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1 Abstract

Recent advances in analysis of human serum proteome aim to establish novel
disease biomarkers that would allow to make early detection of diseases. The
current techniques include analysis of the serum data with using mass spectrom-
etry (m/s). The output of m/s work is the large volume of high-dimensional
data and it requires modern methods of data analysis. This report describes
several machine learning techniques that have been developed in order to estab-
lish “proteomic pattern diagnostic”. The techniques were applied to a subset of
large bank of serum data collected in UK Collaborative Trial of Ovarian Cancer
Screening (UKCTOCS) study over 7 years from 1995-2001. The report first de-
scribes the data, and a set of pre-processing techniques that include calibration,
subtracting the baseline, normalising, and calibrating the data. Subsequently,
peak identifications and peak alignment techniques were applied in the latest
stages of pre-processing. Naturally, many factors affect the existence and the
position of peaks, but the tube type and transit time taken to store the data
are among the most important ones. The report compares different types of the
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tubes and the transit time to establish potential problems caused by these fac-
tors. The main part of the report devoted to pattern recogniton techniques that
have been applied to classify between the cases and control samples. In addition
to classical recognition method when the diagnosis is made at certain time, we
also experimented with the ”dynamic” of the diagnostic process by considering
different time slots (0.5, 1, 2, ... 7 years) before the actual diagnosis is made.
The results show that certain peaks (and the corresponding peptides) are very
important for early diagnostic of OC, and they are much more informative in
early stages than CA125.

2 Data

The serum samples used in the pilot study were collected in the UKCTOS
project from 1995 to 2001. The data were subsequently analysed using the
MALDI-TOF mass spectrometer at Sloan-Kettering Institute. In this pilot
study the data were divided into two sets. The Set 1 has 266 samples, of
which 91 case samples taken from 19 women, and 175 control samples. These
control samples were selected to match those case samples (usually 2 control
samples were selected for each case sample). The women in the study were
observed for 7 years (1995-2001) and each of these women samples taken in
those years - we shall call them serial samples. Typically, each of the 19 cancer
women has 2 to 12 serial samples taken in those years; and each of the healthy
women has serial samples of five to nine and most of them have 6 samples. For
all cancer women, the last sample was taken at the moment when the diagnosis
was fixed. The study also included two different types of tubes that were used
to collect samples: 233 with BD red top, and 33 using the Greiner tubes. The
transit time taken between points when the samples when obtained and stored
were also recorded and used in our analysis. In addtion, the Set 2 was also
obtained that has 305 samples from 50 healthy women. Each of healthy women
has serial samples of 5 to 9 and most of them have 6 samples.

Other information such as date of birth, CA125, date of sample taken, date
of sample received at the lab and tube type used for serum collection are also
available.

Both the Set 1 and Set 2 serum samples were analysed by MALDI-TOF
based mass spectrometry (MS). The MS dataset was generated at Memorial
Sloan-Kettering Cancer Center (MSKCC), New York, USA in December 2004.
For each serum sample, low mass against charge ratio (m/z) range of [700, 4000]
and high range m/z of [4000, 15000] were obtained separately. In total, 125,206
data points generated by mass spectometer where mass against charge (m/z)
values are ranged between 700 and 15000 with the corresponding intensities.
These data points are related to time-of-flight (TOF) or clock tick measurement.
An example of raw mass spectrometry (MS) data file is shown in Figure 1.

Overall, 565 serum samples (of possible 571 samples) were successfully anal-
ysed and the corresponding MS data files were obtained. These serum samples
contain 475 control samples (174 in set 1 and 301 in set 2) and 90 case samples.
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Figure 1: An example of raw MS data

3 Pre-processing

Mass spectrometry instruments are very sensitive and artifacts can be intro-
duced into spectra from physical, electrical or chemical sources in experiments.
Pre-processing is an important step to attempt to remove these systematic ar-
tifacts and isolate the true protein signal. The goals of pre-processing are to
reduce noise, normalise the spectra from different samples and reduce dimen-
sionality of MS data. Our assumption is that each spectrum can be considered
as composed of three components: true peak signal, baseline, and random noise.

In this sections we describe our pre-processing of the raw data that includes:
calibration, baseline subtraction, smoothing, normalisation and peaks align-
ment. We start with the raw data and perform the calibration first.

3.1 Calibration

We used the 13 peaks and calibrant file associated with each sample to perform
calibration. In addition, we assumed that the relationship between m/z value
(M) and time-of-flight (T ) for the mass spectrometer used in the experiments
can be represented as

M = B × (T −A)2 (1)

where A and B are two constants determined by experiment setup. Our cali-
bration algorithm is presented as follows.

As it is clear from the procedure, we calculated the constants A and B,
and re-assigned the m/z (or M) their correct values. Note that calibration is
performed separately on low mass range data of [700,4000] and high mass range
data of [4000, 15000].
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Algorithm 1 Calibration
Require: m/z values of 13 peaks

fix As and Bs in the formula (1) (for example As=1.0 and Bs=0.5)
find out TOF values for these 13 peaks (TOFs) using the formula (1) and As

and Bs

for each sample’s calibrant Ci do
find the m/z values of these 13 peaks in Ci

find out Ai and Bi which optimises
∑13

k=1 (TOFi
k − TOFs

k)2

end for
{we now have optimal Ai and Bi for each sample}
for each sample’s raw data Ri do

for each m/z value Mj in Ri do

TOFj =
√

Mj

Bi
+ Ai

Mj
∗ = Bs × (TOFj −As)2 {the corresponding intensity value is not

changed}
end for

end for

3.2 Denoising

Our goal is to remove white noise associated with true peak signals. The un-
decimated discrete Wavelet approach is used. The basic idea is

• transform from the time domain into the wavelet domain;

• discard any wavelet coefficients below certain threshold

• transform any remaining wavelet coefficients back to the time domain.

