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Abstract

The paper describes analysis of human serum proteome to establish
several ovarian cancer (OC) biomarkers for early detection of the disease.
The data were collected in UKCTOCS study over 7 years - “serial data”.
The analysis indicates that certain peptides are very important for early
diagnostic of ovarian cancer, and they have more predictive power in the
early stages than CA125. Further experiments, however, are required to
study the dynamics of the control set collected over the same years in
order to make reliable classification.

1 Introduction

Recent advances in the analysis of human serum proteome aim to establish
novel disease biomarkers that would allow the early detection of diseases. The
current techniques include analysis of the serum data using mass spectrometry
(m/s). The output of m/s work is a large volume of high-dimensional data and
it requires modern methods of data analysis. This report describes several ma-
chine learning techniques that have been used in order to establish “proteomic
pattern diagnostic”. The techniques were applied to a subset of a large bank of
serum data collected in the UK Collaborative Trial of Ovarian Cancer Screening
(UKCTOCS) study over 7 years from 1995-2001. The report first describes the
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data and a set of pre-processing techniques that include calibration, denoising,
subtracting the baseline and normalising the data. Subsequently, peak iden-
tifications and peak alignment techniques were applied in the latest stages of
pre-processing. The remaining sections of the report are devoted to feature se-
lection techniques that can been applied to classify between cases with ovarian
cancer (OC) and control (healthy individuals). In addition to using samples
from single points in time as features we also experimented with the “prehis-
tory” of the diagnostic process by considering different time slots (0, 1, 2, ... 5
years) before the actual diagnosis is made. The results show that certain peaks
and their combinations (and the corresponding peptides) are very important for
early diagnostic of OC, and they are more informative in the early stages than
CA125. However, additional experiments have shown that different subsets of
the data are not comparable, and further research is required to confirm these
findings.

2 Data

The serum samples used in the pilot study were collected in the UKCTOS
project from 1995 to 2001. The data were subsequently analysed using the
MALDI-TOF mass spectrometer at the Sloan-Kettering Center. In this pilot
study the data were divided into two sets. Set 1 has 266 samples, of which
91 were case samples taken from 19 women with OC, and 175 control samples.
The control samples were selected to match case samples (usually 2 controls
samples were selected for each case sample). The women in the study were
observed for 7 years (1995-2001) and the samples collected in this period were
called serial samples. Typically, each of the 19 cancer women have 2 to 12 serial
samples taken in those years; and most of the healthy patients have just a single
sample. For all cancer women, the last sample was taken at the moment when
the diagnosis was made. In addition, Set 2 was also obtained that has 305
samples from 50 healthy women. Each healthy woman has between 5 and 9
serial samples and most of them have 6 samples.

Other information such as date of birth, CA125, date of sample taken, date
of sample received at the lab and tube type used for serum collection was also
available.

Both the Set 1 and Set 2 serum samples were analysed by MALDI-TOF
based mass spectrometry (MS). The MS dataset was generated at Memorial
Sloan-Kettering Cancer Center (MSKCC), New York, USA in December 2004.
For each serum sample, low range of mass-to-charge ratio (m/z) [700, 4000] and
high range m/z of [4000, 15000] were obtained separately. In total, 125,206 data
points were generated by the mass spectrometer where mass-to-charge (m/z)
values are ranged between 700 and 15000 with the corresponding intensities.
These data points are related to time-of-flight (TOF) or clock tick measurement.
An example of a raw mass spectrometry (MS) data file is shown in Figure 1.

Overall, 565 serum samples (of possible 571 samples) were successfully anal-
ysed and the corresponding MS data files were obtained. These serum samples
contain 475 control samples (174 in set 1 and 301 in set 2) and 90 case samples.
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Figure 1: An example of raw MS data

3 Pre-processing

Mass spectrometry instruments are very sensitive and artefacts can be intro-
duced into spectra from physical, electrical or chemical sources in experiments.
Pre-processing is an important step to attempt to remove these systematic arte-
facts and isolate the true protein signal. The goals of pre-processing are to re-
duce noise, normalise the spectra from different samples and reduce the dimen-
sionality of MS data. Our assumption is that each spectrum can be considered
as composed of three components: true peak signal, baseline, and random noise.

In this section we describe our pre-processing of the raw data that includes:
calibration, baseline subtraction, smoothing, normalisation and peak alignment.
We start with the raw data and perform the calibration first.

3.1 Calibration

We used the 13 peaks and calibrant file associated with each sample to perform
calibration. In addition, we assumed that the relationship between m/z value
(M) and time-of-flight (T ) for the mass spectrometer used in the experiments
can be represented as

M = B × (T −A)2 (1)

where A and B are two constants determined by experiment setup. Our cali-
bration algorithm is presented as follows.

We calculated the constants A and B, and re-assigned the m/z (or M) their
correct values. Note that calibration is performed separately on low mass range
data of [700,4000] and high mass range data of [4000, 15000].

3.2 Smoothing

Mass spectra of serum samples also exhibit an additive high frequency noise
component. The presence of this noise hampers peak identification and we need
to reduce the influence of this high frequency noise. One way is to smear out
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Algorithm 1 Calibration
Require: m/z values of 13 peaks

fix As and Bs in the formula (1) (for example As=0.5 and Bs=1.0)
find out TOF values for these 13 peaks (TOFs) using the formula (1) and As

and Bs

for each sample’s calibrant Ci do
find the m/z values of these 13 peaks in Ci

find out Ai and Bi which optimises
∑13

k=1 (TOFi
k − TOFs

k)2

end for
{we now have optimal Ai and Bi for each sample}
for each sample’s raw data Ri do

for each m/z value Mj in Ri do

TOFj =
√

Mj

Bi
+ Ai

Mj
∗ = Bs × (TOFj −As)2 {the corresponding intensity value is not

changed}
end for

end for

the high frequency noise signal in the spectra by averaging the intensities within
a moving window.

