity
Klog. But Klog coincides with the negative logarithm of Levin’s a priori
semimeasure (see [VW98]). However neither of the differences between these
functions and KM is bounded by a constant (see [V’y94, LV97]).



Chapter 7

Linear Inequalities

The technique we developed in the previous chapter, the method of expecta-
tions, has another application. It can be used to analyse linear inequalities
between complexities. Consider the following problem. Given two predictive
complexities, K1 and K2 (w.r.t. G1 and G2), does the inequality K1 ≥ K2

hold, at least up to some extra terms?

In this section we will resolve this problem. The inequality K1 ≥ K2 turns
out to hold if and only if the inequality EK1 ≥ EK2 holds for expectations
taken w.r.t. every Bernoulli distribution on strings and this is equivalent to
the geometric fact S1 ⊆ S2, where S1 and S2 are sets of superpredictions
for the respective games. The only extra additive terms which are worth
considering are those of the order |x| and adding a term of this kind is
equivalent to a shift of one of the sets of superpredictions.

7.1 General Inequalities

The following theorem establishes the triple equivalence between the case of
a straightforward inequality, the inequality between expectations, and the
geometrical interpretation.

Theorem 18 (Theorem on Linear Inequalities). Let G1 and G2 be
games with sets of superpredictions S1 and S2 satisfying BIN ′

1 and BIN3–
BIN5. Let K1 and K2 be complexities w.r.t. G1 and G2, respectively, up to
f(n) such that f(n) = o(n) as n → +∞. Then the following statements are
equivalent:
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(i) there is a constant C ∈ R such that for every x ∈ B∗ the inequality
K1(x) + Cf(|x|) ≥ K2(x) holds,

(ii) S1 ⊆ S2,

(iii) for every p ∈ (0, 1) there is a constant Cp ∈ R such that for every

n ∈ N the inequality EK1(ξ
(p)
1 . . . ξ

(p)
n ) + Cpf(n) ≥ EK2(ξ

(p)
1 . . . ξ

(p)
n )

holds, where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials

with the probability of 1 being equal to p, and

(iv) for every p ∈ (0, 1) the inequality h̃1(p) ≥ h̃2(p) holds, where h1 and h2

are generalised entropies for the games G1 and G2.

If, however statements (i)–(iii) do not hold, there is p0 ∈ (0, 1) such that

EK1(ξ
(p0)
1 . . . ξ(p0)

n ) − EK2(ξ
(p0)
1 . . . ξ(p0)

n ) = Ω(n) (7.1)

as n → +∞.

Proof. Statements (iii) and (iv) are equivalent by Theorem 16.
The implication (i) ⇒ (iii) is trivial.
Let us prove that (ii) ⇒ (i). Let L be a superloss process w.r.t. G1.

It follows from the definition, that, for every x ∈ B∗, we have (L(x0) −
L(x), L(x1) − L(x)) ∈ S1 ⊆ S2. It implies that L is a superloss process
w.r.t. G2. Take L = K1. Now (i) follows from the definition of predictive
complexity.

It remains to prove that (iii) ⇒ (ii) and that the last claim from the
statement of the theorem is true. Let us assume that condition (ii) is violated,
i.e., there exists a pair (s0, s1) ∈ S1 \ S2. It follows from BIN5 that s0 and
s1 can be assumed to belong to R2. We will find p0 ∈ (0, 1) such that (7.1)
holds.

Lemma 9. Let S ⊆ R2 be a set satisfying the following conditions:

• S is closed,

• S is convex,

• for every (x, y) ∈ S and every s, t > 0 we have (x + s, y + t) ∈ S, and

• there are x0, y0 ∈ R such that S ⊆ [x0, +∞) × [y0, +∞).
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D

l′

E

S

Figure 7.1: The drawing for Lemma 9. The set S is shaded

If D ∈ R2 is a point such that D /∈ S, then there is a straight line l with the
equation ax + by = c, where a, b > 0 and c are some constants, that passes
through D but such that S lies above l and separated from l, i.e., there is
δ > 0 such that for every (x, y) ∈ S the inequality ax + by ≥ c + δ holds.

Proof. Let D = (u0, v0). The proof can be derived from the Separation
Theorem for convex sets (see, say, [Egg58]) but we will give a self-contained
proof. Since S is closed in the standard topology of R2, there exists a point
E ∈ S which is closest to D. The convexity of S implies that all the points
of S lie on one side of the straight line l′ which is perpendicular to DE and
passes through E, and D lies on the other side (see Fig. 7.1). Let l′′ be
parallel to l and pass through D and let its equation be a′′x + b′′y = c′′.
It follows from the properties of S that a′′, b′′ ≥ 0 (or this can be achieved
by multiplying the both sides by −1). If neither of a′′ and b′′ equals 0, i.e.,
l′′ is neither vertical nor horizontal, we may take l to coincide with l′′. If
not, l can be obtained by slightly turning l′′ around D; this is possible since
S ⊆ [x0, +∞) × [y0, +∞).

This lemma can be applied to S2 ∩ R2 and the point (s0, s1). After
the appropriate normalisation, the equation of the resulting line reduces to
p0y+(1−p0)x = t for some p0 ∈ (0, 1) and t ∈ R. We have p0s1+(1−p0)s0 = t,
but there is δ > 0 such that for every x, y ∈ S2 the inequality p0y+(1−p0)x ≥
t + δ holds. It remains to apply Lemmas 7 and 8.