The assumption is that white noise should be distributed over most wavelet
coefficients at low levels while true signal should be represented in a few of
relatively large wavelet coefficients at high level. The undecimated discrete
Wavelet is an established tool in image processing and MATLAB code are freely
available in the Rice Wavelet Toolbox [2].

3.3 Baseline Subtraction

The goal of baseline subtraction is to remove systematic artifacts, usually due
to matrix and chemicals used in the experiments or to the detector overload.
Ideally baseline should rest on zero. Chemical and electronic noise produces a
background intensity which typically decreases when the mass m/z increases.

Baseline subtraction involves two steps: baseline estimation followed by sub-
traction of the estimated baseline from the raw mass spectrum. An example
of baseline estimation is shown in Figure 2. Our baseline estimation procedure
can be described as follows.
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Algorithm 2 Baseline estimation
Require: spectrum S
Require: moving window size W
Require: threshold K

finished = false
B=S
while finished == false do

for each moving window BW of S do
if no of points in BW ≤ K then

finished = true
else

find out mean µ and variance σ2 of those points in BW

if all points are in [µ− 1.5σ, µ + 1.5σ] then
finished = true;

else
remove those points which are above µ BW

end if
end if

end for
end while
baseline is represented by those points in B

Optionally, the raw data can be binned before baseline estimation procedure
is applied. An example is shown below where the raw data was binned by a
window size of 10.

3.4 Smoothing

Mass spectra of serum samples also exhibit an additive high frequency noise
component. The presence of this noise hampers peak identification and we need
to reduce the influence of this high frequency noise. One way is to smear out
the high frequency noise signal in the spectra by averaging the intensities within
a moving window.

3.5 Normalisation

Due to variation in sample preparation and deposition on the target, matrix
crystallisation and ion detection, samples are not directly comparable before
normalisation. The goal of normalisation is to make sure that the total amount
of ions across different samples are the same. This is done by calculating the
sum of all intensity values and then dividing each intensity value by the sum.
We then multiple these intensity values with a constant C (for example we set
C=2× 105 in our experiments). The results are shown below.

5



2000 4000 6000 8000 10000 12000 14000
−1

0

1

2

3

4

5

6

7

8

9
x 10

4

m/z

in
te

ns
ity

Sample − 00Z430004VHa

Figure 2: Estimated baseline (shown in red)
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Figure 3: An example preprocess data after denoising, baseline subtraction and
normalisation
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Figure 4: Peak identification

3.6 Peak Identification

A peak in mass spectra indicates the relative abundance of a protein. Peak
identification is concerned with identifying peaks within a single mass spec-
trum. The identification of peaks in a mass spectrum is complicated by the
error in measuring the abundance as well as the mass error rate. The goal of
peak identification is to identify set of m/z values which comprise peaks which
are higher than the noise level of a mass spectrum. The peak identification
algorithm finds local maxima with a certain signal-to-noise ratio (eg SNR=4)
and choose the local maxima higher than a threshold of the noise level as peaks.
For example, local maxima of a mass spectrum are located by finding the m/z
ratios with the highest intensity among their N neighbours. The noise level is
defined as the average of the intensities at the m/z ratio within a moving win-
dow with a fixed size (eg 500). The peaks identified were quantified as height
at the local maximum. An example of peaks identified is given in Figure 4,
where peaks are represented as circles where the absolute peak height exceeds
the threshold of 9000. For the purpose of peak alignment, we use only peaks
which have intensity value exceeding the threshod of 9000.

3.7 Peak Alignment

To make inference about trends across a number of spectra, we need to relate
the peaks identified in one spectrum to the peaks founded in another spectrum.
This process of matching peaks which represent the same protein across several
spectra is known as ”peak alignment”. In peak alignment, the peaks of multiple
mass spectra within the mass error rate are grouped together as a ”peak group”.

Given a number of peak points (or features), we need to find out a unique
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correspondence between them. The problem is that not all peaks appear in every
sample. Therefore, one-to-one correspondence does not exist between every two
samples. A simple approach is to construct a super set of all peaks and use it
as the anchor of alignment - every sample is aligned to this super set. For this
purpose the superset is splitted to clusters. Cluster definition goes in two steps.
First we find all intervals between neighbouring peak positions in the superset
exceeding some fixed values d1, where d1 is some distance metrics based on mass
resolution (eg 1500ppm). These intervals split the m/z axe to clusters of order
1. Then we test if each sample has no more than 1 peak in a cluster. If so, the
cluster is considered as final. Otherwise, we look whether there is an interval
exceeding d2 < d1, dividing occurrences of one sample peaks within the cluster.
If so we divide the cluster of order 1 to smaller ones. Otherwise we consider it
as final.

Now for each sample peak we assign the number of its cluster (in case when
there are more than 1 peak of the same cluster for the same sample we take into
account only the largest of them).

Now all peaks are aligned to a certain cluster. Every sample is then charac-
terised by a numerical vector, of dimension n (n is the number of final clusters)
with the coordinates equal to the height of a peak corresponding to each cluster,
zero if there is no such peak. These coordinates are considered as a set of sample
features for pattern recognition.

Note that we align peaks from all samples without discriminating among
controls and cases.

