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Abstract

In the paper [2] we have found necessary and sufficient conditions of uniform convergence of means to expectations for a set of limited functions Q(x,α)

 (0≤ Q(x,α) ≤ A,  x- elementary event, α - parameter):

P{sup (α є Λ) |E Q(x,α) – 1/l Σ Q(xi,α)| > ( } → 0       by  l→ ∞,

where xl = (x1,… xl)  is an iid sample set of length l, for all (  >0.

To formulate these conditions we proposed the following construction. Given a sample set of length l we define a subset Z of  l- dimensional Euclidian space with vectors z = (z1,… zl) according to the rule:

Z ={ z: ∃ α ∈ Λ ∀i= 1,..,l (Q(xi,α) = zi)}

Then we consider ( –extension Y(xl, () of the set  Z as unification of all open cubes, oriented along coordinates with all edges equal to ε and centres in all points of  the set Z. Let V( (xl) be the volume  of this set. It is supposed that V( (xl) is a measurable function of xl. Then there always exists expectation of the volume log, which we call (–entropy  of the function set Q(x,α) on the samples of the length l

H( =  E ln V( (xl),

and there exists asymptotic value of entropy for a symbol defined as 

c( = lim (l→ ∞)  H( / l.

It is always true that ln ( ≤  ln V( (xl)  ≤  ln A.

The necessary and sufficient condition of the uniform convergence is that c( is equal to ln (ε) for any ( >0 .

In the present paper we consider in more details the case when this condition is not valid, i.e 

c( = ln (  + η,        where η is more than zero.

The following statement is proved.
Let cε = ln (  + η, (η  > 0), then there exist two functions ψ0(x)  ≤   ψ1(x) with the following properties:

1. ∫  (ψ1(x) -  ψ0(x)) dP ≥  ( (e η  - 1),

2. for any δ>0 and  l ≥ 1, almost any sequence x1,… xl and any binary sequence ω1,… ω l   (ωi =0,1) there exists such a value α* є Λ,  that for all i (1 ≤ i  ≤ l)

         | Q(xi,α*) – ψ ωi  (x i)| < δ.

In other words, there exists a corridor of non-zero thickness, bounded from top and bottom by the functions ψ1(x) and  ψ0(x) such, that for almost any sequence x1,… xl   there exists a function Q(x,α*) (α* ∈ Λ) arbitrarily close to upper or lower bounds of  the corridor in the points of sampling in arbitrary order. The thickness of the corridor does not depend on the length of the sequence.

Starting from this result it is easy to estimate the largest deviation of mean value from expectation over the class of function, and see that it does not go to zero even by unlimited growth of the sample sequence length.

Introduction
Let X be a space with given σ–algebra, P be a probability measure over this   σ-algebra,  Q(x,α)  be a class of measurable uniformly limited functions over the space X  with an abstract parameter α, (x∈ X, α ∈Λ, 0 ≤  Q(x,α) ≤ 1), Λ be a set of possible α values.

Let xl = (x1,… xl)  be an iid sample sequence of length l under constant probability distribution P. For given ( > 0, we consider a set Y of points yl = (y1,…yl) in El:

Y (xl, () = { y: ∃ α є Λ ∀i= 1,..,l  |Q(xi,α) – yi| < ( /2}.

Really the set YΛ (xl, () is an open set formed by unification of all open cubes oriented along the coordinate axes with edges equal ε,  and centres in the points  (Q(x1,α), Q(x2,α),…, Q(xl,α)) for all possible values of  α ∈Λ.

Let VΛ (xl, () be the volume of this set. It is supposed that for all ( > 0 and  l>0  the function VΛ(xl, () is measurable over sample sequences xl.  It is evident that

(l ≤ VΛ(xl, () ≤ (1+ ()l.

Now we define (–entropy of the function class Q(x,α)  over the sequences of length l, as expectation of the volume log:

HΛ (l, () = E ln VΛ (xl, () .

In the paper [2] it was shown that there always exists the limit


CΛ (() = lim HΛ (l, ()/l  by  l→ ∞.

This value we shall call asymptotic (–entropy per symbol (AES) More over it was shown  in the paper [1], that the random value  ln VΛ (xl, ()/l  converges to CΛ (() by probability. 

It is true, that if Λ1 ⊆Λ then CΛ1 (() ≤ CΛ ((), because in this case                               

VΛ1 (xl, () ≤ VΛ (xl, ().

In the same paper it was shown that necessary and sufficient condition for uniform convergence of means to expectations is the equality CΛ (() = ln (. In this paper the case, when CΛ (() > ln ( is under study.