In Sect. 5.5 we discussed the following fact. Let S is the set of superpre-
dictions for a game G and let G′ be a game with the set of superpredictions
S + (a, a), i.e., the set obtained by a shift of S along the straight line x = y.
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Then there is a correspondence between superloss processes w.r.t. G and su-
perloss processes w.r.t. G′, namely, L(x) is a superloss process w.r.t. G if
and only if L(x) + a|x| is a superloss process w.r.t. G′. A similar statement
applies to scaling. If G′ has the set of superpredictions aS, then L(x) is a
superloss process w.r.t. G if and only if aL(x) is a superloss process w.r.t.
G′. These observations imply the following corollary.

Corollary 10. Under the conditions of Theorem 18 the following statements
are equivalent, where a, b ∈ R and a ≥ 0:

(i) there is C ∈ R such that for all x ∈ B∗ the inequality aK1(x) + b|x| +
Cf(|x|) ≥ K2(x) holds,

(ii) aS1 + (b, b) ⊆ S2, and

(iii) for every p ∈ (0, 1) there exists Cp ∈ R such that for all n ∈ N the

inequality aEK1(ξ
(p)
1 . . . ξ

(p)
n ) + bn + Cpf(n) ≥ EK2(ξ

(p)
1 . . . ξ

(p)
n ) holds,

where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to p, and

(iv) for every p ∈ (0, 1) the inequality ah̃1(p) + b ≥ h̃2(p) holds, where h1

and h2 are generalised entropies for the games G1 and G2.

One may wonder whether the extra term b|x| can be replaced by a smaller
term. The next corollary clarifies the situation.

Corollary 11. Suppose that under the conditions of Theorem 18 the follow-
ing statement holds:

For every p ∈ (0, 1) there exists a function αp : N → R such that αp(n) =
o(n) as n → +∞ and for every n ∈ N the inequality

aEK1(ξ
(p)
1 . . . ξ(p)

n ) + bn + αp(n) ≥ EK2(ξ
(p)
1 . . . ξ(p)

n )

holds, where a, b ∈ R, a ≥ 0, and ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent

Bernoulli trials with the probability of 1 being equal to p.
Then there is C ∈ R such that the inequality

aK1(x) + b|x| + Cf(|x|) ≥ K2(x)

holds for every x ∈ B∗.
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Corollary 12. If under the conditions of Theorem 18 there exists a function
g : N → R such that g(n) = o(n) as n → +∞ and, for every x ∈ B∗, the
inequality

aK1(x) + b|x| + g(|x|) ≥ K2(x) ,

where a, b ∈ R and a ≥ 0, holds, then there is C ∈ R such that the inequality

aK1(x) + b|x| + Cf(|x|) ≥ K2(x)

holds.

Clearly, this corollary trivialises when g = O(f), but it may be useful in
other cases.

There is a class of linear inequalities which is not covered by Theorem 18.
We do not have an equally general result for them. The following theorem
deals with symmetric games. A game G with the set of superpredictions S
is called symmetric if the set S is symmetric w.r.t. the straight line x = y.

Theorem 19. Let G1 and G2 be two symmetric games with sets of superpre-
dictions S1 and S2 satisfying BIN ′

1 and BIN3–BIN5 and let K1 and K2 be
complexities w.r.t G1 and G2, respectively, up to f(n) such that f(n) = o(n)
as n → +∞. Let

r1 = inf{t ∈ R | (t, t) ∈ S1}
r2 = inf{t ∈ R | (t, t) ∈ S2} .

Then for every a1, a2 ≥ 0 the following statements are equivalent:

(i) there is a constant C ∈ R such that for every x ∈ B∗ the inequality
a1K1(x) + a2K2(x) ≤ b|x| + Cf(|x|) holds,

(ii) a1r1 + a2r2 ≤ b,

(iii) for every p ∈ (0, 1) there is a constant C ∈ R such that for every

n ∈ N the inequality a1EK1(ξ
(1/2)
1 . . . ξ

(1/2)
n ) + a2EK2(ξ

(1/2)
1 . . . ξ

(1/2)
n ) ≤

bn + Cf(n) holds, where ξ
(1/2)
1 , . . . , ξ

(1/2)
n are results of n independent

Bernoulli trials with the probability of 1 being equal to 1/2, and

(iv) the inequality a1h̃1(1/2) + a2h̃2(1/2) ≤ b holds, where h1 and h2 are
generalised entropies for the games G1 and G2.
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x/2 + y/2 = r

(r, r)

A′

Q

A

Figure 7.2: The quadrant Q and the segment [A, A′] from the proof of
Lemma 10.

If, however statements (i)–(iii) do not hold, then

a1EK1(ξ
(p0)
1 . . . ξ(p0)

n ) + a2EK2(ξ
(p0)
1 . . . ξ(p0)

n ) − bn = Ω(n)

as n → +∞.

Proof. The proof is similar to that of Theorem 18 but a little simpler. We
need the following lemma.

Lemma 10. Let S ⊆ R2 be a set satisfying the following conditions:

• S is closed,

• S is convex,

• for every (x, y) ∈ S and every s, t > 0 we have (x + s, y + t) ∈ S, and

• S is symmetric w.r.t. the straight line x = y.

If r = inf{t ∈ R | (t, t) ∈ S} then S lies above its tangent x/2 + y/2 = r,
i.e., for every (x, y) ∈ S the inequality x/2 + y/2 ≥ r holds.