3.3 Baseline Subtraction

The goal of baseline subtraction is to remove systematic artefacts, usually due to
matrix and chemicals used in the experiments or to detector overload. Ideally
the baseline should rest on zero. Chemical and electronic noise produces a
background intensity which typically decreases when the mass m/z increases.

Baseline subtraction involves two steps: baseline estimation followed by sub-
traction of the estimated baseline from the raw mass spectrum. An example
of baseline estimation is shown in Figure 2. Our baseline estimation procedure
is described in Algorithm 2. Where the algorithm refers to Piecewise Cubic
Hermite Polynomial Interpolation of B we use the pchip() function in matlab
[2].

3.4 Normalisation

Due to variation in sample preparation and deposition on the target, matrix
crystallisation and ion detection, samples are not directly comparable before
normalisation. The goal of normalisation is to make sure that the total amount
of ions across different samples are the same. This is done by calculating the
sum of all intensity values and then dividing each intensity value by the sum.
We then multiple these intensity values with a constant C (for example we set
C=2× 105 in our experiments). The results are shown in Figure 3.

3.5 Peak Identification

A peak in mass spectra indicates the relative abundance of a protein. Peak
identification is concerned with identifying peaks within a single mass spectrum.

4



Algorithm 2 Baseline Subtraction
Require: Paramiter σ - Maximum mass separation (e.g. σ = 0.0015 (0.15%))
Require: Number Baseline correction iterations k
Require: Spectrum X

Define the set of intensities in X as XI and the corresponding intensities (at
the same points) for the baseline B as BI .
Define the set of m/z values in X as XM and the corresponding m/z values
(at the same points) for the baseline B as BM .
Find all local maxima in X and call set of the m/z locations of these max-
ima/local peaks P .
Define a new set Ps, which is the peaks from P sorted relitive to peak intensity
in decending order.
for Each peak pi ∈ Ps do

for Each peak pj ∈ P such that pj 6= pi do
if |pi−pj |

pi
< σ then

Remove pj from P
end if

end for
end for
Find the point with minimum intensity between each adjacent peak in P , we
call these troughs and denote the set by T
B = P
for i = 1 : k do

B = Piecewise Cubic Hermite Polynomial Interpolation of B
flag = 0
j = 1;
for Each xi ∈ XI and each coresponding bi ∈ BI do

if xi < bi then
if flag == 0 then

Rt = i
flag = 1

end if
else

if flag == 1 then
R(j) = (Rt, i)
j = j + 1

end if
end if

end for
for Each pair r ∈ R do

Find the point p = arg maxp(BI
p −XI

p ) where p is in the range r
Create a new point on the baseline by setting Bp = Xp.

Remove any point k 6= p from B if |(B
M
p −BM

k )|
BM

p
< σ

end for
end for
Final baseline B* = Piecewise Cubic Hermite Polynomial Interpolation of B
Calculate baseline subtracted spectra X

′I = XI −B∗I
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Figure 2: Estimated baseline (shown in red)
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Figure 3: An example of pre-process data after smoothing, baseline subtraction
and normalisation
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Figure 4: Peak identification

The identification of peaks in a mass spectrum is complicated by the error in
measuring the abundance as well as the mass error rate. The goal of peak
identification is to identify a set of m/z values which comprise peaks which
are higher than the noise level of a mass spectrum. The peak identification
algorithm finds local maxima with a certain signal-to-noise ratio (eg SNR=4)
and chooses the local maxima higher than a threshold of the noise level as peaks.
For example, local maxima of a mass spectrum are located by finding the m/z
ratios with the highest intensity among their N neighbours. The noise level is
defined as the average of the intensities at the m/z ratio within a moving window
with a fixed size (eg 500). The peaks identified were quantified as height at the
local maximum. An example of peaks identified is given in Figure 4, where
peaks are represented as circles where the absolute peak height exceeds the
threshold of 9000. For the purpose of peak alignment, we use only peaks which
have intensity value exceeding the threshold of 9000.

3.6 Peak Alignment

To make an inference about trends across a number of spectra, we need to relate
the peaks identified in one spectrum to the peaks found in another spectrum.
This process of matching peaks which represent the same protein across several
spectra is known as ”peak alignment”. In peak alignment, the peaks of multiple
mass spectra within the mass error rate are grouped together as a ”peak group”.

Given a number of peak points (or features), we need to find a unique cor-
respondence between them. Not all peaks appear in every sample. Therefore,
one-to-one correspondence does not exist between every two samples. A simple
approach is to construct a super set of all peaks and use it as the anchor of align-
ment - every sample is aligned to this super set. For this purpose the superset
is split into clusters. Cluster definition is done in two steps. First we find all
intervals between neighbouring peak positions in the superset exceeding some
fixed values d1, where d1 is some distance metrics based on mass resolution (eg
1500ppm). These intervals split the m/z axe into clusters of order 1. Then we
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Figure 5: Pre-processed MS data of serial samples - Cancer Patient (ID=4808)

test if each sample has no more than 1 peak in a cluster. If so, the cluster is
considered as final. Otherwise, we look at whether there is an interval exceeding
d2 < d1, dividing occurrences of one sample peak within the cluster. If so we
divide the cluster of order 1 into smaller ones. Otherwise we consider it as final.

