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Abstract

This study aims to prove empirically that the information contained
in serum proteome mass spectra can improve the discriminating ability
of CA125 in early stages of ovarian cancer (OC) development. Our serial
data collected in the UKCTOCS project over the period of 7 years allow
us to reject the null hypothesis at significance level 5% for detection up
to 15 months in advance of the diagnosis which was confirmed by histol-
ogy/cytology. Moreover, in addition to what has been previously reported
we identified certain mass spectrometry (MS) peaks that, in combination
with CA125 level, can provide reliable long term prediction of OC. The
peaks with m/z-values 7772 Da and 9297 Da were the most informative
in extending the period of significant discrimination, and in combination
with CA125 they proved to be able to predict the disease up to 6 and 4
months earlier than CA125 alone, respectively.

∗The date of version 1 - May 28, 2008
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1 Introduction

Clinical symptoms in OC do not appear until the late stage of the disease, and
this often leads to poor outcome in the treatment of the disease. On the other
hand, discovery of the disease in early stages usually results in excellent progno-
sis. Screening for high-risk population and usage of antigen CA125 significantly
improved the diagnosis of OC. However, the CA125 test gives a large number
of false positives and the CA125 elevated level usually becomes known at late
stages of OC development and very often too late to make use of it. Recently,
it has been shown that the use of modern mass spectrometry techniques allow
us to identify some potential biomarkers in serum proteome that can improve
the diagnosis of OC [4]. The assumption is that the protein/peptide patterns
are linked to clinical conditions and therefore can help to reliably diagnose pa-
tients. In our previous study—the “pilot” study[1]—we reported that mass
spectra from the low molecular weight serum proteome carry information useful
for early detection of ovarian cancer. It was shown that combining a single MS
peak with CA125 allows statistically significant discrimination at the 5% level
between cases and controls up to 12 months in advance of the original diagnosis
of ovarian cancer. Such combinations work much better than a single peak or
CA125 alone.

In this paper we continue our analysis of the UKCTOCS data [3]. The
unique feature of this study is that the women were screened for up to 7 years.
The serum samples underwent prefractionation using a reversed-phase batch
extraction protocol prior to MALDI-TOF MS data acquisition. A nested case
control study was undertaken on serial serum samples collected from women
who developed ovarian cancer and matched controls. The serum sample data
was processed using the MALDI-TOF mass-spectrometry technique [7].

The paper first describes the data, our pre-processing techniques followed
by the results of our data analysis. Our analysis shows that the period of
statistically significant discrimination in advance of diagnosis confirmed by his-
tology/cytology can be extended from 9 to 15 months if CA125 is combined with
certain peaks extracted using MALDI-TOF mass spectrometry data acquisition.

2 Description of the data and pre-processing

The serum samples studied in this paper are from UKCTOCS [3] and collected
from patients who developed cancer (referred to as cases) and from healthy
individuals.

Each case sample is accompanied by two samples taken from healthy indi-
viduals, we will call these matched controls. In addition, there are 43 unmatched
controls that were also included. There are 924 samples in total: 295 cases, 586
matched controls and 43 unmatched controls. For 4 case samples, the mass
spectrum for one of matched controls was excluded for quality control reason.
The set of 295 cancer samples was derived from 69 serial and 90 single patients
eventually diagnosed with ovarian cancer. There are up to 5 serial samples for
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each of the cases.
All samples are provided with their CA125 measurement. For each case the

time to diagnosis t > 0 is known. This is the time interval, measured in months,
between the date when the measurement was taken and the date when OC was
diagnosed by histology/cytology. Other information for the samples such as the
time to spinning is also available.

Each sample, case or control, was analysed using MALDI-TOF based mass
spectrometry and no more than 12 replicate mass spectra were generated. There
were 11048 mass spectra in total for 924 samples. For each mass spectrum, the
data was provided in a two-column format: the first column is a list of m/z-
values, the second column is a list of corresponding intensities. Calibration had
been performed prior to the data being distributed; therefore, all our further
pre-processing steps (down-sampling, smoothing, baseline subtraction, normal-
isation, peak identification and peak alignment) described in [1] were applied
only to the intensities, m/z-values remained unchanged.

After the pre-processing, a set of peak groups are identified. The peak
groups are ordered by their frequency (i.e., percentage of samples having a non-
aligned peak belonging to this peak group). In the following, we consider 67
most frequent peaks, with frequency at least 33%. The full list of 67 peaks is
provided in Appendix A. The most frequent 5 peaks are represented in Table 1.

Number M/z-values, Da Frequency
1 4213.39 11043 out of 11048 spectra
2 7772.06 11040 out of 11048 spectra
3 9297.84 11040 out of 11048 spectra
4 5341.04 11036 out of 11048 spectra
5 5909.15 11029 out of 11048 spectra

Table 1: The list of 5 most frequent peaks.