Proof. The set S does not intersect the set Q = (−∞, r)2. If there is A =
(x0, y0) ∈ S which lies below the straight line x/2 + y/2 = r then A′ =
(y0, x0) ∈ S lies below this line too. Since S is convex, the segment connecting
A and A′ must lie inside S but it necessarily intersects Q (see Fig. 7.2).
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The lemma implies that there is C > 0 such that the following inequalities
hold:

r1n ≤ EK1(ξ
(1/2)
1 . . . ξ(1/2)

n )≤ r1n + Cf(n) ,

r2n ≤ EK2(ξ
(1/2)
1 . . . ξ(1/2)

n )≤ r2n + Cf(n) .

Now we can prove the theorem. The implication (i) ⇒ (iii) is trivial.
The implication (ii) ⇒ (i) can be proved by observing that for all x ∈ B∗

the inequalities Kcal1(x) ≤ r1|x|+ Cf(|x|) and Kcal2(x) ≤ r2|x|+Cf(|x|)
hold for some constant C > 0. The implication (iii) ⇒ (ii) is proved in the
same way as in Theorem 18.

7.2 Linear Inequalities between Square-Loss

and Logarithmic-Loss Complexities

In this section we apply our general results to study inequalities between two
specific complexities, Ksq and Klog.

7.2.1 Expectations

Our proofs rely upon the probabilistic criterion from Corollary 10. We need
the entropies

hsq(p) = min
0≤γ≤1

(p(1 − γ)2 + (1 − p)γ2) (7.2)

= p(1 − p) (7.3)

and
hlog(p) = min

0≤γ≤1
(−p log γ − (1 − p) log(1 − γ)) (7.4)

= −p log p − (1 − p) log(1 − p) . (7.5)

Corollary 10 and Theorem 19 imply the following lemma. It is one of the
possible ways to reduce the study of linear relations between Klog and Ksq to
a problem of calculus.

Lemma 11. Consider real a, a1, a2,≥ 0 and real b. There is C ∈ R such
that for all x ∈ B∗ the inequality

aKsq(x) + b|x| + C ≥ Klog(x)
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holds if and only if ahsq(p) + b ≥ hlog(p) holds for every p ∈ [0, 1]. There is
C ∈ R such that for all x ∈ B∗ the inequality

aKlog(x) + b|x| + C ≥ Ksq(x)

holds if and only if ahlog(p) + b ≥ hsq(p) holds for every p ∈ [0, 1]. There is
C ∈ R such that for all x ∈ B∗ the inequality

a1Ksq(x) + a2Klog(x) ≤ b|x| + C

holds if and only if a1hsq(1/2) + a2hlog(1/2) ≤ b holds.

7.2.2 Case aKsq(x) + b|x| + C ≥ Klog(x)

To describe the boundary of the set

M = {(a, b) | a ≥ 0 and ∃C > 0 ∀x ∈ B∗ : aKsq(x) + b|x| + C ≥ Klog(x)} ,
(7.6)

we introduce ϕ(a) = inf{b | (a, b) ∈ M}, where a ≥ 0. By Proposition 5, the
points (a, ϕ(a)) belong to M . Let

f(a, p) = hlog(p) − ahsq(p) = −p log p − (1 − p) log(1 − p) − ap(1 − p) ,

where a ≥ 0 and p ∈ [0, 1]. Clearly,

ϕ(a) = max
p∈[0,1]

f(a, p) . (7.7)

Theorem 20. For every a ∈ [0, 2/ ln 2], we have

ϕ(a) = 1 − a

4
.

Proof. Let us fix any a ∈ [0, 2/ ln 2] and calculate maxp∈[0,1] f(a, p). We have

∂f(a, p)

∂p
= a(2p − 1) + log(1 − p) − log p , (7.8)

∂2f(a, p)

∂p2
= 2a − 1

p(1 − p) ln 2
. (7.9)

Since maxp∈[0,1] p(1 − p) = 1/4, the function f(a, p) is concave in the sec-
ond argument for every a ∈ [0, 2/ ln 2]. On the other hand, the derivative
∂f(a, p)/∂p vanishes at p = 1/2. Hence the maximum in (7.7) is attained
at the point p = 1/2. The substitution of p = 1/2 into the definition of f
completes the proof.
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The behaviour of ϕ on the interval (2/ ln 2, +∞) is more complicated
because the maximum is no longer attained at p = 1/2. We do not know any
explicit formula for ϕ on this interval. The following lemmas describe some
properties of ϕ.

Lemma 12.

ϕ(a) ∼ 2−a

ln 2
as a → +∞ .

Proof. Consider the equation

∂f(a, p)

∂p
= 0 . (7.10)

It is equivalent to the equation p = r(a, p), where

r(a, p) =
1

1 + 2a(1−2p)
.

For every a > 0, the function r(a, p) is concave in the second argument in
the interval [1/2, 1] and convex in the second argument in the interval [0, 1/2]
because

∂2r(a, p)

∂p2
=

a22a(1+2p)(2a − 22ap)4 ln2 2

(2a + 4ap)3
.

On the other hand, for every a > 0, we have r(a, 0) > 0, r(a, 1/2) = 1/2,
and r(a, 1) < 1. For any a > 2/ ln 2

∂r(a, p)

∂p

∣

∣

∣

∣

p= 1
2

=
1

2
a ln 2 > 1 .