Now for each sample peak we assign the number of its cluster (in cases when
there is more than 1 peak of the same cluster for the same sample we take into
account only the largest of them).

Now all peaks are aligned to a certain cluster. Every sample is then charac-
terised by a numerical vector, of dimension n (n is the number of final clusters)
with the coordinates equal to the height of a peak corresponding to each cluster,
zero if there is no such peak. These coordinates are considered as a set of sample
features for pattern recognition.

Note that we align peaks from all samples without discriminating among
controls and cases.

4 Preliminary results

The pre-processing steps described in section 3 were applied to each of 565 raw
MS data files. Figure 5 and Figure 6 illustrate an example of pre-processed
serial samples from a cancer woman and a normal woman, respectively.

In total, 8372 peaks were identified in all the analysed serum samples. After
the pre-processing, 340 peak groups were identified after peak alignment. 48
peak groups were found which are present in more than 20% or so of all samples
– see Table 1.
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Peak No m/z value m/z range

1 6645.9 6634.6 – 6652.8
2 3188.9 3185.3 – 3191
3 2004.2 2001.1 – 2005.5
4 3330.4 3325.2 – 3333.4
5 9307.1 9291.2 – 9318.2
6 2982.3 2978.8 – 2985.2
7 1764.5 1761.8 – 1766.8
8 818.46 817.45 – 818.9
9 4291 4284 – 4296.5
10 3172 3168 – 3176.4
11 2548.5 2544.6 – 2550.7
12 937.35 936.48 – 937.76
13 3280.1 3273.9 – 3282.1
14 2262.3 2259.1 – 2265.2
15 8126.7 8111.5 – 8132
16 1964.1 1961.2 – 1965.6
17 6447.9 6441.3 – 6460.2
18 2562.8 2561 – 2564.2
19 1888.7 1886.1 – 1889.7
20 899.92 898.6 – 900.99
21 1442.4 1440.7 – 1443.3
22 2020.9 2019.7 – 2022.3
23 5010.8 5006.7 – 5014.6
24 8943.1 8938.6 – 8963
25 4652.6 4647 – 4659.3
26 5379.4 5373.1 – 5387.8
27 3788.6 3786.5 – 3791.9
28 2405.1 2404 – 2406.2
29 3229.8 3226.7 – 3234.2
30 1857.6 1855.9 – 1858.4
31 2643.6 2639.7 – 2644.7
32 1388 1385.8 – 1389.3
33 2016.8 2013.6 – 2019.6
34 3206.4 3203.1 – 3208.5
35 2447.5 2446.2 – 2448.7
36 1577.9 1575.9 – 1578.9
37 3297.2 3295.9 – 3300.8
38 1204.9 1203.5 – 1205.7
39 2109.1 2107.4 – 2111
40 2755.2 2750.9 – 2758.2
41 3977.7 3974.7 – 3981
42 8134.4 8132.1 – 8146.8
43 1808.5 1806.3 – 1809.3
44 8935.9 8918.7 – 8938.5
45 2503 2501.6 – 2504.1
46 1937.2 1934.7 – 1939.3
47 2723.82 2720 – 2726.1
48 1477.32 1475.6 – 1478.5

Table 1: Most popular peaks among the samples
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Figure 6: MS data of serial samples - Normal Patient (ID=715)

5 Feature selection techniques

After the pre-processing 340 peak groups were identified out of the original 8372
peaks. We then selected the 48 most frequent peak groups (see section 3.6) and
they are presented in Table 1. Our next step is to use these peaks as features
in the pattern recognition task. We should be able to derive decision rules in
order to separate OC cases from controls.

5.1 The techniques

Every object presented for pattern recognition is described by a set of features
(quantitive or qualitive). A subset of objects with known classification forms
the training set. Pattern recognition algorithms construct decision rules on the
basis of this training set. Another subset with known classification can be used
as a test (or validation) set. The quality of a decision rule is estimated by the
number of errors in the test set. In the case of two classes there are two types
of error: the first type is when an object of the first class is recognised by the
decision rule as an element of the second one. The second type is when on the
contrary an object of the second class is recognised as an element of the first
one. An algorithm of pattern recognition often has a parameter regulating the
proportion of the two types of errors.

In applications to medical diagnostics a patient can be considered as an
object for pattern recognition. Patients are grouped in classes according to
their diseases or absence of disease. The symptoms are the features and some
general information such as age, sex is often added to the set of features. In
our case, we shall be using objective measurements (intensities of peaks) as the
features space in addition to some clinical and general information.
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5.2 Significance level of selected features

The feature space in our data is formed by the intensities of the 48 selected
peaks for each MS-sample. That means that for each sample, a 48-dimensional
vector of intensity values can be formed to characterize the sample. In this
setting a peak is the maximum of intensity at the spectrogram within an interval
corresponding to the peak irrespective of whether the peak was large or small.

The first step is to compare the probability distributions of the peak in-
tensities for control and case samples. To estimate the difference for a certain
significance level we used the Mann-Whitney The test returns P value of whether
two sample sequences could be generated by the same probability distribution,
assuming that the samples are independent. Our null hypothesis here is that
the samples are coming from the same probability distribution; i.e. there is no
difference between the samples.