Examples of peak groups 2 and 3 plotted together are shown in Figure 1.
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Figure 1: Peak groups 7772 Da (peak 2) and 9297 Da (peak 3)

As peak plots show, there is no clear visual separation between cases and
controls that was achieved in [4]. However, the preprocessing described in this
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work was applied to the data described in [4] and provided visual separation as
well.

Finally, for each sample, intensities of 67 peaks are averaged across the
replicates of this sample. A sample, after pre-processing, includes information
on averaged intensities I(1), . . . , I(67) of 67 most frequent peaks. We obtained
peak intensities of 924 samples, but we are analysing only 873 samples that are
divided into 291 triplets, each consisting of a case sample and the two matched
control samples. We will say that the case sample is labelled (as a case).

For classification, unmatched controls and cases with only one matched con-
trol were excluded. We also had to exclude some more triplets due to missing
information and triplets containing at least one sample with time to spinning
more than 24 hours.

As a result, there remain 179 triplets that contain 358 controls and 179 cases
taken from 104 case patients:

• 59 case patients with one measurement,

• 26 case patients with 2 measurements,

• 11 case patients with 3 measurements,

• 5 case patients with 4 measurements,

• 3 case patients with 5 measurements.

A set of triplets from the same patient is called a triplet group. Each triplet
τ is assigned a non-negative value T (τ), the time to diagnosis for the case
measurement in the group. Each sample is provided with the CA125 level C.

3 Classification of triplets—Problem statement

For each t = 0, 1, 2, . . . let St,u be the set of triplets of measurements taken t
months before the diagnosis, or as little earlier as possible and not exceeding
t + u months. Formally, St,u is defined to be the following set of triplets: start
with St,u := ∅ and for each triplet group put in St,u the triplet τ in the group
with the smallest T (τ) satisfying t ≤ T (τ) ≤ t+u if it exists. Two triplets from
the same group are not allowed to be used in the same set St,u because they
can be dependent on each other. In this paper we use a 6-month window size:
u = 6. For example, S0,6 contains 68 triplets, S12,6 contains 28 triplets.

We will use a rather limited class of rules for triplet classification, i.e. iden-
tification of the labelled sample within a triplet.

Each classification rule is specified by three numbers (p, w, v), which are a
peak number p ∈ P (P is a set of peak numbers and can be equal to {1, . . . , 67}
or one certain peak number) and weights w, v, w ∈ W = {0, 0.5, 1, 2}, v ∈ V =
{−1, 1}. For each triplet, the classification rule (p, w, v) assigns a ‘case’ label to
the sample with the largest value of w log C + v log I(p), where C and I(p) are
the CA125 level and the intensity of peak p, respectively. The logarithms are
taken to remove the arbitrary units of measurements.
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If w 6= 0 (CA125 is taken into account), the rule has an equivalent form:
log C + v

w log I(p). Thus, we are usually looking for a term additional to CA125,
v is responsible for the possible sign of its influence (whether it is expected to
be larger at cases or at controls), and 1/w determines to what degree it is taken
into account.

Let err(τ ; p, w, v) be 0 if (p, w, v) correctly identifies the labelled sample in
a triplet τ and 1 otherwise (in the case of a wrong classification), and

Err(S; p, w, v) :=
∑

τ∈S

err(τ ; p, w, v)

stand for the number of errors made by (p, w, v) on a set S of triples. As our
test statistic we take the pair (E0, p0) of the least number of errors and the
number of the most frequent peak where it is achieved. Formally,

E0 := min
p∈P,w∈W,v∈V

Err(St,u; p, w, v),

p0 := min{p : ∃w∃vErr(St,u; p, w, v) = E0}.
Pairs (E0, p0) are ordered lexicographically, and p0 is added to break ties: if two
rules lead to the same error rate, the rule involving a more frequent peak has
priority when we calculate p-values.

3.1 Summary of the main findings

We consider 6-month time slots starting with months t = 0, 1, 2, . . . , 16. For
each set of samples St,6 the best pair (E0, p0) was selected for certain sets of
parameters P , W and V as described in section above. Tests were designed
in order to check the significance of our findings. The p-values given by these
tests for the set of all 67 peaks (P = {1, . . . , 67}) and separately for peak 2
(P = {2}) and peak 3 (P = {3}) are represented in Table 2. The tests check
the null hypothesis that the assignment of labels within triplets is independent
of the information contained in CA125 levels and intensities of certain peaks:
all peaks, peak 2 only or peak 3 only. The methodology of p-value calculation
is described in detail in Section 3.2.
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t |S(t, 6)| p-values Adjusted p-values Adjusted p-values
for all peaks for peak 2 for peak 3