4 Preliminary results

The preprocessing steps described in section 3 were applied to each of 565 raw
MS data files. Figures 5 and 6 illustarte an example of preprocessed serial
samples from a cancer woman and a normal woman, respectively.

Heatmap of the preprocessed dataset is shown in Figure 7, where the colours
represent intensity value and the while line indicates the two sets. Set 1 is in
the top part and set 2 in the bottom part. Heatmap provides an at-a-glance
view of alignment of spectra and it shows the data is well calibrated.

In total, 6924 peaks were identified in all the analysed serum samples. After
the pre-processing, 173 peak groups were identified after peak alignment. 15
peak groups were found which are present in more than 20% of all samples, see
table 1.

These 15 peaks are shown in Figures 8 and 9, where blue lines represent
controls and red cases.

The peak variation can be measured by coeffficient of variation (CV) which
is a statistical measure of the deviation of a variable from its mean. CV is
calculated as follows:

CV =
standard deviation

mean

The mean, standard deviation and CV of the 15 peaks is given in table 2 where
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Figure 5: Pre-processed MS data of serial samples - Cancer Patient (ID=4808)

Figure 6: MS data of serial samples - Normal Patient (ID=715)
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Figure 7: Serial Samples - Cancer

Peak No Peak ID m/z value No of samples having the peak percentage
1 216 6657.0–6679.1 434 76.00
2 173 3236.2–3244.3 297 52.01
3 207 6463.1–6479.3 293 51.31
4 160 3028.5–3035.6 238 41.68
5 074 1796.4–1819.2 200 35.02
6 091 1992.9–2012.5 197 34.50
7 119 2302.9–2308.4 192 33.62
8 086 1926.8–1933.3 191 33.45
9 095 2043.0–2055.3 187 32.74
10 098 2054.9–2067.6 161 28.19
11 128 2447.1–2457.8 149 26.09
12 083 1894.2–1901.6 132 23.11
13 132 2482.8–2495.1 131 22.94
14 146 2687.3–2693.6 129 22.59
15 079 1843.7–1849.5 108 18.91

Table 1: 15 most popular peaks among the samples
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Figure 8: The top 15 peaks (1-8 peaks)
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Figure 9: The top 15 peaks (9-15 peaks)12



Peak No Peak ID m/z value Mean standard deviation CV
1 216 6657.0–6679.1 26592 12788 0.48
2 173 3236.2–3244.3 21366 10033 0.47
3 207 6463.1–6479.3 16272 6169 0.38
4 160 3028.5–3035.6 18566 7472 0.40
5 074 1796.4–1819.2 16091 6788 0.42
6 091 1992.9–2012.5 16386 6034 0.37
7 119 2302.9–2308.4 19136 8942 0.47
8 086 1926.8–1933.3 23049 14418 0.63
9 095 2043.0–2055.3 18029 8311 0.46
10 098 2054.9–2067.6 21287 12195 0.57
11 128 2447.1–2457.8 19664 9069 0.46
12 083 1894.2–1901.6 25205 15468 0.61
13 132 2482.8–2495.1 23006 12365 0.54
14 146 2687.3–2693.6 23633 12971 0.55
15 079 1843.7–1849.5 17869 6710 0.38

Table 2: CV of 15 most popular peaks

Set 1 BD red top Greiner-Bio-One
Controls 152 22
Cases 79 11
Set 2 251 50

Table 3: Distribution of BD red top and Greiner-Bio-One serum gel tubes

we only considered the peaks which have intensity values exceeding the threshold
of 9000.

We are interested in peak changes in the samples and want to investigate
how tube type and transit time could impact peak changes.

Note that we have found a interval (m/z) for each peak in “peak alignment”
procedure. These intervals are then fixed and the highest intensity values within
these intervals are used to represent the peaks for classification procedure.

4.1 Tube type

Two types of tubes used for serum sample collected: BD red top and Greiner-
Bio-One serum gel. The distribution of two is given in the table 3.

Peak changes of different tube types in controls and cases are presented in
Figures 10 and 11.

4.2 Transit time

The serum samples were collected from various collection centres distributed
across the country and then posted to the lab for storage. All the serum samples
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Figure 10: Effect of tube types on all control samples (top row: BD red top
tubes; bottom row: Greiner-Bio-One gel tubes)
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Figure 11: Effect of tube types on all case samples (top row: BD red top tubes;
bottom row: Greiner-Bio-One gel tubes)

15



Set 1 O day 1 day 2 day
Controls 16 194 91
Cases 12 53 25
Set 2 11 134 29

Table 4: Distribution of transit time in the serum samples

Figure 12: Effect of transit time on all control samples (top row: transit time=0
day; middle row: transit time=1 day; bottom row: transit time=2 day)

analysed were 48 hours or less in transit. We divided the serum samples into
three groups based on the transit time: 0 day (samples arrived on the same
day in the lab), 1 day (samples arrived next day in the lab) or 2 day (samples
arrived in the lab two days after the collection). their distribution given in table
4.

5 Discussion

Peak variation is huge even with normal samples. Transit time can influence
peak presence and variation in mass spectra. One day transit time and two day
transit time have similar peak characterises Zero day transit time has a different
peak characterises from one day or two day transit time How to best pre-process
MS raw data is still an open problem.

6 Pattern recognition techniques

6.1 The techniques

There are many methods of pattern recognition that can be applied to medical
diagnostics. Usually every object presented for pattern recognition is described
by a set of features (quantitive or qualitive). A subset of objects with known
classification forms the training set. Pattern recognition algorithms construct
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decision rules on the basis of this training set. Another subset with known
classification can be used as a test (or validation) set. The quality of a decision
rule is estimated by the number of errors in the test set. In the case of two
classes there are two type of errors: the first type is when an object of the first
class is recognised by the decision rule as an element of the second one. The
second type is when on the contrary an object of the second class is recognised
as an element of the first one. An algorithm of pattern recognition often has a
parameter regulating the proportion of the two types of errors.