Thus, for every fixed a > 2/ ln 2, Eq. (7.10) has 3 roots (see Fig. 7.3). If we
denote the smallest one by ξ(a), the roots are ξ(a), 1/2 and 1 − ξ(a). Since

∂2f(a, p)

∂p2

∣

∣

∣

∣

p= 1
2

> 0

and limp→0+ ∂f/∂p = − limp→1−0 ∂f/∂p = +∞, the point p = 1/2 is the
point of a local minimum of f and both p = ξ(a) and p = 1− ξ(a) are points
where the maximum from (7.7) is attained.
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ξ(a) 1 − ξ(a)

Figure 7.3: The function r(a, p) with a = 4

The function r(a, p) is strictly increasing in p for every a > 0. Obvi-
ously, for every p ∈ [0, 1/2), this function is strictly decreasing in a and
lima→+∞ r(a, p) = 0. These observations imply that ξ(a) is strictly decreas-
ing and lima→+∞ ξ(a) = 0.

One can easily see the function ξ(a) maps the half-line (2/ ln 2, +∞) onto
the interval (0, 1/2). One may consider the inverse function a(ξ) which maps
the interval (0, 1/2) onto (2/ ln 2, +∞). Equation (7.10) implies that

a(ξ) =
1

1 − 2ξ
log

(

1

ξ
− 1

)

(7.11)

= − log ξ + o(1) as ξ → 0 + . (7.12)

Let us now substitute ξ for p and a(ξ) for a in the definition of f(a, p).
One may check by direct calculation that

ϕ(a(ξ)) = f(a(ξ), ξ) =
ξ

ln 2
+ o(ξ) (7.13)

as ξ → 0. Equation (7.12) implies that ξ = 2−a + o(2−a). Substituting this
into (7.13) completes the proof.

Lemma 13. For every a ≥ 0, we have

ϕ(a) ≥ log(1 + 2−a) .

Proof. For every a ≥ 0 and p ∈ [0, 1], the estimate

f(a, p) ≥ −ap − p log p − (1 − p) log(1 − p) = h(a, p) (7.14)
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holds. The function h is concave in the second argument and its derivative
∂h(a, p)/∂p vanishes at p = 1/(1+2a). Substituting this value of p into (7.14)
completes the proof.

7.2.3 Case aKlog(x) + b|x| + C ≥ Ksq(x)

This case is simpler.

Theorem 21. If a ≥ 0, the following conditions are equivalent:

• There is C ∈ R such that for all x ∈ B∗ the inequality aKlog(x)+b|x|+
C ≥ Ksq(x) holds.

• b ≥ max(1
4
− a, 0).

Proof. Let

s(a, p) = hsq(p) − ahlog(p) = p(1 − p) − a (−p log p − (1 − p) log(1 − p)) ,

where a ≥ 0 and p ∈ [0, 1]. Clearly the derivative

∂s(a, p)

∂p
= 1 − 2p − a (log(1 − p) − log p)

always vanishes at p = 1/2. The function u(p) = log(1 − p) − log p is
convex on [0, 1/2] and concave on [1/2, 1]. One can easily check that for
every fixed a ∈ [0, 1/4] the function s(a, p) has a local maximum at p = 1/2
and local minimums at some points from (0, 1/2) and (1/2, 0). The value
s(a, 1/2) = 1/4 − a is the maximal on [0, 1].

If a ≥ 1/4, we have supp∈[0,1] s(a, p) = 0. Indeed, s(a, p) decreases in the
first argument and, for every a ≥ 0, we have s(a, 0) = 0.

The theorem follows.

7.2.4 Case a1Ksq(x) + a2Klog(x) ≤ b|x| + C

This case is trivial. The next theorem follows immediately from Lemma 11.

Theorem 22. For every real a1, a2 > 0 and every real b,the following condi-
tions are equivalent:
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Figure 7.4: aKsq(x) + b|x| + C ≥
Klog
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Figure 7.5: aKlog(x) + b|x| + C ≥
Ksq

• There is C ∈ R such that for all x ∈ B∗ the inequality a1Ksq(x) +
a2Klog(x) ≤ b|x| + C holds.

• a1/4 + a2 ≤ b.

7.2.5 Conclusion

Here we summarise the results of this section. In Fig. 7.4 the set of all
pairs (a, b) such that there is C ∈ R such that for all x ∈ B∗ the inequality
aKsq(x) + b|x| + C ≥ Klog(x) holds is coloured grey. The curve b = 1 − a/4
is denoted by (1) and the curve b = log(1 + 2−a) is denoted by (2). The
curve b = ϕ(a) was plotted by means of a simple numerical evaluation (cf.
Lemma 11). In Fig. 7.5 the set of all the pairs (a, b) such that there is C ∈ R

such that for all x ∈ B∗ the inequality aKlog(x)+ b|x|+C ≥ Ksq(x) holds is
shaded.



Chapter 8

Incompressibility and
Unpredictability

Kolmogorov complexity is the length of the shortest description of a finite
string. The length of the shortest description is less than or equal to the
length of the string itself. If there is a short description of a string, the string
has certain regularity; otherwise it may be called random. The Incompress-
ibility Property for Kolmogorov complexity states that most of the strings
are random in this sense, i.e., their Kolmogorov complexity is close to the
length.

Proposition 11 (Incompressibility Property).

(i) There is a constant C such that for every x ∈ B∗ the inequality

K(x) ≤ |x| + C

holds.

(ii) For every positive integer n and every real m we have

|{x | |x| = n and K(x) ≤ n − m}| ≤ 2n−m+1 .