0 68 0.0001 0.001 0.001
1 56 0.0001 0.001 0.001
2 47 0.0001 0.001 0.001
3 36 0.0001 0.001 0.001
4 27 0.0001 0.001 0.001
5 23 0.0006 0.004 0.007
6 20 0.0028 0.01 0.046
7 17 0.0141 0.017 0.098
8 17 0.0019 0.02 0.02
9 20 0.0076 0.01 0.009
10 28 0.0003 0.001 0.001
11 28 0.0042 0.008 0.004
12 28 0.0585 0.033 0.049
13 30 0.0168 0.007 0.015
14 25 0.0304 0.015 0.301
15 20 0.0464 0.022 0.577
16 10 0.4101 5.165 5.979

Table 2: Summary of p-values for triplet classification.

The first column of Table 2 shows the time to diagnosis t, which is the most
recent end-point of the time window. The second column shows the size of
St,6 — the number of samples in the considered 6-month time slot. The other
columns represent p-values for the set of all peaks (these p-values do not require
adjustment) and adjusted p-values for peak 2 and peak 3 separately.

The table demonstrates that CA125 and 67 peak intensities allow us to reject
the null hypothesis at significance level of 5% for up to 15 months with a single
exception of month 12, which still has a p-value less than 6% , while the infor-
mation contained in CA125 and peak 2 or CA125 and peak 3 provide significant
p-values for detection up to 15 and 13 months before diagnosis, respectively.

3.2 Statistical analysis of all peaks

In order to check the robustness of our triplet classification using MS peaks, we
designed three types of statistical tests which reject the following null hypotheses
about classification of St,u:

1. The null hypothesis that assignment of labels within triplets is indepen-
dent of CA125 and peak intensities.

2. The null hypothesis that assignment of labels within triplets is indepen-
dent of CA125 levels.
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3. The null hypothesis that when assigning labels within triplets, pairs (label,
CA125) are independent of peak intensities, that is, peak intensities do
not contain any information useful to improve predictive ability of CA125.

The detailed explanation of corresponding p-value calculation and their
meaning is represented below.

• The main p-value (or just ‘p-value’) is based on the null hypothesis that
the assignment of the case label within each triplet in St,u is independent
of the information contained in CA125 and all MS peaks.

We calculated these and all other p-values experimentally, using the
Monte-Carlo method. Suppose E0 := minp∈P,w∈W,v∈V Err(St,u; p, w, v),
that is the minimum number of errors occurring in prediction by CA125
and one of the peak intensities, and p0 := min{p : ∃w∃vErr(St,u; p, w, v) =
E0}, the peak with the highest commonality that can provide this mini-
mum error rate.

The statistic equal to the pair (E′, p′) calculated the same way as (E0, p0)
is collected for a large number N (we used N = 104) of times on the same
data set with randomly reassigned case labels.

We then calculate the number Q of times the statistic is as good as or
better than the statistic (E0, p0) computed from the true labels, where ‘as
good as or better than’ is understood in the sense of the lexicographical
order: (E′, p′) ≤ (E0, p0) means that either E′ < E0 or E′ = E0 and
p′ ≤ p0. The p-value is then estimated as (Q + 1)/(N + 1).

Algorithm 1 Main p-value calculation
Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := minp,w,v Err(St,u; p, w, v)
p0 := min{p : ∃w∃vErr(St,u; p, w, v) = E0}
Q := 0
for j := 1, . . . , N do

Assign the case label to a randomly chosen sample in each triplet in St,u

Recalculate E′ := minp∈P,w∈W,v∈V Err(St,u; p, w, v)
Recalculate p′ := min{p : ∃w∃vErr(St,u; p, w, v) = E′}
if (E′, p′) ≤ (E0, p0) then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.

• The previous p-value demonstrates significance of predictions provided by
CA125 levels in combination with peak intensities. To compare discrimi-
nating ability of the combination of CA125 and peaks with the well-known
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benchmark, CA125 on its own, we need to calculate CA125 p-values.
This test checks the null hypothesis that labels at St,u are independent of
CA125 levels.

These p-values were also calculated using the Monte-Carlo method. How-
ever, similar p-values can be calculated theoretically as described in Ap-
pendix B.

Suppose E0 = Err(St,u; 1, 1, 0), that is the number of errors occurring
in prediction by CA125 only. The statistic equal to number of errors is
collected for N = 104 times on the same data set with randomly reassigned
case labels, and then the algorithm counts the number Q of times the
statistic is as good as or better than the statistic E0 computed from the
true labels. The p-value is then estimated as (Q + 1)/(N + 1).