5.2.1 All examples taken in the last time-point

To begin with we used the serum sample analyses from all 19 women with OC
diagnosis, versus 219 healthy women. The samples were taken over a period of
7 years (serial samples). In this first set of experiments we considered only the
last serial sample (a sample that was taken at the last time-point - the point
when the diagnosis was made and the disease was found). The intensities of
each of the 48 peaks were calculated using our pre-processing techniques and
the significance test was applied. In Table 2 the results are shown for each of
the 48 peaks, and for each (last time-point) sample. In column 2 the mean m/z
value of the peaks is shown, column 3 shows the m/z interval corresponding to
the peak, column 4 shows median intensities of each m/z peak in the control set,
column 5 corresponds to peak intensity ratio, which was calculated by dividing
the median value of a peak in the cancer group by the median value in the
control set, and column 6 gives corresponding P values. For comparison, a line
corresponding to CA125 analysis is added.

We see that P values for all peaks are very high in comparison with that of
CA125. This means that the difference in distributions for cases and controls is
not reliable; that is it is unlikely that the control and OC are coming from the
same probability distribution. The null hypothesis is rejected only for CA125
entry with a very small P value. This picture related to the whole set of samples
of control and OC cases, and it would be useful to see if there are some changes
in the importance of certain peaks when we consider the samples in dfferent
time slots.

5.2.2 Serial samples

Since each serial sample came from the same person but over a period of time
using the same UKCTOCS protocol, it was reasonable to use averages over
serial samples peak intensities and apply the significance test to check whether
their probability distributions are different for normal and cancer cases. It
meant that we had to exclude people who did not have serial samples but only
had a single measurement.

Last-moment samples. In the following experiments we considered only those
women that had no less than 4 serial samples. After this restriction there
remained only 11 patients with a cancer diagnosis and 49 healthy women.
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Peak No m/z Range Median intensity Median ratio p-value
(normalised)

1 6645.9 6634.6 – 6652.8 128.76 1.0377 0.91387
2 3188.9 3185.3 – 3191 34.128 1.8127 0.012547
3 2004.2 2001.1 – 2005.5 49.143 1.0238 0.42938
4 3330.4 3325.2 – 3333.4 23.911 1.4172 0.024758
5 9307.1 9291.2 – 9318.2 8.0021 1.1403 0.55193
6 2982.3 2978.8 – 2985.2 24.246 1.2549 0.55193
7 1764.5 1761.8 – 1766.8 33.79 1.1368 0.30418
8 818.46 817.45 – 818.9 15.114 1.3889 0.93188
9 4291 4284 – 4296.5 14.438 0.7757 0.77347
10 3172 3168 – 3176.4 12.663 1.1826 0.271
11 2548.5 2544.6 – 2550.7 15.017 0.90985 0.92633
12 937.35 936.48 – 937.76 8.433 1.4712 0.76281
13 3280.1 3273.9 – 3282.1 8.6912 1.9269 0.22269
14 2262.3 2259.1 – 2265.2 20.548 1.1628 0.89039
15 8126.7 8111.5 – 8132 4.1111 0.93207 0.40534
16 1964.1 1961.2 – 1965.6 15.402 1.398 0.24038
17 6447.9 6441.3 – 6460.2 59.694 0.93121 0.86837
18 2562.8 2561 – 2564.2 11.957 1.2926 0.23074
19 1888.7 1886.1 – 1889.7 10.356 0.77269 0.71784
20 899.92 898.6 – 900.99 9.9228 0.85271 0.98191
21 1442.4 1440.7 – 1443.3 8.3327 1.1578 0.70502
22 2020.9 2019.7 – 2022.3 41.263 1.2567 0.67928
23 5010.8 5006.7 – 5014.6 11.029 0.81472 0.10889
24 8943.1 8938.6 – 8963 5.2508 1.1853 0.79223
25 4652.6 4647 – 4659.3 11.702 0.74588 0.70243
26 5379.4 5373.1 – 5387.8 6.411 0.84285 0.39363
27 3788.6 3786.5 – 3791.9 4.5351 1.1878 0.11763
28 2405.1 2404 – 2406.2 10.96 1.1516 0.51299
29 3229.8 3226.7 – 3234.2 10.381 1.1831 0.11763
30 1857.6 1855.9 – 1858.4 10.173 0.87123 0.62399
31 2643.6 2639.7 – 2644.7 9.0744 1.0591 0.7469
32 1388 1385.8 – 1389.3 7.8566 0.95715 0.47123
33 2016.8 2013.6 – 2019.6 50.994 1.0689 0.66655
34 3206.4 3203.1 – 3208.5 7.4657 1.5213 0.034938
35 2447.5 2446.2 – 2448.7 6.8544 1.1567 0.84373
36 1577.9 1575.9 – 1578.9 5.4893 0.96582 0.66655
37 3297.2 3295.9 – 3300.8 7.6509 1.1204 0.30914
38 1204.9 1203.5 – 1205.7 6.0051 0.90137 0.9402
39 2109.1 2107.4 – 2111 12.717 0.52881 0.36711
40 2755.2 2750.9 – 2758.2 7.8938 1.1092 0.64387
41 3977.7 3974.7 – 3981 1.2874 0.78671 0.77614
42 8134.4 8132.1 – 8146.8 4.1111 0.87697 0.3209
43 1808.5 1806.3 – 1809.3 4.1082 1.3571 0.34172
44 8935.9 8918.7 – 8938.5 5.1757 1.2048 0.73373
45 2503 2501.6 – 2504.1 8.1174 0.87972 0.95131
46 1937.2 1934.7 – 1939.3 9.0519 1.2904 0.60438
47 2723.8 2720 – 2726.1 8.5138 1.6115 0.57074
48 1477.3 1475.6 – 1478.5 5.8744 1.0542 0.51976

CA125 2.5518 1.7988 1.34912e-006

Table 2: All samples from 19 women with cancer and 218 healthy women
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In the first set of experiments we took into account only the last sample
for these 11 cases and 49 controls and applied the significance test to them.
The results are shown in Table 3. The results show that peak 2 has become
comparable with CA125; that is, we can reject the null hypothesis for this peak
(feature), and assume that the controls and cases are not coming from the same
probability distribution.