This statement can be found in any of the sources [ZL70, V’y94, LV97].
For completeness sake, we give a short proof.

Proof. The proof of (i) is by considering the programming language which
performs the identity mapping. The statement (ii) follows from the obser-
vation that there can be no more then 2s strings of complexity s since each
of them is generated by its own program of length s.

97
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In this chapter the Incompressibility Property is extended to the case of
predictive complexity. We are going to apply the theory of martingales and
Doob’s inequality. Appendix C contains a brief survey on martingales. We
also prove that the bound we derive is tight.

Our results are restricted to symmetric games defined in Chapter 7. Re-
call that a game G with the set of superpredictions S is called symmetric if
S is symmetric w.r.t. the straight line x = y.

8.1 Conditional Complexity

In order to formulate some results concerning unpredictability, we need the
concept of conditional predictive complexity. The definition is an elaboration
of the unconditional definition from Chapter 5. Two approaches, the batch
and the on-line, are possible. We will only formulate the batch definition,
leaving the on-line case beyond the scope of this thesis.

Let G = 〈B, Γ, λ〉 be a game with the set of superpredictions S satisfying
BIN ′

1 and BIN3–BIN4. A function L : B∗ × B∗ → (−∞, +∞] (we will
separate arguments of L by the vertical line | rather then by the comma) is
a conditional superloss process if

• L(Λ | x) = 0 for all x ∈ B∗,

• L is semi-computable from above, and

• for every x, y ∈ B∗ there is γ ∈ Γ such that

{

L(x | y) + λ(γ, 0) ≤ L(x0 | y) ,

L(x | y) + λ(γ, 1) ≤ L(x1 | y) .
(8.1)

In other words, L is semicomputable from above as a function of two argu-
ments and for every fixed y ∈ B∗ the function L(· | y) is a superloss process.

A conditional superloss process K is conditional (simple) prediction com-
plexity if for every conditional superloss process L there is a constant such
that the inequality K(x | y) ≤ L(x | y) + C holds for every x, y ∈ B∗.

It is easy to see (cf. Proposition 9) that there is an effective enumeration
of all conditional superloss processes L1, L2, . . .. The following equivalent of
Proposition 10 holds:
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Proposition 12. If a game G with the set of superpredictions S satisfy-
ing BIN1–BIN4 is mixable, there is conditional simple predictive complexity
w.r.t. G.

The following inequalities show relations between conditional and uncon-
ditional complexities. Since the unconditional complexity K can be treated
as a conditional superloss process, there is a constant C such that for all
y ∈ B∗ the inequality

K(x | y) ≤ K(x) + C (8.2)

holds. On the other hand, if the game is β-mixable, then there is C such
that for all y ∈ B∗ the inequality

K(x) ≤ K(x | y) +
KP(y)

ln(1/β)
+ C (8.3)

holds, where KP stands for prefix complexity.
We will be considering complexity K(x | m), where m is a positive integer.

We assume that there is a natural computable mapping of N into B and
identify a subset of B with N.

8.2 The Unpredictability Property

The following theorem shows that most of the strings x have complexity
close to B|x|. The notation x

(k) stands for the prefix of length k (i.e., first
k bits) of a binary string x.

Theorem 23. Let G be a symmetrical game with the set of superpredictions
S satisfying BIN ′

1 and BIN3–BIN5; let B = inf{t | (t, t) ∈ S}. Suppose
that G specifies conditional complexity K. Then

(i) there is C > 0 such that for every string x the bound

K(x) ≤ B|x| + C (8.4)

holds, and

(ii) if β ∈ (0, 1) is such that the set Bβ(S) lies below the straight line
x + y = 2βB, then for every positive integer n and every real non-
negative m we have

∣

∣{x ∈ Bn | ∃k ∈ {1, 2, . . . , n} : K(x(k) | m) ≤ Bk − m}
∣

∣

2n
≤ βm .

(8.5)
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Proof. Part (i) is trivial. The function L(x) = B|x| is a superloss process
w.r.t. G and thus there is C > 0 such that K(x) ≤ L(x) + C.

We are now moving on to (ii). Let β be such that Bβ(S) lies below the
straight line x + y = 2βB. Consider the function βK(x|m)−B|x|. If we show
that for every fixed m it is a supermartingale and apply Proposition 14 in
the case of the Bernoulli distribution with the probability of 1 equal to 1/2,
the bound will follow.

Lemma 14. Under the conditions of Theorem 23, for every x ∈ B, the
inequality

1

2
βK(x1|m)−B(|x1|) +

1

2
βK(x0|m)−B(|x0|) ≤ βK(x|m)−B|x|

holds for every positive integer m.

Proof of Lemma 14. By definition of predictive complexity, the pair (K(x1 |
m) − K(x | m),K(x0 | m) − K(x | m)) is a superprediction, i.e., belongs to
S. The conditions of Theorem 23 imply that for every (x, y) ∈ Bβ(S), the
inequality x/2 + y/2 ≤ βB holds. The lemma follows.

It follows from this lemma that βK(x|m)−B|x| is a supermartingale (see
Appendix C).

Note that (ii) holds for every conditional superloss process, not just K.

8.3 Tightness of the Bound

In this section we prove that the value of β in bound (8.5) cannot be de-
creased.