In applications to medical diagnostics a patient serves as an object for pat-
tern recognition. Patients are grouped in classes according to their diseases or
their absense. And the features are symptoms, some general information such
as age, sex and quite often additional objective measurements (for example, the
intensities of peaks).

In the current report we used two pattern recognition methods: the nearest
neighbour algorithm and support vector machine. Their main advantage is that
they are fast and accurate.

The first, the nearest neighbour method, starts from presenting all objects
of the training set as the points in multidimensional space with coordinates
corresponding to the list of features. A new object is also presented as a point
in the space and the nearest (in a certain metrics) point of the training set is
searched. The new object is referred to the same class as the nearest point of
the training set has. We can weight, if required, the distances from the points
of different classes and in this way to regulate the proportion of different error
types.

Another approach is that of the support vector machine. In this case any two
objects are compared using a certain positively defined kernel. In the simplest
case, when dot product is used as the kernel, a linear decision rule is constructed
in the space of features. If more complicated kernels are used, then a nonlinear
separating surface is constructed by support vector machine on the base of the
training set.

6.2 Significance level of selected features

The basis of feature space in our data is formed by the intensities of the se-
lected peaks on each MS-spectrogram. That means that for each sample, after
preliminary processing and peak alignment, 15 values of the selected 15 peaks
intensities were fixed as a vector characterizing the sample. These values were
fixed independent on whether a peak was large or small as a maximum of the
spectrogram values within an interval corresponding to the peak. Before using
pattern recognition procedures it would be useful to check if the probability
distribution of the peaks intensities is different for cancer samples versus con-
trols. To estimate the difference for a certain significance level we used Mann-
Whitney test. The test returns P value of whether two sample sequences could
be generated by the same probability distribution, assuming that the samples
are independent.
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Peak No m/z Norm.int. Med.ratio p-value
1 6656.98–6679.08 21867.5 1.64063 0.0715372
2 3236.2–3244.32 7980.09 1.86326 0.0612298
3 6463.12–6479.3 9804.44 1.21398 0.226691
4 3028.51–3035.62 4964 0.992385 0.731099
5 1796.44–1819.21 10390 0.910727 0.959652
6 1992.91–2012.49 5025.18 1.04361 0.843728
7 2302.92–2308.44 5532.25 0.74315 0.081379
8 1926.81–1933.27 3409.02 0.847595 0.621526
9 2043.03–2055.27 14192 0.713101 0.260507
10 2054.92–2067.64 12860.5 0.873336 0.504046
11 2447.08–2457.78 3183.31 0.798343 0.138589
12 1894.17–1901.56 4049.99 0.594754 0.0328834
13 2482.78–2495.11 2725.27 0.735022 0.611702
14 2687.25–2693.65 2482.69 0.428217 0.415259
15 1843.67–1849.51 1896.73 0.961602 0.962433

log(CA125) 2.5337 1.79882 1.34912e-006

Table 5: All samples from 19 women with cancer and 218 healthy women

First we used the serum sample analyses from all 19 women with OC diag-
nosis, versus 219 healthy women. The samples were taken over a period of 7
years - (serial samples). To find the level of significance we consider only the
last time-point for each patient in these serial data since for the patients it was
the point, when the diagnosis was made and the disease was found. Then for
each of the 15 peaks intensities for each serum sample were calculated and the
test was applied. In the Table 5 the results are shown. In the column 2 m/z
interval corresponding to a peak is fixed, column 3 shows median intensities of
each m/z peak in the control set, column 4 corresponds to peak intensity ratio,
which was calculated by dividing median value of a peak in the cancer group by
the median value in the control set, and column 5 gives corresponding P values.
For comparison, a line corresponding to CA125 analysis was added.

We see that P values for almost all peaks are very high in comparison with
that of CA125. This means that difference in distributions for cases and controls
is not reliable; that is it is unlikely that the control and OC are coming from the
same probablity distribution. But according to UKCTOCS program serial blood
serum samples were taken from the same people. It allows, first, to average the
results of MS-spectrum analysis over the serial samples, increasing the accuracy,
and, second, to take in account changes in an organism, preceding the moment
when the diagnosis was fixed. So it was reasonable to test averaged over serial
samples peak intensities, whether their probability distributions are different
for normal and cancer cases. But then only those people, who had serial blood
sampling, could be used. We agreed that the number of samples in averaging
should be equal 4, and so only those women that had not less than 4 serial
samples could be tested. After this restriction there remained only 11 patients
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Peak No m/z Norm.int. Med.ratio p-value
1 6656.98–6679.08 16894.7 1.79531 0.146522
2 3236.2–3244.32 8336.85 1.83058 0.00287992
3 6463.12–6479.3 11772.8 0.958328 0.969521
4 3028.51–3035.62 9580.59 0.579158 0.276178
5 1796.44–1819.21 11221.3 0.851011 0.702397
6 1992.91–2012.49 5350.47 1.00478 0.456231
7 2302.92–2308.44 18027.5 0.204231 8.3028e-005
8 1926.81–1933.27 1452.5 1.21277 0.702397
9 2043.03–2055.27 13793.7 0.697387 0.0890776
10 2054.92–2067.64 8145.34 1.32386 0.131237
11 2447.08–2457.78 4106.13 0.46941 0.0266847
12 1894.17–1901.56 3195.9 0.747088 0.0585808
13 2482.78–2495.11 2635.57 0.760037 0.803859
14 2687.25–2693.65 3419.46 0.303162 0.369238
15 1843.67–1849.51 1463.76 1.40435 0.276178

log(CA125) 2.48491 1.83414 3.38873e-005

Table 6: The last samples of 11 cases and 49 controls

with cancer diagnosis and 50 healthy women remained.
To make the results comparable we first applied the test only to the last

sample for these 11 cases and 50 controls. The results are shown in the Table 6.
The results are not significantly different from those presented in the Table 5.