Algorithm 2 CA125 p-value calculation
Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := Err(St,u; 1, 1, 0)
Q := 0
for j := 1, . . . , N do

Assign the case label to a randomly chosen sample in each triplet in St,u

Recalculate E′ := Err(St,u; 1, 1, 0)
if E′ ≤ E0 then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.

• In our current research we also introduced conditional p-values — in
addition to main p-values and CA125 p-values that were considered in our
previous work [1].

Suppose that the main p-value is significant. That means that CA125
with MS peaks are able to discriminate between controls and cases. In
this case we wish to separate contributions of CA125 and MS peaks. For
this reason, we consider conditional p-value.

Our null hypothesis is the independence between a pair (label, C) and
(I(1), . . . , I(67)) as opposed to the main p-value hypothesis that can be
interpreted as the independence between a label and (C, I(1), . . . , I(67)).

The only difference from the computation of the main p-values is the
following. At each loop step instead of assigning the case label randomly,
we generate a random permutation of 3 elements for each triplet and apply
the permutation to both labels (case, control, control) and CA125 levels
of triplet measurements.
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Algorithm 3 Conditional p-value calculation
Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := minp,w,v Err(St,u; p, w, v)
p0 := min{p : ∃w∃vErr(St,u; p, w, v) = E0}
Q := 0
for j := 1, . . . , N do

for each triplet in St,u do
Consider a random permutation s : {1, 2, 3} → {1, 2, 3}
Apply s to the labels (case, control, control) of this triple
Apply the same s to the CA125 values (C1, C2, C3) of this triple

end for
Recalculate E′ := minp∈P,w∈W,v∈V Err(St,u; p, w, v)
Recalculate p′ := min{p : ∃w∃vErr(St,u; p, w, v) = E′}
if (E′, p′) ≤ (E0, p0) then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.

Neither of p-values described above require adjustment. Main p-values as
well as conditional p-values do not require any adjustment as the numbers of
errors are calibrated by the Monte-Carlo procedure taking into account all the
rules at the same stage. CA125 p-value does not require any adjustment, since
in this case there is no set of rules to select from.

Experimental results

Given that we have only a limited number of samples, we considered 6-month
time slots starting in different months (St,6, where t = 0, 1, . . . , 16). For each
of these slots we checked hypotheses of random label distribution, calculating p-
values described above, and looked for certain peaks that carry the most useful
information for discrimination between cancer and healthy samples. The initial
results of the analysis are represented in Table 3.
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Table 3: Initial statistical analysis. The columns are: time t to diagnosis in
months; the number |St,6| of cases with measurement taken between t and t+6
months before diagnosis; the number EC of errors when classifying the triplets
in St,6 with CA125 alone; CA125 p-value; the minimal number EC,p of errors
when classifying with CA125 (taken with weight w ∈ {0, 1/2, 1, 2}) and intensity
I(p) of a peak (taken with weight v ∈ {−1, +1}); number p of this peak; v/w;
p-value for overall significance of this result; conditional p-value for significance
of non-CA125 component.

t |St,6| CA125 only CA125 and all peaks
EC CA125 EC,p p v/w Main Conditional

p-value p-value p-value
0 68 2 0.0001 1 01 +1 0.0001 0.3164
1 56 4 0.0001 2 07 +1 0.0001 0.2446
2 47 6 0.0001 3 15 −2 0.0001 0.1795
3 36 8 0.0001 4 15 −2 0.0001 0.0746
4 27 7 0.0001 4 15 −2 0.0001 0.6734
5 23 7 0.0008 4 15 −1 0.0006 0.4885
6 20 6 0.0010 4 15 −1 0.0028 0.6973
7 17 6 0.0071 4 01 −1 0.0141 0.6034
8 17 5 0.0021 3 01 −1 0.0019 0.1523
9 20 7 0.0042 5 02 −1 0.0076 0.4497
10 28 14 0.0503 6 03 −1 0.0003 0.0013
11 28 15 0.1028 8 03 −1 0.0042 0.0078
12 28 17 0.3164 10 02 −2 0.0585 0.0658
13 30 16 0.0895 10 02 −2 0.0168 0.0428
14 25 16 0.4661 8 02 −2 0.0304 0.0206
15 20 13 0.5211 6 02 −2 0.0464 0.0609
16 10 6 0.4406 2 67 +1/0 0.4101 0.5066

The first and second columns of Table 3 are the same as in Table 2. Columns
3 and 4 represent analysis results for prediction with CA125 only. Columns 5–9
show results for prediction with CA125 in combination with the set of all peaks.

The third column provides the number EC of errors made on the triplets
St,u by the classification rule log C, i.e., classification by CA125 only.