Average of 3 samples excluding the last one.
In the next set of experiments we tried to establish if the diagnosis can

be made long before the results of the last sample became available. For this
purpose, we excluded the last sample (the sample taken at the last time-point)
and compared the control and case samples only over the 3 samples preceding
the last one by taking the averages of intensities for controls and cases. The
test results are shown in Table 4.

One can see that P values for 8 of the peaks are smaller in comparison with
CA125 indicating that the controls and cases are unlikely to come from the
same distribution. The null hypothesis is rejected for those peaks. Peaks are
9,12,14,19,21,28,38 and 41.

However, the difference in distributions does not mean that a feature can be
used for reliable diagnosis. For example, it might be due to the fact that distri-
butions are indeed different, but overlapping, and the overlapping distribution
inevitably implies errors. Different distributions for the cases and controls may
have some important biological meaning. However, from the clinical point of
view, we need to obtain features with “good” classification abilities. Further
investigation is required to analyse these peaks in order to rely on them for
early diagnosis.

5.3 Prehistory parameter

According to the classical scheme of pattern recognition the classes are fixed,
and the task is to develop the decision rules that would allow the recognition of
future objects as belonging to one class or another (in a two-class problem). In
our case we have two classes: the control and case individuals. However, what
exactly constitutes the case (OC) in our study? To begin with we can consider
as cases (OC) only those women for whom the disease was found at the moment
of the last sampling, and to use for diagnosis only the data of this last sample.
All the other cases should be considered as control: i.e. at that moment the
rest of the samples were healthy. But, since we shall have different number of
samples changing over the period of time, we include an input parameter to
characterise prehistory among other input parameters.

We consider as an object for recognition not an individual, but a mo-
ment of sampling. We include only those cases (moments), which had at least
k preceding measurements from the same person (usually k is a fixed constant
equal to 2 or 3).

In this two-class problem, the control group formed the first class (healthy);
it included all moments of healthy women sampling, with at least k predecessors
in time. Then we fixed some time interval T and defined the second class (OC)
in the following way. We included in this class those sampling moments (from
the group of OC cases), after which the disease was found not later than in time
T and not less than k samples preceded it. Thus, if T = 0, we refer to class
two only the sampling moments when the disease was detected by other means.
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Peak No m/z Range Median intensity Median ratio p-value
(normalised)

1 6645.9 6634.6 – 6652.8 109.91 1.3044 0.058581
2 3188.9 3185.3 – 3191 32.328 2.1588 4.0009e-005
3 2004.2 2001.1 – 2005.5 50.051 0.74715 0.63293
4 3330.4 3325.2 – 3333.4 23.781 1.5151 0.013008
5 9307.1 9291.2 – 9318.2 9.0218 0.84706 0.5927
6 2982.3 2978.8 – 2985.2 37.431 0.92362 0.98476
7 1764.5 1761.8 – 1766.8 32.599 0.99532 0.66037
8 818.46 817.45 – 818.9 3.6504 1.4574 0.45623
9 4291 4284 – 4296.5 11.739 1.896 0.56656
10 3172 3168 – 3176.4 21.53 0.61438 0.3205
11 2548.5 2544.6 – 2550.7 13.76 0.94219 0.83355
12 937.35 936.48 – 937.76 3.72 1.4551 0.86349
13 3280.1 3273.9 – 3282.1 4.7254 3.6682 0.089078
14 2262.3 2259.1 – 2265.2 52.141 0.34515 0.00026334
15 8126.7 8111.5 – 8132 6.6725 0.24549 0.00082802
16 1964.1 1961.2 – 1965.6 16.371 1.3771 0.072526
17 6447.9 6441.3 – 6460.2 65.526 0.79236 0.24387
18 2562.8 2561 – 2564.2 10.453 1.5603 0.030867
19 1888.7 1886.1 – 1889.7 3.3067 1.7441 0.30168
20 899.92 898.6 – 900.99 4.9943 2.0381 0.28469
21 1442.4 1440.7 – 1443.3 2.2961 3.4512 0.14641
22 2020.9 2019.7 – 2022.3 28.773 2.0808 0.051338
23 5010.8 5006.7 – 5014.6 18.361 0.4756 0.00032864
24 8943.1 8938.6 – 8963 2.8324 2.3457 0.23623
25 4652.6 4647 – 4659.3 13.125 0.50243 0.075617
26 5379.4 5373.1 – 5387.8 11.455 0.37381 0.019768
27 3788.6 3786.5 – 3791.9 4.6076 1.1248 0.20735
28 2405.1 2404 – 2406.2 12.48 1.1483 0.66037
29 3229.8 3226.7 – 3234.2 11.572 1.0838 0.38471
30 1857.6 1855.9 – 1858.4 6.6334 1.1379 1
31 2643.6 2639.7 – 2644.7 9.889 0.90584 0.75986
32 1388 1385.8 – 1389.3 8.548 1.3192 0.38465
33 2016.8 2013.6 – 2019.6 29.697 2.0643 0.016078
34 3206.4 3203.1 – 3208.5 7.1968 1.788 0.00094961
35 2447.5 2446.2 – 2448.7 5.8873 1.3501 0.37928
36 1577.9 1575.9 – 1578.9 4.7759 1.0354 0.51599
37 3297.2 3295.9 – 3300.8 6.7969 2.3786 0.12643
38 1204.9 1203.5 – 1205.7 2.8539 0.9402 0.46785
39 2109.1 2107.4 – 2111 21.028 0.3624 0.0079191
40 2755.2 2750.9 – 2758.2 9.1377 1.0668 0.87853
41 3977.7 3974.7 – 3981 1.3066 0.77425 0.30224
42 8134.4 8132.1 – 8146.8 6.6502 0.24549 0.00067246
43 1808.5 1806.3 – 1809.3 2.5218 2.7493 0.020507
44 8935.9 8918.7 – 8938.5 2.793 2.3457 0.20735
45 2503 2501.6 – 2504.1 12.073 0.71463 0.33947
46 1937.2 1934.7 – 1939.3 11.269 1.0444 0.98476
47 2723.8 2720 – 2726.1 6.3559 2.4107 0.17497
48 1477.3 1475.6 – 1478.5 5.2225 1.2024 0.24387