Then we applied the test to peak intensities averaged over the 4 last serum
samples (for cancer cases it means the last 4 blood samples preceding the mo-
ment when the diagnosis was made).

We see that P values for some of the peaks becomes neglectively small, and
it means that averaged intensities for cases and controls are really different for
those peaks.

It was also interesting to see if distribution changes precede the moment,
when the diagnosis was fixed. For this purpose we excluded from averaging the
last moment, averaging intensities only over 3 samples preceding the last one.
The test results are shown in the Table 8.

Again we see that P values for some of the peaks (peaks 7, 8, 10, 11) are
very small. Still the difference in distributions does not mean that a feature can
be used for reliable diagnosis. It is due to the fact that distributions may be
different, but overlapping, and the overlapping distribution inevitably implies
errors.

7 Feature space and recognition field definition

We want to mention again: the basis of the feature space is formed by the
intensities of the selected 15 peaks on each MS- spectrogram.
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Peak No m/z Norm.int. Med.ratio p-value
1 6656.98–6679.08 19368.6 1.11224 0.214318
2 3236.2–3244.32 9269.6 1.71457 0.00184568
3 6463.12–6479.3 9801.5 0.851109 0.67427
4 3028.51–3035.62 6714.35 1.82998 0.0110576
5 1796.44–1819.21 9658.65 1.04334 0.491607
6 1992.91–2012.49 6277.1 1.70491 0.0230013
7 2302.92–2308.44 11776.6 0.386615 7.13864e-006
8 1926.81–1933.27 12182 0.408536 8.98873e-005
9 2043.03–2055.27 11990.8 1.01132 0.349216
10 2054.92–2067.64 8475.77 1.85873 0.00162039
11 2447.08–2457.78 10066.2 0.370796 7.13864e-006
12 1894.17–1901.56 9581.67 0.881836 0.0373087
13 2482.78–2495.11 4151 2.53842 0.00142066
14 2687.25–2693.65 3891.43 2.85622 0.0066715
15 1843.67–1849.51 2601.92 2.35004 0.000226796

log(CA125) 2.3302 1.52829 0.000123051

Table 7: Peak intensities averaged over the 4 last serum samples

Peak No m/z Norm.int. Med.ratio p-value
1 6656.98–6679.08 20913.6 1.07215 0.566557
2 3236.2–3244.32 9726.48 1.61889 0.00791912
3 6463.12–6479.3 9797.79 0.791477 0.503718
4 3028.51–3035.62 6093.17 1.97543 0.00196881
5 1796.44–1819.21 8525.61 1.14811 0.411363
6 1992.91–2012.49 6871.61 1.77838 0.0469392
7 2302.92–2308.44 8965.76 0.549563 0.000328641
8 1926.81–1933.27 14211.6 0.363002 0.000105243
9 2043.03–2055.27 9994.74 1.28807 0.0123262
10 2054.92–2067.64 7805.26 1.7933 0.000380284
11 2447.08–2457.78 11266.5 0.231518 5.96232e-006
12 1894.17–1901.56 11658.4 0.888413 0.0756175
13 2482.78–2495.11 4463.06 2.3992 0.00306475
14 2687.25–2693.65 3858.96 2.94571 0.00560348
15 1843.67–1849.51 2615.57 2.89076 0.00142066

log(CA125) 2.32955 1.38926 0.00162039

Table 8: Averaging peak intensities only over 3 samples preceding the last one
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According to the classical scheme of pattern recognition we had to consider
as ill only those women, for whom the disease was found at the moment of the
last sampling, and to use for diagnosis only the data of this last sample. All the
other cases should be considered as control: i.e. at that moment a woman was
healthy. But,

1. from the medical point of view it is vitally important to predict the disease
for some time before it was actually diagnosed,

2. experience of diagnostics on the basis of CA125 protein has shown that
not only the present value of a protein concentration is significant for
diagnosis, but also its comparison with prehistory [3].

Given this, we decided to include in the number of input parameters a value,
characterising its prehistory.

We had to take in account that there was only very small number of ill
women presented for training. To increase the number of we defined as an
object for recognition not a woman, but a moment of sampling. (It is
necessary to remind, that the last moment of sampling for women in the set
cases was the time, when the disease was found.) We included in the only those
cases (moments), which had at least k preceding measurements from the same
person. (Value k was a fixed constant equal to 2 or 3).

All such cases from the control group formed the first class (healthy). So it
included all moments of healthy women sampling, which had at least k predeces-
sors. Then we fixed some time interval T and defined the second class (cancer)
in the following way. We included in this class those sampling moments (from
the group cases), after which the disease was found not later than in time T
and not less than k samples preceded it, see figure 13. So if T = 0, we refer to
the class II only the moments, when the disease was detected by other means.
If T = 2 years, we refer to the second class all the sampling moments, which
are not more than 2 years before the disease was detected. In the case T = ∞
all sampling moments of a woman who got ill are included in the second class.
All the other sampling moments were not included in the massive for training
and recognition due to the following reasons. The k preceding samples were
necessary to take in account prehistory. Then, if the disease was found later
than in time T , both answers (healthy, ill) can not be considered as errors, and
it is dangerous to include these cases in the training set, as far as it is unknown
what time before the disease detection changes in protein concentration start.