Theorem 24. Let G be a symmetrical game with the set of superpredictions
S satisfying BIN ′

1 and BIN3–BIN5; let B = inf{t | (t, t) ∈ S}. Let G

specify conditional complexity K. Let β ∈ (0, 1) be such that the set Bβ(S)
does not lie below the straight line x + y = 2βB. Then there are positive
constants c and θ such that for every non-negative computable number m
and positive integer n ≥ cm the inequality

θβm ≤ |{x ∈ Bn | K(x | m) ≤ Bn − m}|
2n

holds.
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Note that if there are values of β satisfying the conditions of Theorem 23
then their infimum is greater than 0. Indeed, consider Inequalities (4.7) and
(4.8). Clearly, the boundary of Bβ(S) is the graph of a convex function in a
small vicinity of (B, B) for sufficiently small β.

Proof. For every computable m, we will construct a superloss process Lm

that achieves

p(n, m) =
|{x ∈ Bn | Lm(x) ≤ Bn − m}|

2n
≥ 1

4
βm (8.6)

for every n ≥ c1m + c2, where c1 and c2 are some constants independent of
m and n.

In order to construct these superloss processes, we need the metaphor of a
‘superstrategy’. Within this proof the word ‘superstrategy’ is taken to mean
a prediction algorithm that on every trial outputs a superprediction and
suffers corresponding losses. The total loss of a superstrategy is a superloss
process.

There is ∆ ∈ (0, βB] such that (logβ(βB − ∆), logβ(βB + ∆)) is a su-
perprediction. Let A be the superstrategy that always outputs (logβ(βB −
∆), logβ(βB + ∆)) and let L(x) be the loss of this superstrategy. The su-
perstrategy Am works as follows. It imitates A as long as the inequality
L(x) > B|x|−m holds. After the inequality gets violated, the superstrategy
switches to the superprediction (B, B). Let Lm(x) be the loss of Am. Put
A = B − logβ(βB + ∆) > 0 so that (B|x| − m) − Lm(x) does not exceed A.

Let M(x) = βL(x)−B|x| and Mm(x) = βLm(x)−B|x|. These processes are
martingales w.r.t. the Bernoulli distribution with the probability of success
being equal to 1/2. We have

EM(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = EMm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = 1

for every positive computable m, where ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ

(1/2)
n are results of

n independent Bernoulli trials with the probability of success being equal to
1/2. Note that Mm(x) ≤ β−m−A ≤ 2β−m for every x ∈ Bm.

Fix a positive computable m. Pick x of length n and consider the ‘tra-
jectories’

〈1, M(x(1)), M(x(2)), . . . , M(x(n))〉
and

〈1, Mm(x(1)), Mm(x(2)), . . . , Mm(x(n))〉 .
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Figure 8.1: Three options for trajectories from the proof of Theorem 24

Consider ε > 0 such that ε < 1 ≤ β−m. There are three mutually exclusive
options:

1. M(x(k)) ≥ β−m for some k ≤ n and thus β−m ≤ Mm(x) ≤ 2β−m.

2. M(x(k)) < β−m for all k ≤ n and Mm(x) = M(x) ≤ ε.

3. M(x(k)) < β−m for all k ≤ n and β−m > Mm(x) = M(x) > ε.

These three options are shown in Fig. 8.1, where the values of M(x(k)) and
Mm(x(k)) are plotted against those of k.

The expectation of Mn(x) over all x of length n splits into the sum of
three terms corresponding to the three classes of trajectories

1 = EMm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = Σ1 + Σ2 + Σ3 , (8.7)

where ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ

(1/2)
n are as above. The following bounds hold:

Σ1 ≤ 2β−m Pr{Mm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) ≥ β−m)},
Σ2 ≤ ε,

Σ3 ≤ β−m Pr{ε < Mm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) < β−m}
≤ β−m Pr{M(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) > ε} .

The event {Mm(x) ≥ β−m)} coincides with the event {Lm(x) ≤ Bn − m}
and thus Pr{Mm(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ

(1/2)
n ) ≥ β−m)} = p(n, m). If we denote

the value

Pr{M(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) > ε} =

Pr{L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) − Bn < logβ ε}
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by αε(n), we obtain the inequality

1 ≤ 2β−mp(n, m) + ε + β−mαε(n) (8.8)

and thus

p(n, m) ≥ βm

2
− εβm − αε(n) . (8.9)

We will construct an upper bound for αε(n) by means of the Chernoff
bound. A derivation of the Chernoff bound may be found in [Gal68]; we need
the following simple form of the bound. If X1, X2, . . . , Xn are independent
Bernoulli trials with the probability of success equal to p ∈ (0, 1), S =
X1 + X2 + · · · + Xn, and γ ∈ [0, 1], then

Pr{S < (1 − γ)pn} ≤ e−npγ2/2 . (8.10)

The function L(x) − B|x| may be treated as a biased random walk. The
value

d =
(L(x0) − B|x0|) + (L(x1) − B|x1|)

2

=
1

2
(logβ(βB + ∆) + logβ(βB − ∆) − 2B)

=

ln

(

1 −
(

∆
βB

)2
)

2 lnβ

> 0

is independent of x ∈ B∗ so that E(L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ

(1/2)
n )−Bn) = nd; let

r = (logβ(βB − ∆) − B) − e = e − (logβ(βB + ∆) − B) > 0. The function

S(x) =
L(x) − B|x| − d|x|

2r
+

|x|
2

can be treated as the sum of outcomes of independent Bernoulli trials and
thus satisfies (8.10). The Chernoff bound implies that for every γ ∈ [0, 1] we
have

Pr{L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) − Bn ≤ −γrn + dn} ≤ e−nγ2/4 .