The fourth column (CA125 p-values) is the measure of significance for this
result, the probability to obtain an equal or even more extreme result, by chance
doing classification at random. Recall that the expected probability of error in
triple classification is 2/3, so misclassifying 16 of 30 triplets (as for t = 13) is
not significant (p-value = 9%) but still better than random. The results for
classification using CA125 only are significant for up to 9 months.

The fifth column EC,p gives the best quality (the smallest number of errors)
which may be achieved by a classification rule from our list. The following rules
are considered: classification by w log C + v log I(p) where p ∈ {1, . . . , 67}, w is
any of 0, 1/2, 1, 2, v is either +1 or −1. Equivalent form for the rule is log C +
(v/w) log I(p) where v/w is any of −1/0,−2,−1,−1/2;+1/2,+1, +2, +1/0. No-
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tation +1/0 (or −1/0) means that the peak I(p) is used alone without CA125.
The sixth and seventh columns of the table are p and v/w for the best classifi-
cation rule.

Experiments show that any result can be more or less improved in such a
way (EC,p is less than EC), but we need to check that this is not obtained by
chance, due to large choice of classification rules. Moreover, we need to check
both the probability to obtain low error rate EC,p by chance and the probability
to decrease it from EC to EC,p by chance. Two types of p-values answer these
two questions. Main p-value measures the chance to obtain the error rate not
worse than EC,p at random, and conditional p-value — the chance to get the
error equal to or less than EC,p if peak intensities are reshuffled, but the CA125
value is real. Actually, conditional p-values are much more important for us,
as we know in advance that CA125 is a useful biomarker and, therefore, we
are mainly interested in whether addition of anything else to it may lead to
statistically significant improvement.

Main and conditional p-values are represented in the last 2 columns of Ta-
ble 3. Main p-values are also shown in the summary table — Table 2. From
‘Main p-value’ column, we can see that the null hypothesis can be rejected at
level 5% for up to 15 months (with the only exception being 12 months where it
is about 6%). This contrasts with using CA125 alone (‘CA125 p-value’ column),
which produces significant results for up to 9 months. Conditional p-values show
that contribution of the added MS peak becomes essential only from 10 to 15
months, so we should pay more attention to the best quality rules for these
months, that is, peaks 2 and 3 with corresponding coefficients v and w.

3.3 Statistical analysis of peaks 2 and 3

In this section we check significance of peaks 2 and 3 identified as the most
informative. Thus, we check whether a specific peak (2 or 3) contains some
information useful to improve triplet classification in comparison with the use
of CA125. These peaks are plotted in Figure 1.

Main p-values and conditional p-values presented before are adjusted to this
problem. Main p-values will be given by the test checking the null hypothesis
that assignment of labels within triplets is independent of CA125 and peak 2 (3).
Conditional p-values will be calculated by the test checking the null hypothesis
that when assigning labels within triplets, pairs (label, CA125) are independent
of peak 2 (3).

The only difference in calculation of these p-values from Algorithms 1 and 3
is the set of rules we are selecting from. In this case, we consider the following
sets of parameters: P is peak 2 (or peak 3), W and V are the same ({0, 0.5, 1, 2}
and {−1, 1}, respectively).

Experimental results

Table 4 represents the results for prediction by CA125 and peak 2 (columns 5–8)
or CA125 and peak 3 (columns 11–14). Error rate and p-value for prediction
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using CA125 only are included in the beginning of the table for comparison
(columns 3 and 4). ‘Rule’ columns show the best rules selected: CA in this
columns means log C, p2 means log I(2), p3 means log I(3). Columns 6(12),
7(13), 8(14) represent error rates for the best rule, main p-values and conditional
p-values, respectively.

Conditional p-value shows that improvement achieved by adding information
from peak 2 or 3 is not significant up to 9 months, as CA125 itself is good for
separation, and it can’t be improved significantly by adding a peak-dependent
term.

The table demonstrates that in time slots starting with 10–16 months, main
p-values and conditional p-values are similar, hence significant or insignificant
at the same time. This confirms that possible improvement in predictive ability
of CA125 with a peak is achieved due to information contained in this peak.