We remind once more, that as the objects of recognition the moments of
sampling, satisfying the above conditions, were taken. The input parameters
were the intensities of the selected peaks, and to take in consideration the pre-
history, they were added by the average value over prehistory (really average
over k preceding samples to put all the objects in equal conditions). Formally

Xi
∗(tj) = 1/k

∑
Xi(tj−p),

where Xi(tj) is the i-th peak intensity at the current moment tj , p = 1, ..., k
and Xi

∗(tj) is the additional feature, responsible for prehistory. Of course it
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Figure 13: A moment of sampling for cancer women

would be more accurate to normalise this difference by individual mean square
deviation in the prehistory. But very low number of preceding samples for a fixed
person makes impossible satisfactory estimation of the mean square deviation.

8 Feature Selection

As the result of these restrictions we had in the case k = 3 and T = 0, 151
objects of the class 1 and 11 objects of the class 2, in the case k = 3 and T = 2
years, 151 objects of the class 1 and 31 objects of the class 2, in the case k = 3
and T = ∞, 151 objects of the class 1 and 37 objects of the class 2.

In any case the number of objects in the class 2 (cancer) was very low, so it
was impossible to divide to training and control sets without sufficient losses in
the training set. Then to have fair estimation of recognition result we had to
use the method called leave one out. It is to leave one object out, execute the
training procedure using all other objects and test the object left out. Then the
procedure is repeated leaving out all objects one by one, the number of errors
and correct answers is calculated and serves as fair estimation of recognition
quality. In our case, if a sample of some person was left out, then all samples of
the same person was also left out. This was made in order not use any sample
of a person in the training, if a sample of the same person was used for control.

The other moment is that having low number of examples and rather large
number of features one can easily find a decision rule correctly recognising all
the samples in the training set, but making a lot of errors in the control set. To
find really good decision rule in this case it is necessary to decrease the number
of features severely. It is possible to look through different combinations of
rather small feature number from initial set.

The other moment is that, if we use leave one out procedure to evaluate
a certain combination of features and then choose the best, the result can be
wrong. The gained estimation may deviate from the real value, and this devia-
tion becomes large if the number of combinations is grate. If we put the choice
of the best combination within leave-one-out procedure, then possibly we would
have as the best different combinations for different objects left out, which is
unacceptable from biological point of view.
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xt xt − x̄ xt−x̄

δ

These considerations forced us look for the least number of features, and
the least number is 1. On the other hand if we find one feature, discriminating
healthy and cancer groups, it could serve as biomarker for the disease.

Still experiments has shown that there was no single feature (one of the
15 peak intensities), which can satisfactory discriminate the classes. Then we
turned to the idea of using prehistory: try to discriminate classes in two dimen-
sional space with coordinates Xi

∗(tj) and Xi(tj), as defined above. Alterna-
tively, we can define other measurements, see the table below:

Now we gained acceptable results.
The procedure was as follows. For each feature pair (Xi

∗(tj) and Xi(tj))
we applied leave-one-out method with the nearest neighbour recognition rule.
Then we compared the results and looked for the best pairs.

9 Recognition results

We illustrate recognition results for two cases: T = 0, which means that we
consider as cancer only those sampling moments, when the disease was found
by other means immediately, and T = 1, 2, 3, 4, 5 years, which means that we
consider as cancer also those sampling moments, when the disease was found not
later than in 1, 2, 3, 4, 5 years after sampling. Not less than 3 samples should
precede a sample moment presented for classification. After these restrictions
we had 11 ill women and 50 healthy ones.

For the case T = 0 we had for recognition 11 sampling moments in the class
cancer (because for every woman only one sampling moment was taken) and
151 sampling moments in the class healthy (because several samples from one
woman was included).

For the case T = 2 we had for recognition 31 sampling moments in the class
cancer (because now one patient could be sampled several times within time
interval T ) and again 151 sampling moments in the class healthy.

The nearest neighbour recognition procedure has a parameter which regu-
lates the error proportion of different kinds: type 1 -cancer sample classified
as healthy, and type 2 - healthy samples classified as cancer. This pa-
rameter consists of two parts: number of neighbours and the voting threshold.
For example, parameter 2/5 means that 5 neighbours neighbours are considered,
and the classification is ’case’ if 2 or more of 5 neighbours are ’cases’.

Below we show the results gained using the best selected features listing
several values for different proportion two type errors in Table 9.

Figures 14 to 37 show the distributions of cases (crosses) and controls (zeros).
The x-axis represents peak intensity in the moment of measurement and the y-
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Samples Interval Peak 1 Peak 2 Error rate
37 -∞, 0 10 (L,M,S) 6 (M) 2.7%
33 -3, 0 10 (L, M, S) 6 (M) 3.0%
31 -2, 0 10 (L, M, S) 6 (M) 3.2%
27 -1, 0 10 (L, M) CA125 (M) 3.7%
25 -8/12, 0 10 (L, M) CA125 (M) 2%
23 -6/12, 0 10 (L, M) CA125 (L, M) 0%
16 -2/12, 0 10 (L, M, S) 6 (S) 0%
11 0, 0 10 (L, M, S) 0%

axis is average value of the peak intensity over prehistory (really over k preceding
samples (k=3)).
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Peak 10. m/z =[2054.9 2067.6]
Error Case T = 0.