Values conserving AES

Let x0 be an arbitrary point in X, b be a real number, δ> 0. Now we restrict the class of functions Q(x,α) by an additional condition

| Q(x0,α) - b | <  δ /2, 

and denote Λ(x0, b, δ) ={ α: α ∈Λ and | Q(x0,α) - b | <  δ /2}.

In correspondence let C Λ(x0, b, δ) (() be the asymptotic (–entropy per symbol for this restricted class. (Of course, the set Λ(x0, b, δ) may appear to be empty, and the value C Λ(x0, b, δ)  is defined only in the cases, when this set is not empty).

Assertion 1.

For any point x0 ∈X and positive ( and δ there exists a real value b* within the segment [0,1], such that
C Λ(x0, b, δ) (() = C Λ(()                                                             (1).

Let us consider a finite sequence b1,… bk  of real numbers, such that b1=0, bk =1 and 0< ( bi+1- bi) < δ. (We can assume that the number k depends only on δ). Then unification of all δ/2 surroundings of the values bi covers the whole segment [0,1] and thus:

⋃(i=1,k) Λ(x0, bi, δ) = Λ

and

VΛ (xl, () ≤ Σ (i=1,k )V Λ(x0, bi, δ) (xl, () ≤  k max (i=1,k)V Λ(x0, bi, δ)( xl, ().

Let us assume, that maximum over bi of the values C Λ(x0, bi, δ) (() is C* and it is reached for bi = b*. Then

C Λ(()= lim E ln VΛ (xl, ()/l ≤  lim (lnk /l + max (i=1,k) E lnV Λ(x0, bi, δ) ( xl, () / l) 

     = max (i=1,k) C Λ(x0, bi,, δ) (ε) = C*.

On the other hand, as far as Λ(x0, b*, δ)⊆ Λ, we have  C*≤ C Λ(() and therefore       C*= C Λ((). So AES is conserved for b= b*.

Note 1.

In the same way it may be shown, that if some point x0 ∈X  and positive ( and δ and some real value b it is true, that C Λ(x0, b, δ) (() = C Λ((), then for any δ1>0 there exists  a value b* within the segment [b- δ/2,  b+ δ/2] such, that C Λ(x0, b*, δ1) (() = C Λ((). It is enough to use Λ(x0, b, δ) instead of Λ and the segment [b- δ/2,  b+ δ/2] instead of [0,1].

Theorem 1

More over, we shall show, that the set of such values for which C Λ(x0, b, δ) (() = C Λ(() (for given x0 and positive ( and δ) is formed by unification of open, closed or half closed intervals with length not less than δ.

According to the Assertion 1 for any x0 ∈X there exists such a value b that                  C Λ(x0, b, δ) (() = C Λ((). For arbitrary positive value δ1 such, that δ1< δ, using Note 1 we can find within the segment [b- δ/2,  b+ δ/2] a value b* such, that 
                 
C Λ(x0, b, δ1) (() = C Λ((). 
Now for any value b** from the segment [b*- (δ- δ1)/2,  b*+ (δ+ δ1)/2] it I s true that interval (b**- δ/2,  b**+ δ/2) includes the interval (b*- δ1/2,  b**+ δ1/2) as far as δ1< δ. Then it is true that Λ(x0, b**, δ) ⊇ Λ(x0, b*, δ1), and consequently 

C Λ(x0, b**, δ) (() ≥ C Λ(x0, b*,, δ1) (() = C Λ(().

On the other hand C Λ(x0, b**, δ) (() is not greater than C Λ((), and thus

C Λ(x0, b**, δ) (() = C Λ(().

As far as the positive value δ1can be chosen arbitrarily close to zero, we see that any point b conserving AES is arbitrarily close to a segment, consisting of points conserving AES, and the length of the segment can be chosen arbitrarily close to δ. It proves the theorem. 

Further we shall be interested in the case, when δ = (. For a point x0 ∈X  and ε>0 we denote by K Λ ((, x0) the set of real values , such that C Λ(x0, b, ε ) (() = C Λ(() and by D((, x0) the length of this set. As it was shown the set K((, x0) is formed by unification of open, closed or half closed intervals with length not less than (. So

D((, x0) ≥  (.

Now we shall show, that the average value of D((, x0) is greater than ( (we remind, that in our case C Λ(() is strictly more than ln () .

Theorem 2

For any (  > 0               ∫  ln D((, x0) dP(x0) ≥ C Λ(c).