Main and conditional p-values shown in the table require adjustment.
When adjusting by 10 peaks the threshold for significance is 0.05/10 = 0.005

and thus the results are statistically significant for up to 15 months (with peak
2) and 13 months (with peak 3), respectively. Main p-values for peak 2 and
peak 3 represented in Table 2 are adjusted.
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Table 4: Experimental results for triplet classification with a fixed peak (peak 2
or 3).

t |St,6| CA125 only CA125 and peak 2
EC p-value Rule Err. p-value Cond. p-value

0 68 2 0.0001 2CA−p02 2 0.0001 1
1 56 4 0.0001 2CA−p02 4 0.0001 1
2 47 6 0.0001 2CA−p02 5 0.0001 0.5295
3 36 8 0.0001 2CA−p02 7 0.0001 0.834
4 27 7 0.0001 2CA−p02 6 0.0001 0.9297
5 23 7 0.0008 CA−p02 6 0.0004 0.4103
6 20 6 0.001 CA−p02 5 0.0010 0.1618
7 17 6 0.0071 CA−p02 4 0.0017 0.1612
8 17 5 0.0021 CA−p02 4 0.0020 0.3303
9 20 7 0.0042 CA−p02 5 0.001 0.083
10 28 14 0.0503 CA/2−p02 7 0.0001 0.0007
11 28 15 0.1028 CA/2−p02 9 0.0008 0.002
12 28 17 0.0895 CA/2−p02 10 0.0033 0.0045
13 30 16 0.3164 CA/2−p02 10 0.0007 0.0014
14 25 16 0.4661 CA/2−p02 8 0.0015 0.0011
15 20 13 0.5211 CA/2−p02 6 0.0022 0.0011
16 10 6 0.4406 CA/2+p02 5 0.5165 0.4836

t |St,6| CA125 and peak 3
Rule Err. p-value Cond. p-value

0 68 2CA−p03 2 0.0001 0.9114
1 56 CA+p03 4 0.0001 0.8815
2 47 2CA−p03 5 0.0001 0.5279
3 36 2CA−p03 7 0.0001 0.6777
4 27 CA+p03 6 0.0001 0.8735
5 23 2CA−p03 6 0.0007 0.6316
6 20 CA−p03 6 0.0046 0.6872
7 17 CA−p03 5 0.0098 0.5735
8 17 CA−p03 4 0.0020 0.2781
9 20 CA−p03 5 0.0009 0.0693
10 28 CA−p03 6 0.0001 0.0002
11 28 CA−p03 8 0.0004 0.0005
12 28 CA−p03 10 0.0049 0.0049
13 30 CA−p03 10 0.0015 0.0016
14 25 CA−p03 10 0.0301 0.0181
15 20 CA−p03 8 0.0577 0.0683
16 10 CA/2+p03 5 0.5979 0.7643

Figures 2 and 3 illustrate the performance of classification rules log C −
2 log I(2) and log C− log I(3), respectively, in comparison with the performance

13



−60 −50 −40 −30 −20 −10 0
0

20

40

60

80

100

120
pa

tie
nt

s

months before diagnosis

Figure 2: Comparison of log C and log C − 2 log I(2) rules on time/patient
scale. A circle means that a triple was correctly classified by both rules. A
cross means misclassification in both cases. A triangle shows either improve-
ment (up-directed) or deterioration (down-directed) after addition of −2 log I(2)
component. The figure demonstrates that most samples where addition of a
peak to CA125 works (marked as up-directed triangles) are in the interval of
13–16 months before the diagnosis.

of log C. The horizontal axis shows time to diagnosis, the vertical one — triplet
groups in this time interval. The figures demonstrate that most triplets with
the measurement date close to diagnosis date are predicted correctly even by
the log C rule, most samples where addition of a peak to CA125 allows cor-
rect classification (marked as up-directed triangles) are in the interval of 13–16
months before the diagnosis.

Figures 4 and 5 show the median dynamics of log C versus log C − log I(3)
and log C − 2 log I(2) for case measurements. For each time moment, the latest
available case measurement for each triplet group is taken into account. These
measurements are averaged by median through all triplet groups. The figures
illustrate that rules combining CA125 with peak intensity start to grow earlier
than log C. However, the CA125 growth at the moments close to diagnosis is
quicker due to the exponential growth of CA125.
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Figure 3: Comparison of log C and log C − log I(3) rules on time/patient scale.
A circle means that a triple was correctly classified by both rules. A cross
means misclassification in both cases. A triangle shows either improvement
(up-directed) or deterioration (down-directed) after addition of − log I(3) com-
ponent. The figure demonstrates that most samples where addition of a peak
to CA125 works (marked as up-directed triangles) are in the interval of 13–16
months before the diagnosis
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Figure 4: Median dynamics of rules log C and log C − log I(3) (for cases only)
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Figure 5: Median dynamics of rules log C and log C − 2 log I(2) (for cases only)
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The median dynamics of log C versus log C − log I(3) and log C − 2 log I(2)
for case measurements complemented with statistical characteristics of controls
are shown in Figures 6 and 7 in Appendix C.

Dynamics of peak 2 and peak 3 are represented in Figures 8 and 9 of Ap-
pendix C.