Param. 1/5 1/4 1/3 2/5
Type 1 2(18%) 3 (27%) 5 (45%) 6 (54%)
Type 2 26(17%) 21 (14%) 16 (10%) 9 (5.8%)

Case T = 1.
Param. 1/5 1/4 1/2 2/5
Type 1 6(22%) 7 (26%) 9 (33%) 12 (44%)
Type 2 52(34%) 43 (28%) 23 (15%) 14 (9.1%)

Case T = 2.
Param. 1/5 1/4 1/2 2/5
Type 1 6 (19%) 8 (25%) 10 (32%) 11 (35%)
Type 2 52 (34%) 45 (29%) 24 (16%) 15 (9.7%)

Case T = 3.
Param. 1/5 1/4 1/3 2/5
Type 1 7 (21%) 10 (30%) 11 (33%) 13 (39%)
Type 2 60 (39%) 52 (34%) 33 (21%) 14 (9.1%)

Case T = 4.
Param. 1/5 1/4 1/2 2/5
Type 1 6 (17%) 9 (25%) 12 (34%) 13 (37%)
Type 2 60 (39%) 52 (34%) 30 (19%) 18 (12%)

Case T = 5.
Param. 1/5 1/3 1/2 2/5
Type 1 6 (16%) 8 (22%) 11 (30%) 12 (32%)
Type 2 60 (38%) 34 (22%) 29 (19%) 19 (12%)

Table 9: Classification results using the best selected features
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Peak 7. m/z=[2302.9 2308.4]
Error Case T = 0.

Param. 2/5 1/1 2/3 2/2
Type 1 4 (36%) 5 (45%) 6 (54%) 8 (72%)
Type 2 11 (7.1%) 5 (3.2%) 7 (4.6%) 2 (1.3%)

Case T = 1.
Param. 2/5 2/4 3/5 4/5
Type 1 4 (15%) 6 (22%) 10 (37%) 16 (59%)
Type 2 18 (12%) 17 (11%) 12 (7.8%) 7 (4.5%)

Case T = 2.
Param. 1/5 1/4 2/5 2/4
Type 1 4 (13%) 5 (16%) 6 (19%) 8 (26%)
Type 2 40 (26%) 38 (25%) 21 (13%) 19 (12%)

Case T = 3.
Param. 1/5 1/4 2/5 2/4
Type 1 4 (12%) 5 (15%) 6 (18%) 7 (21%)
Type 2 40 (26%) 38 (25%) 22 (14%) 19 (12%)

Case T = 4.
Param. 1/5 1/4 2/5 2/4
Type 1 5 (14%) 7 (20%) 8 (23%) 9 (26%)
Type 2 42 (27%) 41 (27%) 29 (19%) 25 (16%)

Case T = 5.
Param. 1/5 1/4 2/5 2/4
Type 1 5 (14%) 7 (19%) 8 (22%) 9 (24%)
Type 2 42 (27%) 41 (27%) 29 (19%) 25 (16%)

Table 10: Classification results using the best selected features
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Peak 11. m/z =[2447.1 2457.8]
Error Case T = 0.

Param. 1/3 2/4 2/3 2/2
Type 1 0 (0%) 2 (18%) 3 (27%) 6 (54%)
Type 2 7 (4.6%) 6 (3.9%) 4 (2.6%) 1 (0.7%)

Case T = 1.
Param. 1/5 3/5 1/2 2/3
Type 1 0 (0%) 1 (3.7%) 4 (15%) 7 (26%)
Type 2 12 (7.8%) 6 (3.9%) 7 (4.6%) 5 (3.2%)

Case T = 2.
Param. 1/5 3/5 2/3 2/2
Type 1 0 (0%) 1 (3.2%) 4 (13%) 12 (38%)
Type 2 12 (7.8%) 6 (3.9%) 5 (3.2%) 3 (2%)

Case T = 3.
Param. 1/5 3/5 3/4 3/3
Type 1 0 (0%) 1 (3%) 7 (21%) 16 (48%)
Type 2 12 (7.8%) 6 (3.9%) 5 (3.2%) 2 (1.3%)

Case T = 4.
Param. 1/5 2/4 3/5 4/5
Type 1 0 (0%) 1 (2.9%) 2 (5.7%) 11 (31%)
Type 2 13 (8.5%) 7 (4.6%) 6 (3.9%) 5 (3.2%)

Case T = 5.
Param. 1/5 2/4 3/5 4/5
Type 1 0 (0%) 1 (2.7%) 2 (5.4%) 12 (32.4%)
Type 2 13 (8.4%) 7 (4.5%) 6 (3.9%) 5 (3.2%)

Table 11: Classification results using the best selected features
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Figure 14: CA125 - last moment cases vs. all controls
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Figure 15: CA125 - cases for 1 year vs. all controls
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Figure 16: CA125 - cases for 2 years vs. all controls
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Figure 17: CA125 - cases for 3 years vs. all controls
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Figure 18: CA125 - cases for 4 years vs. all controls
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Figure 19: CA125 - cases for 5 years vs. all controls
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Figure 20: Peak 10: [2054.9 2067.6] - last moment cases vs. all controls
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Figure 21: Peak 10: [2054.9 2067.6] - cases for 1 year vs. all controls
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Figure 22: Peak 10: [2054.9 2067.6] - cases for 2 years vs. all controls
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Figure 23: Peak 10: [2054.9 2067.6] - cases for 3 years vs. all controls
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Figure 24: Peak 10: [2054.9 2067.6] - cases for 4 years vs. all controls
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Figure 25: Peak 10: [2054.9 2067.6] - cases for 5 years vs. all controls
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Figure 26: Peak 11: [2447.1 2457.8]- last moment cases vs. all controls

Then we compared the results with those gained on the base of CA125
analysis, see Table 10. The CA125 samples were taken from the same women
and in the same moments as serum blood samples. So the comparison could
be made in the same conditions and under the same restrictions for serum and
CA125 samples using the same procedure of control.