104 CHAPTER 8. INCOMPRESSIBILITY AND UNPREDICTABILITY

Therefore if n and ε are such that the value γ = d
r
− 1

rn
logβ ε falls within

the segment [0, 1], then αε(n) ≤ e−nγ2/4. It is easy to check that d/r ≤ 1.
Hence for each ε ∈ (0, 1) the inequalities d/(2r) < γ < d/r ≤ 1 hold for
every n ≥ n0 = 2

d
logβ ε.

Fix ε = 1/8. For every n > max(n0, 16
(

r
d

)2
(m ln(1/β) + ln 8)) we have

−nγ2/4 ≤ m ln(1/β) + ln 8 and thus α1/8(n) ≤ e−nγ2/4 ≤ βm/8. The substi-
tution to (8.9) yields p(n, m) ≥ βm/4.

8.4 An Alternative Derivation

It is remarkable that a weaker form of the upper bound from Theorem 23
can be derived directly from the Incompressibility Property for Kolmogorov
complexity. In this section we give this derivation.

Let G, S, β and B be as in Theorem 23. We will now prove independently
that there is CK > 0 such that for every positive integer n and m ≤ n there
are at least 2n − 2m−n strings x of length n with the complexity

K(x) ≥ nB − ln 2

η
m − CK

log n

η
.

Proof. Since the image of S under the transformation

(x′, y′) = B(x, y)

is convex and symmetric w.r.t. the straight line x′ = y′, the straight line

x

2
+

y

2
= βB , (8.11)

passing through the point x′ = y′ = βB, must be a support line for the image.
The set S thus lies ‘north-east’ to

Π = {(x, y) | βx

2
+

βy

2
= βB} , (8.12)

which is the inverse image of the line (8.11), i.e., for every (x, y) ∈ S there
are (x̃, ỹ) ∈ Π such that x ≥ x̃ and y ≥ ỹ.

Consider the β-logarithmic game with the loss function

λ(ω, γ) =

{

− log(1 − γ)/ log 1
β
, if ω = 0

− log(γ)/ log 1
β
, if ω = 1
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or

λ(ω, γ) =

{

logβ(1 − γ), if ω = 0

logβ γ, if ω = 1 .

Obviously, this game specifies complexity Klog

log(1/β)
and has the set of predic-

tions
Pβ = {(x, y) | βx + βy = 1} .

Since the equation defining Π in (8.12) may be rewritten as

βx−B− 1
log β + βy−B− 1

log β = 1 ,

the curve Π is a shift of Pβ, or Pβ = Π + (−B − 1
log β

,−B − 1
log β

). This

implies that the set S + (−B − 1
log β

,−B − 1
log β

) is contained within the
set of superpredictions of the β-logarithmic-loss game. It now follows from
Theorem 18 that there is a constant C1 ≥ 0 such that for every string x the
inequality

K(x) −
(

B +
1

log β

)

|x| ≥ Klog(x)

log 1
β

− C1 (8.13)

holds.
Let us apply the standard Incompressibility Property for the plain Kol-

mogorov complexity now. Since logarithmic-loss and plain Kolmogorov com-
plexity K are related by the equation

|Klog(x) − K(x)| ≤ C2 log |x| ,

where C2 does not depend on x, for every n and m ≤ n there are at least
2n − 2n−m strings of length n with the logarithmic-loss complexity

Klog(x) ≥ n − m + 1 − C2 log n .

The substitution to (8.13) yields

K(x) ≥ n − m + 1 − C2 log n

log 1
β

+

(

B +
1

log β

)

n − C1

≥ nB − m

log 1
β

− CK
log n

log 1
β

.



106 CHAPTER 8. INCOMPRESSIBILITY AND UNPREDICTABILITY



Notation

This chapter summarises some notation used throughout the thesis.

AA Aggregating Algorithm

Bβ the transformation Bβ(x, y) = (βx, βy), page 43.

C(A) the convex hull of a set A ⊆ R2

c(β) the multiplicative constant emerging in the
Aggregating Algorithm, page 29

h(p) generalised entropy, page 83

K plain Kolmogorov complexity (cf. C in [LV97])

KP prefix Kolmogorov complexity (cf. K in [LV97])

Klog logarithmic-loss complexity, page 69

Ksq square-loss complexity, page 69

log logarithm to the base 2, i.e., log2

N the set of positive integers {1, 2, 3, . . .}
|x| the length of a finite string x

]0x the number of zeroes in a finite string x ∈ B∗, page 71

]1x the number of ones in a finite string x ∈ B∗, page 71
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Appendix A

The Infinity and the Extended
Topology

It is often convenient in the theory of prediction with expert advice and the
theory of predictive complexity to consider the extended real line [−∞, +∞].
The statements of many theorems become simpler if we treat −∞ and +∞
as numbers similar to those from R = (−∞, +∞). In fact, in most cases
we need only +∞. The logarithmic-loss game provides an example of how
introducing +∞ can simplify definitions and statements since it is essential
that the loss function for this game assumes the value +∞.

We use the following (more or less standard) conventions for performing
arithmetic operations with +∞ (cf. [Rud74], 1.21). For any a ∈ R, the
inequality a < +∞ and the equality a + (+∞) = +∞ hold. If a ∈ R and
a > 0, then a · (+∞) = +∞ and

a+∞ = lim
x→+∞

ax =







0 if a ∈ (0, 1)
1 if a = 1
+∞ if a > 1 .