log(CA125) 2.5376 1.8341 3.38873e-005

Table 3: The last samples of 11 cases and 49 controls
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Peak No m/z Range Median intensity Median ratio p-value
(normalised)

1 6645.9 6634.6 – 6652.8 117.92 1.1567 0.056078
2 3188.9 3185.3 – 3191 38.679 1.7735 0.033957
3 2004.2 2001.1 – 2005.5 31.59 1.2821 0.0079191
4 3330.4 3325.2 – 3333.4 19.758 1.0977 0.96952
5 9307.1 9291.2 – 9318.2 10.719 0.91455 0.86349
6 2982.3 2978.8 – 2985.2 27.34 1.5884 0.0056035
7 1764.5 1761.8 – 1766.8 24.557 1.2184 0.037309
8 818.46 817.45 – 818.9 18.629 0.93978 0.75986
9 4291 4284 – 4296.5 24.726 0.53162 0.00018079
10 3172 3168 – 3176.4 18.069 1.7874 0.29338
11 2548.5 2544.6 – 2550.7 20.638 0.63469 0.0020994
12 937.35 936.48 – 937.76 28.75 0.24828 7.0766e-005
13 3280.1 3273.9 – 3282.1 11.558 0.50569 0.040938
14 2262.3 2259.1 – 2265.2 27.389 0.49778 7.0766e-005
15 8126.7 8111.5 – 8132 4.8222 1.2498 0.34922
16 1964.1 1961.2 – 1965.6 18.527 1.3124 0.17497
17 6447.9 6441.3 – 6460.2 51.881 0.91305 0.35914
18 2562.8 2561 – 2564.2 18.36 0.68069 0.27618
19 1888.7 1886.1 – 1889.7 36.665 0.37339 8.3028e-005
20 899.92 898.6 – 900.99 23.841 1.2071 1
21 1442.4 1440.7 – 1443.3 40.669 0.35208 0.00019505
22 2020.9 2019.7 – 2022.3 21.802 2.2768 0.00054444
23 5010.8 5006.7 – 5014.6 13.052 0.97731 0.52841
24 8943.1 8938.6 – 8963 6.6211 0.5884 0.044861
25 4652.6 4647 – 4659.3 12.753 0.9767 1
26 5379.4 5373.1 – 5387.8 8.5377 1.8729 0.0028799
27 3788.6 3786.5 – 3791.9 5.6136 0.90823 0.68828
28 2405.1 2404 – 2406.2 34.105 0.26639 3.7779e-006
29 3229.8 3226.7 – 3234.2 9.5406 0.84373 0.46786
30 1857.6 1855.9 – 1858.4 30.881 0.36835 0.018782
31 2643.6 2639.7 – 2644.7 18.126 2.3734 0.012326
32 1388 1385.8 – 1389.3 8.6749 1.2453 0.75986
33 2016.8 2013.6 – 2019.6 25.087 1.9826 0.00082802
34 3206.4 3203.1 – 3208.5 11.795 0.99402 0.46786
35 2447.5 2446.2 – 2448.7 15.435 2.7871 0.0046922
36 1577.9 1575.9 – 1578.9 8.1234 1.2911 0.037309
37 3297.2 3295.9 – 3300.8 6.1088 0.74868 0.46786
38 1204.9 1203.5 – 1205.7 23.582 0.26449 8.9887e-005
39 2109.1 2107.4 – 2111 13.567 0.69986 0.024177
40 2755.2 2750.9 – 2758.2 11.126 0.50283 0.00062697
41 3977.7 3974.7 – 3981 5.4204 0.081267 2.2237e-005
42 8134.4 8132.1 – 8146.8 4.8214 1.2498 0.3205
43 1808.5 1806.3 – 1809.3 7.5761 3.1465 0.0030647
44 8935.9 8918.7 – 8938.5 6.6858 0.57481 0.040938
45 2503 2501.6 – 2504.1 7.8815 1.812 0.17497
46 1937.2 1934.7 – 1939.3 12.944 1.205 0.16897
47 2723.8 2720 – 2726.1 7.1069 1.0678 0.73094
48 1477.3 1475.6 – 1478.5 7.672 1.0153 0.38996

log(CA125) 2.4508 1.7286 0.00029419

Table 4: Peak intensities averaged over 3 samples preceding the last one
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Peak No. Mean m/z p-value
(Set1 vs Set 2 Controls)

9 4291 0.31881
12 937.35 0.17195
14 2262.3 1.8228e-011
19 1888.7 0.79389
21 1442.4 0.12274
28 2405.1 3.9514e-022
38 1204.9 0.30664
41 3977.7 0.1657

CA125 0.0115

Table 5: P-value for instability of each peak, instability is identified by compar-
ing control samples from Set 1 and Set 2, which we would expect to have the
same distribution (this is our null hypothesis). Small p-values indicate unstable
peaks.