We compared also the best results gained using additional feature reflecting
prehistory, with those, which we could achieve without prehistory (in the same
conditions). The following table, Table 11, shows the results of comparison:

One can see that using prehistory we always gain better results than in the
case, when only current data are used.

10 Discussion

From the above results we can see that the peak number 10 (m/z = [2414.6
2418.9] delivers the best result, even in comparison with CA125 analysis. Other
presented features also seem promising to be used for early diagnostics in com-
bination, if we have more data for training. The other problem is to identify
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Figure 27: Peak 11: [2447.1 2457.8] - cases for 1 year vs. all controls
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Figure 28: Peak 11: [2447.1 2457.8] - cases for 2 years vs. all controls
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Figure 29: Peak 11: [2447.1 2457.8] - cases for 3 years vs. all controls
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Figure 30: Peak 11: [2447.1 2457.8] - cases for 4 years vs. all controls
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Figure 31: Peak 11: [2447.1 2457.8] - cases for 5 years vs. all controls
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Figure 32: Peak 7: [2302.9 2308.4] - last moment cases vs. all controls
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Figure 33: Peak 7: [2302.9 2308.4] - cases for 1 year vs. all controls
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Figure 34: Peak 7: [2302.9 2308.4] - cases for 2 years vs. all controls
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Figure 35: Peak 7: [2302.9 2308.4] - cases for 3 years vs. all controls
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Figure 36: Peak 7: [2302.9 2308.4] - cases for 4 years vs. all controls
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Figure 37: Peak 7: [2302.9 2308.4] - cases for 5 years vs. all controls
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Error Case T = 0.
Param. 1/1 2/4 2/2 4/4
Type 1 3 (27%) 7 (63%) 8 (71%) 9 (82%)
Type 2 8 (5.2%) 10 (6.5%) 7 (4.6%) 0 (0%)

Case T = 1.
Param. 1/4 1/3 2/5 4/4
Type 1 7 (26%) 8 (30%) 10 (37%) 15 (55%)
Type 2 30 (19%) 25 (16%) 13 (8.4%) 7 (4.5%)

Case T = 2.
Param. 1/5 1/4 1/3 2/2
Type 1 8 (26%) 9 (29%) 10 (32%) 15 (48%)
Type 2 40 (26%) 35 (23%) 29 (19%) 8 (5.2%)

Case T = 3.
Param. 1/5 1/4 1/1 3/4
Type 1 9 (27%) 10 (30%) 12 (36%) 17 (52%)
Type 2 40 (26%) 35 (23%) 18 (12%) 8 (5.2%)

Case T = 4.
Param. 1/5 1/4 1/3 1/1
Type 1 11 (31%) 12 (34%) 13 (37%) 14 (40%)
Type 2 48 (31%) 43 (28%) 33 (21%) 18 (12%)

Case T = 5.
Param. 1/5 1/3 1/1 3/5
Type 1 13 (35%) 15 (41%) 16 (43%) 19 (51%)
Type 2 48 (31%) 33 (21%) 19 (12%) 14 (9.1%)

Table 12: Classification results using CA125

Feature Error with prehistory without prehistory
Peak 10 Type 1 0 (0%) 4 (36%)

1/3 Type 2 7 (4.5%) 34 (22%)
Peak 7 Type 1 4 (36%) 5 (45%)

2/5 Type 2 11 (7.1%) 25 (16%)
Peak 11 Type 1 2 (18%) 7 (64%)

2/5 Type 2 16 (17%) 36 (24%)
CA125 Type 1 3 (27%) 4 (36%)

1/1 Type 2 8 (5.2%) 12 (7.9%)

Table 13: Classification results using prehistory
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Our Peak Tempst’s Peak Identified Peptide
11 [2447.1, 2457.8] 2451.11 Transthyretin (K) ALGISPFHEHAEVVFTANDSGPR
7 [2302.9, 2308.4] 2305.20 C4a (R) GLEEELQFSLGSKINVKVGGNS
8 [1926.8, 1933.3] 1927.94 apoA-IV SLAELGGHLDQQVEEFR
9 [2043.0, 2055.3] 2052.89 apoA-I ATEHLSTLSEKAKPALEDL (R)
2 [3236.2, 3244.3] 3239.22 Fibrinogen α SYKMADEAGSEADHEGTHSTKRGHAKSRPV (R)
5 [1796.4, 1819.2] 1807.78 apoA-I ELQEGARQKLHELQE
12 [1894.2, 1901.6] 1895.99 C4a RNGFKSHALQLNNRQI (R)

Table 14: Comparison with Tempst’s group findings

the peaks with certain proteins, peptides or proteases. We have made an at-
tempt to establish very narrow intervals of m/z values in order to find out the
corresponding protein biomarkers. The further experiments would require to
confirm or disconfirm these results.

We also compared the 15 most popular peaks identified in Table 1 with
those published by Paul Tempst’s group [4]. Seven of our peaks match with
their results, see Table 14 and two of the seven peaks (i.e. peaks 11 and 7) are
useful for classification.
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