4 Conclusion

The purpose of this study has been to demonstrate that mass spectra carry
significant information to make an early diagnosis of OC and to identify peaks
that allow making this early diagnosis. Intensities of certain peaks combined
with the level of CA125 provide statistically reliable information for cancer
prediction. The predictive power of CA125 alone is more limited.

We can pinpoint two peaks that can make early detection of OC possible
and deserve much attention:

• peak 2 (m/z-value = 7772 Da);

• peak 3 (m/z-value = 9297 Da).

Peak 3 is similar to UKOPS peak CTAPIII with m/z-value 9288 Da, which
has lower intensities for diseased samples as well.

In our previous work (the “pilot” study[1]) we identified peaks 10 and 18 as
ones that occurred the most frequently in rules significantly discriminating OC
cancer patients and healthy patients. Among 67 most frequent peaks identified
in UKCTOCS OC data we found peaks with m/z-ranges closest to “pilot” study
peaks 10 and 18. They are the following:

• UKCTOCS OC peak 40 (m/z-range 4277.9-4288.7 Da, mean value
4285.7 Da) is the closest to “pilot” study peak 10 (m/z-range 4288.0-
4300.8 Da, mean value 4292.5 Da);

• UKCTOCS OC peak 49 (m/z-range 3136.1-3165.1 Da, mean value
3161.7 Da) is the closest to “pilot” study peak 18 (m/z-range 3169.1-
3176.4 Da, mean value 3172.1 Da).

One could speculate that peaks 40 and 49 represent the same peaks as 10 and
18 in the “pilot” study since m/z-value ranges are close enough, and different
data and different machines could cause a shift in m/z-values. However, peaks
40 and 49 do not occur in selected classification rules.

The detailed results of our current research are shown in Tables 3 and 4.
The main findings are accumulated in Table 2. The difference between Tables 3
and 4 is in the hypothesis being checked:

• Hypothesis 1 checked in Table 3 is that all the peaks contain some infor-
mation useful to improve triplet classification in comparison with the use
of CA125.
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• Hypothesis 2 checked in Table 4 is that a specific peak (peak 2 or peak 3)
contains such useful information.

In our previous work [1] we found out that only Hypothesis 1 could be
confirmed statistically; here we are also checking Hypothesis 2.

In general, we see that CA125 itself is enough for satisfactory prediction for
up to 9 months before the diagnosis. It follows from conditional p-values that,
in this range, other peaks cannot add significant improvement to this, and the
quality of non-conditional p-values is caused by CA125 itself.

For more than 9 months before the diagnosis, CA125 produces less informa-
tion, and this can be significantly completed by other peaks. The time where
combination with MS peaks works varies for different hypotheses. This time is
15 months for Hypothesis 1 and 15 or 13 months for Hypothesis 2 for peaks 2
or 3, respectively. These results are summarised in Table 5.

Period of significant discrimination
CA125 9 months

CA125 + all peaks 15 months
CA125 + peak 2 15 months
CA125 + peak 3 13 months

Table 5: The predictive ability of CA125 on its own, with all peaks and certain
peaks.

Thus, we can come to the following conclusions:

1. Mass spectra contain information extending the period of statistically sig-
nificant discrimination between controls and cases provided by CA125 to
up to 15 months in advance of the diagnosis by histology/cytology.

2. Peak 2 (m/z-value = 7772 Da) and peak 3 (m/z-value = 9297 Da) sepa-
rately contain such information for up to 15 and 13 months in advance of
the diagnosis by histology/cytology.

An interesting point in this discussion is that the moment T = 0 is the
moment of the diagnosis confirmed by histology/cytology, but not the clinical
diagnosis. The women had no clinical symptoms and were picked up by the
screening either by the CA125/Risk of Ovarian Cancer Algorithm (ROC) strat-
egy [3] or the ultrasound strategy. The time of clinical diagnosis is not known
for any of these women since the doctors involved in the study did not wait for
the women to become symptomatic and have a clinical diagnosis. They oper-
ated on them and diagnosed the cancer earlier. Previous studies suggested that
screening may be able to pick up ovarian cancer 18 months before they would
have presented clinically as ovarian disease. This means that CA125 and MS
peaks are able to discriminate between healthy samples and samples with OC
up to 33 months in advance of the clinical diagnosis.
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To sum up, different techniques allow us to provide statistically significant
predictions of OC up to 33 months in advance of the date of clinical diagnosis.
This period can be broken down by the cause of discrimination:

• 18 months - due to screening methods;

• 10 months - due to information contained CA125 levels;

• 5 months - due to information contained in proteomics peaks.
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Appendix A: Full peak list

Number M/z-values, Da Frequency Number M/z-values, Da Frequency
(out of 11048) (out of 11048)