A slightly less obvious convention is to let 0 · (+∞) = 0.

We also need some topological properties of [−∞, +∞]. The extended
topology will be employed. By definition, an open subset of [∞, +∞] is any
of the sets U , U∪(a1, +∞], [−∞, a2)∪U , or [−∞, a2)∪U∪(a1, +∞], where U
is an open subset of R and a1, a2 ∈ R. In other words, the extended topology
is generated by the base consisting of all open subsets of R and sets of the
form (a1, +∞] and [−∞, a2), where a1, a2 ∈ R. The extended topology of the
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Cartesian product [−∞, +∞]2 is introduced as the product of the extended
topologies.

The continuity w.r.t. the extended topology is a very natural property.
A function f : M → [−∞, +∞] is continuous at a point x0 ∈ M if and only
if limx→x0 f(x) = f(x0) no matter whether f(x0) is finite or infinite.



Appendix B

The Legendre Transformation

The Legendre(–Young–Fenchel) transformation may be defined for function-
als on a locally convex space. However the simplest one-dimensional case will
suffice for our purposes. We will follow the treatment of the one-dimensional
case in [RV73]; the general theory of this transformation and conjugate func-
tions may be found in [Roc70, ATF87].

Consider a function f : R → [−∞, +∞]. It is called convex if its epigraph
{(x, y) ∈ R2 | y ≥ f(x)} is convex. The conjugate function f ∗ : R →
[−∞, +∞] to a convex function f is defined by

f ∗(t) = sup
x∈R

(xt − f(x)) . (B.1)

A function g : R → [−∞, +∞] is called proper if ∀x ∈ R : g(x) > −∞
and ∃x ∈ R : g(x) < +∞. A proper g is closed if for each real α the level set
Lα = {x ∈ R | g(x) ≤ α} is closed w.r.t. the standard topology of R.

Figure B.1 provides an example. In the picture we have

f(x) =

{

1
x

if x > 0,

+∞ otherwise

and we evaluate f ∗(−1/2). The supremum from (B.1) is achieved at x =
√

2
and thus f ∗(−1/2) = −

√
2.

Proposition 13 (see [RV73, Roc70]). If f : R → [−∞, +∞] is a proper
convex function, the following properties hold:

(i) f ∗ is convex, proper and closed, and
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-1
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y = f(x)

y = tx

x

y

Figure B.1: Evaluation of the Legendre transformation

(ii) if f is closed, f ∗∗ = f .

Conjugate functions have a number of interesting properties, e.g., we
have xy ≤ f(x) + f ∗(y) and (f ∗)′ = (f ′)−1 where applicable; the latter
of these equalities is a special case of ∂(f ∗) = (∂f)−1, where ∂ refers to the
subdifferential. The equality xy = f(x)+f ∗(y) holds if and only if y ∈ ∂f(x).
These properties may be employed to derive properties of expectations of
predictive complexity though this investigation falls beyond the scope of this
thesis.



Appendix C

Martingales

Let us start with a general definition of a (super)martingale from probability
theory. Later we will adapt it to our special case.

We are going to use (more or less) the terminology and notation from
[Wil91]. Throughout this appendix Ω refers to a sample space; its elements
ω ∈ Ω are sample points. A filtered space is a quadruple (Ω,F , {F}n, Pr)
where F is a σ-algebra on Ω, the sets Fn, n = 0, 1, 2, . . ., are sub-σ-algebras
of F such that

F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F ,

and Pr is a probability measure on (Ω,F). A sequence of random variables
X0, X1, X2, . . . on Ω is a martingale w.r.t. (Ω,F , {F}n, Pr) if for every n =
0, 1, 2, . . . the variable Xn is measurable w.r.t. Fn, and for every n ≥ 1 we
have

• EPr(|Xn|) < +∞, and

• EPr(Xn | Fn−1) = Xn−1.

In the definition of a supermartingale the last condition should be replaced
by EPr(Xn | Fn−1) ≤ Xn−1. The expression EPr stands for the expectations
taken w.r.t. the probability distribution Pr.

Non-negative martingales satisfy Doob’s inequality (see, e.g., [Wil91]);
we need a version of this inequality for supermartingales. The following
statement may be found, e.g., in [KT75] (Lemma 5.2):
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Proposition 14. If non-negative random variables Z0, Z1, Z2, . . . form a su-
permartingale w.r.t. (Ω,F , {F}n, Pr), then for every c > 0 and positive inte-
ger n we have

Pr

(

max
k=0,1,2,...,n

Zk ≥ c

)

≤ EZ0

c
.

Consider the case of the Bernoulli distribution with the probability of 1
equal to p. The sample space is the set of all infinite binary strings B∞. The
σ-algebra F is generated by all cylinders Γx, x ∈ B∗, where

Γx = {xy | y ∈ B∞} .

For every n = 0, 1, 2, . . ., the σ-algebra Fn is generated by the cylinders Γx

such that |x| = n. A function measurable w.r.t. Fn may be identified with a
function defined on Bn. Thus a sequence of random variables X0, X1, X2, . . .
such that Xn is measurable w.r.t. Fn, n = 0, 1, 2, . . ., may be identified with
a function L : B∗ → R. In order to be a martingale, it should satisfy the
condition pL(x1)+(1−p)L(x0) = L(x) for every x ∈ B∗. If for every x ∈ B∗

we have pL(x1) + (1 − p)L(x0) ≤ L(x), it is a supermartingale.