There were 11 moments at time T = 0. If, however, the time T = 3 years,
we refer to the second class only the sampling moments, that were obtained 3
years or less before the disease was detected. Or, in the case T = ∞ all sampling
moments of a woman who developed OC are included in the second class. There
were 33 sampling moments at T = 3. We shall call the parameter k (number of
preceding samples) as the prehistory parameter.

In summary, the feature space (input parameters) is formed by the intensities
of the selected 48 peaks on each MS-spectrogram; the objects of recognition
were the moments of sampling; and to take into consideration the prehistory,
the peak intensities were added by an average value over k preceding samples
(”prehistory”). Formally

Xi
∗(tj) = 1/k

∑
Xi(tj−p),

where Xi(tj) is the i-th peak intensity at the current moment tj , p = 1, ..., k
and Xi

∗(tj) is the additional parameter, responsible for prehistory. Of course it
would be more accurate to normalise this difference by mean squared deviation
in the prehistory: Xi(tj)−X∗

i

δ where X∗
i is an average intensity of k preceding

moments. But the very low number of preceding samples for an individual
makes unreliable any estimation of mean squared deviation.

5.4 Unstable peaks

Since we have two sets of healthy indeviduals (serial controls and matched single
controls), it would be interesting to compare their p-values. The results in
Table 5 show that for 2 out of the 8 peaks we can reject the null-hypothesis,
and only for for the remaining 6 can we not reliably state that the controls
in set 1 and set 2 come from the same distribution. Since these samples were
handled in different time, in different parts of the country, by different people
and very likely diffferent protocols, we shall reject the 8 peaks with small p-
values, and will be dealing only with the remaining 6 peaks(9,12,19,21,38,41):
m/z = [3977.7, 937.35, 1888.7, 1204.9, 4291, 1442.4].
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Figure 7: The 6 ’stable’ peaks (peaks 9,12,19,21,38 and 41)

These 6 peaks are shown in Figure 7, where the red lines represent m/z
values ranges in Table 1.

6 Recognition results

As a result of these restrictions we have considered six time-points T = 0, 1, 2, ...5
and in each case there should be no less than 3 preceding measurements, i.e.
k = 3. The number of the sampling moments for Class 1 (controls) were kept
the same (154), and the sampling moments for Class 2 (OC) for each time slot
is given in Table 6.

The number of objects in class 2 (OC) was very low, and any division into
training and test sets would result in unreliable predictions. To have a fair
estimation of recognition results we had to use the method called leave-one-out.
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T 0 1 2 3 4 5
Class 2 (OC) 11 27 31 33 35 37

Table 6: Number of sampling moments in each time slot

The idea is to leave one object out, execute the training procedure using all
the other objects and then test the object that was left out. The procedure is
repeated leaving out all objects one by one and the number of errors and correct
answers is calculated. This serves as a fair estimation of recognition quality. In
our case, if a sample of a person was left out, then all samples of the same person
were also left out. This was made in order not use any sample of a person in
the training, if a sample of the same person was used for control.

Another problem with this low number of samples, but with a rather large
number of features is known as ”overfitting”: one can easily find a decision rule
correctly recognising all the samples in the training set, but making a lot of
errors in the control set. The solution is to decrease considerably the number
of features.

A series of experiments were conducted in order to find good separation using
just one feature (one of the 6 peak intensities). However, it was impossible to
find a good discriminative peak to make reliable diagnostics.

Recognition with the prehistory parameter. Then we turned to the idea of
using the second parameter - prehistory - to discriminate classes in two dimen-
sional space with coordinates Xi

∗(tj) and Xi(tj), where Xi
∗ is an average of

preceding sampling moments (prehistory), and Xi is the i − th peak intensity.
Then a reasonable discrimination was obtained in this 2-dimensional space.

As we said before, the considered time-points were T = 0, 1, 2, 3, 4, 5 years.
For T = 0 we considered as the OC cases only those sampling moments when
the disease was found by other means at the last moment. In this case we used
for recognition 11 sampling moments in the class OC (because for every woman
only one sampling moment was taken) and 154 sampling moments in the class
healthy (because several samples from one woman were included).

For T = 3 it means that the disease was found no later than 3 years after
sampling. In this case we had for recognition 33 sampling moments in the
class OC (because now one patient could be sampled several times within time
interval T ) and again 154 sampling moments in the class healthy. And so on
for all different values of T . In addition, of course, no less than 3 sample
measurements preceded the time-point of diagnosis.

The following procedure was used: for each feature pair (Xi
∗(tj) and Xi(tj))

we applied the leave-one-out method with the nearest neighbour recognition
rule. Then we compared the results and looked for the best pairs.

One can see in Figure 8, the results of discrimination with CA125, where the
first coordinate (x) represents intensities of CA125 at the last moment when the
actual diagnosis was made, and the second coordinate (y) represents the average
intensities of the 3 preceding sampling moments. There were 11 OC cases and
154 controls. Figure 9 shows a simmilar diagram for peak 41.