1 4213.4 11043 35 1704.5 7292
2 7772.1 11040 36 992.2 7109
3 9297.8 11040 37 2084.5 7048
4 5341.0 11036 38 9724.2 6658
5 5909.2 11029 39 5583.3 6570
6 6636.0 10994 40 4285.7 6517
7 4647.8 10904 41 2993.5 6460
8 4057.2 10878 42 2606.0 6422
9 3243.9 10739 43 2274.3 6358
10 3959.0 10705 44 740.9 6349
11 4967.9 10682 45 2512.8 6345
12 3772.6 10609 46 4759.2 6193
13 2757.3 10596 47 3527.0 6005
14 8610.9 10537 48 1742.6 5873
15 8937.3 10437 49 3161.7 5591
16 4478.8 10393 50 3886.1 5586
17 2662.9 10367 51 6385.4 5361
18 1547.6 10222 52 1262.6 5188
19 5007.8 10174 53 853.1 5001
20 2381.1 10088 54 1790.0 4910
21 3510.1 9870 55 6810.0 4909
22 6437.3 9819 56 7476.7 4859
23 2356.4 9749 57 905.9 4733
24 2025.7 9274 58 1041.2 4627
25 8135.7 9195 59 2191.2 4583
26 2116.6 9140 60 1618.2 4304
27 1946.9 9042 61 870.1 4298
28 1467.7 9024 62 2871.2 4294
29 2935.4 8984 63 3266.5 4191
30 1450.7 8545 64 6231.3 3841
31 1016.7 8432 65 1278.4 3724
32 2212.2 8034 66 3616.4 3683
33 1898.9 7797 67 1115.1 3650
34 3194.8 7599

Table 6: The list of 67 most frequent peaks.
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Appendix B: CA125 p-value alternative calcula-
tion

Suppose E0 = Err(St,u; p, w, v). In this case, random prediction leads to 1/3
probability to guess the correct result in each of |St,u| independent cases. Prob-
ability to make at most E0 errors by chance is

CA125 p-value =
E0∑

i=0

(2/3)i(1/3)|St,u|−iCi
|St,u|,

where Ck
n = n!

k!(n−k)! is the number of combinations of k elements without repeti-
tions out of n elements. This formula provides theoretical calculation of CA125
p-values.

Appendix C: Dynamics plots
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Figure 6: Median logarithm dynamics of rules log C and log C − 2 log I(2) (for
both controls and cases)
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Figure 7: Median logarithm dynamics of rules log C and log C − log I(3) (for
both controls and cases)
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Figure 8: Median logarithm dynamics of Peak 2
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Figure 9: Median logarithm dynamics of Peak 3
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Appendix D: Duplicate classification for UCL
data

The data provided by UCL consisted of duplicates: pairs of matched cases and
controls. The pre-processing applied to this data was the same as described in
Section 2. The statistical analysis of all peaks analogous to the one in Section 3.2
was performed. The results are represented in Table 7 (the table is similar to
Table 3 for Reading data).
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t |St,6| EC p-value 1 EC,p p v/w p-value 2 p-value 3
0 56 2 0.0001 0 04 −2 0.0001 0.2788
1 46 2 0.0001 0 50 −1 0.0001 0.3521
2 38 2 0.0001 1 09 −1 0.0001 0.6973
3 26 3 0.0001 2 34 +1 0.0006 0.9821
4 19 2 0.0004 1 01 +2 0.0007 0.1118
5 17 3 0.0066 1 38 +2 0.0175 0.5354
6 15 3 0.0198 1 49 +1 0.0718 0.7111
7 13 3 0.0441 1 06 −1/2 0.0657 0.1623
8 14 3 0.0262 0 36 −2 0.0082 0.0253
9 17 5 0.0689 3 13 +2 0.3532 0.8845
10 23 5 0.0053 3 18 +2 0.0255 0.5392
11 24 7 0.0307 5 18 +2 0.2738 0.6075
12 24 9 0.1526 6 18 +2 0.6297 0.6897
13 26 9 0.0830 6 18 +2 0.3558 0.4663
14 23 9 0.2045 6 18 +2 0.7494 0.7926
15 18 6 0.1150 4 18 +2 0.6764 0.8294
16 11 6 0.7218 1 42 +1/0 0.4646 0.3812

Table 7: Duplicate classification results for UCL data.

The table demonstrates that CA125 on its own predicts well up to 8 months
and for months 10 and 11. But according to p-values 2 and 3, the addition of
MS information does not allow us to obtain statistically significant predictions
on any other months. For example, the only significant p-value 3 was achieved
for month 8 with peak 36 (m/z = 3195.1 Da). Worse results can be explained
by the fact that it is more probable to label the case by chance in a duplicate
than in a triplet.
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