We compared also the best results using an additional feature reflecting pre-
history with those which we could achieve without prehistory (under the same
conditions). The best results were achieved with T = 1 and and a weighting
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Figure 8: CA125 - last–moment cases vs. all controls
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Figure 9: Peak 41 - m/z = 3977.7 - last–moment cases vs. all controls
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Peak T W Error With Prehistory without prehistory
1 1 1/5 Type 1 40.7%(11/27) 48.1%(13/27)

Type 2 45.5%(70/154) 58.4%(90/154)
2 1 1/5 Type 1 18.5%(5/27) 44.4%(12/27)

Type 2 31.2%(48/154) 51.9%(80/154)
3 1 1/5 Type 1 55.6%(15/27) 66.7%(18/27)

Type 2 53.2%(82/154) 52.6%(81/154)
4 1 1/5 Type 1 18.5%(5/27) 44.4%(12/27)

Type 2 37.0%(57/154) 55.2%(85/154)
5 1 1/5 Type 1 51.9%(14/27) 66.7%(18/27)

Type 2 46.8% (72/154) 69.5%(107/154)
6 1 1/5 Type 1 33.3%(9/27) 44.4%(12/27)

Type 2 38.3%(59/154) 49.4%(76/154)
CA125 1 1/5 Type 1 18.5%(5/27) 11.1%(3/27)

Type 2 18.8%(29/154) 22.7%(35/154)

Table 7: Classification results for single peaks where T = 1 and W = 1/5

factor equal to 1/5. This weighting factor regulates the error proportion of
type 1 (an OC sample classified as healthy), and type 2 (a healthy sample
classified as OC). This parameter consists of two parts: number of neighbours
and the voting threshold. For example, the parameter value 2/5 means that 5
neighbours neighbours were considered, and the classification was the ’case’ if 2
or more of 5 neighbours were ’cases’. Table 7, shows the results of comparison.
It is obvious that using prehistory we always gain better results than when only
“current” sampling moments are used.

It is clear from Table 7 that using single peaks for descrimination between
OC and controls does not produce better Type 1 errors than CA125. In an
attempt to combat this we introduced classification for multiple peaks. We
use the pattern recognitions algorithm as outlined above. The best results
produced by this method are shown in Table 8. In several cases we have found
combinations of peaks with better Type 1 and Type 2 errors than CA125. Once
again it is clear that using prehistory produces better results.

20



Peaks T W Error With Prehistory without prehistory
12,38,41 1 1/5 Type 1 7.4%(2/27) 29.6%(8/27)

Type 2 29.2%(45/154) 45.5%(70/154)
12,21,38 1 1/5 Type 1 18.5%(5/27) 18.5%(5/27)

Type 2 26.6%(41/154) 38.3%(59/154)
9,12,19,38,41 2 1/5 Type 1 3.2%(1/31) 35.5%(11/31)

Type 2 40.9%(63/154) 55.9%(89/154)
12,38,41 2 2/5 Type 1 19.4%(6/31) 77.4%(24/31)

Type 2 14.9%(23/154) 18.8%(29/154)
9,12,19,38,41 3 1/5 Type 1 3%(1/33) 30.3%(10/33)

Type 2 41.6%(64/154) 57.8%(89/154)
12,38,41 3 2/5 Type 1 18.1%(6/33) 24.2%(8/33)

Type 2 14.9%(23/154) 50%(77/154)
12,41 4 1/5 Type 1 2.9%(1/35) 28.6%(10/35)

Type 2 30.5%(47/154) 53.2%(82/154)
12,38 4 2/5 Type 1 14.3%(5/35) 28.6%(10/35)

Type 2 17.5%(27/154) 53.9%(83/154)
12,38,41 5 1/5 Type 1 0%(0/37) 21.6%(8/37)

Type 2 31.2%(48/154) 53.2%(82/154)
12,38 5 2/5 Type 1 10.8%(4/37) 21.6%(8/37)

Type 2 18.8%(29/154) 60.3%(93/154)
CA125 1 1/5 Type 1 18.5%(5/27) 11.1%(3/27)

Type 2 18.8%(29/154) 22.7%(35/154)

Table 8: Comparison results with and without prehistory parameter for T =
1, 2, . . . , 5 and weighting factor W
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peak No. Mean m/z Tempst peak Peptide
9 3977.7 3970.97(6.7) (R) QAGAAGSRMNFRPGVLSSRQLGLPGPPDVPDHAAYHPF.

12 937.35 942.43 (5.1) HWESASLL.

19 1888.7 1895.99(7.3) RNGFKSHALQLNNRQI (R)

21 1204.9 1206.57(1.7) EGDFLAEGGGVR

38 4291 (No HMR)
41 1442.4 1449.76(7.4) THRIHWESASLL.

Table 9: Serum peptide signatures for OC

7 Discussion

From the above results we can see that the peaks 9,12,19,21,38 and 41 are the
best candidates for discriminating the distributions between the classes. These
peaks could be candidates for potential biomarkers. Introduction of the pre-
history parameter significantly improved the recognition abilities of the peaks.
While CA125 gives good discrimination at the last moment, other presented
peaks give good recognition results several years before OC is diagnosed. In
other words, they seem to be very promising for early diagnosis of OC.

The experiments have shown that using of combinations of several peaks
would bring the error rate down, but to confirm this we would need to experi-
ment with a larger set of samples.

Our next problem is to identify the peaks with certain proteins, peptides
or proteases in order to find out the corresponding protein biomarkers. At this
stage we compared the 48 most popular peaks identified in Table 1 with the
peaks identified by J. Villanueva et al 2006 [4]. If we look at m/z values of five
of our peaks we can see that they are close to the peptides that were found in
[4]. They are presented in Table 9.

However, the results we are reporting here depend on the quality of the data
we used, and our experiments also showed that the different data sets (Set 1 -
control and Set 2 - also control) are not comparable, and we cannot rely on the
Set 2 serial control data.

Further experiments are being conducted and will be reported shortly.
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