Let us first consider a sequence xl+1 = (x0,x1,… xl) and a real number (  > 0 as being fixed.. As before we construct the set of vectors yl+1= (y0, y1,…yl) in Euclidian space El+1:

Y Λ (x l+1, () = { y: ∃ α ∈ Λ ∀i= 0,..,l  |Q(xi,α) – yi| < ( /2},

and its volume VΛ (xl+1, ().
On the set Y Λ (xl+1, () we define uniform probability density g(yl+1), that means 



g(y0, y1,…yl) = 1/ VΛ (xl+1, (),  if yl+1∈ YΛ (x l+1, (),  
and

 g(y0, y1,…yl) = 0,              if yl+1 ∉ Y Λ (x l+1, ().

Now we define corresponding probability density on coordinate subspaces

gk(y0, y1,…yk) = ∫  g(y0, y1,…yl) dyk+1….dyl.

In particular gl(y0, y1,…yl) = g(yl+1),  g0(y0) = ∫  g(y0, y1,…yl) dy1….dyl.

Let us consider now a cross section of the set YΛ (x l+1, () by a coordinate l+1-k dimensional subspace, gained by fixation of the first k coordinates:

YΛk,( (y0, y1,…yk) = { yk+1….yl : ∃ α ∈ Λ ∀i= 0,..,l  |Q(xi,α) – yi| < ( /2}, 
and its volume VΛk, ( (y0, y1,…yk). Then it can be seen that the density gk(y0, y1,…yk) is the ratio of the volume VΛk, ( (y0, y1,…yk) to the volume VΛ (xl+1, (). We note also that according to our definitions

VΛ0, ( (y0) = V Λ(x0, y0, δ) (xl, ().

Therefore 

g0(y0) = VΛ0, ( (y0) / VΛ (xl+1, () = V Λ(x0, y0, δ) (xl, ()/ VΛ (xl+1, ().

Now we denote H k, ( (xl+1) Shannon entropy of the density gk(y0, y1, y 2,…, y k):

H k, ( (xl+1) = - ( ln gk(y0, y1, y 2,…, y k) gk(y0, y1, y 2,…, y k)  dy0 … dyk.
In particular,  H l, ( (xl+1) = ln VΛ (xl+1, ().

We denote conditional distribution of y k  for given values of y0,…, y k-1 as

g(y k /y0, … y k-1) = gk(y0, … y k) / gk-1(y0,…, y k)
and conditional entropy

H ( (y k /y0, … y k-1)  = - ( ln g(y k /y0, … y k-1) gk(y0, y1, y 2,…, y k)  dy0 … dyk.

Then

H k, (  = H k-1, ( + H ( (y k /y0, … y k-1).



(*)

It is desirable to show that H 0, ( (xl+1) ( 1/(l+1) ln VΛ (xl+1, (). It would be so if

H ( (y0) ( H ( (y 1 /y0),

H ( (y k-1 /y0, … y k-2) ( H ( (y k /y0, … y k-1).

But in general it is not true.

That is why we shall use averaged entropies H *k,( (xl+1) and H *( (y k /y0, … y k-1) over or possible transpositions of the sequence (x0, x1, x2,…, xl). After such averaging  the equality (*) is transferred to the form:

H* k, (  = H *k-1, ( + H *( (y k /y0, … y k-1).

As the result of averaging the values H *k,( (xl+1) and H *( (y k /y0, … y k-1) depends only on dimension k, but not on particular choice of a coordinate subspace.

The following inequalities are always true

H ( (y1) ( H ( (y 1 /y0),

H ( (y k /y0, … y k-2) ( H ( (y k /y0, … y k-1).

They are true due to the fact that Shannon’s information is not negative: adding of a new argument ca not decrease conditional entropy. Naturally after averaging the inequalities are conserved:

H* ( (y1) ( H *( (y 1 /y0),

H* ( (y k /y0, … y k-2) ( H *( (y k /y0, … y k-1).

And as far as averaged values depend only on the number of  arguments in condition, but not on their order, we have

H *( (y0) ( H *( (y 1 /y0),

H *( (y k-1 /y0, … y k-2) ( H *( (y k /y0, … y k-1).

Then it follows

 H *( (y0) ( 1/(l+1) H *l, ( = 1/(l+1) ln VΛ (xl+1, ().

Now we are able to estimate expectation of the value H ( (y0) averaged over all sample sequences of the length l:

E H( (y0) = E H *( (y0)  ( 1/(l+1) E ln VΛ (xl+1, () = HΛ (l,() /(l+1).
For l( (  we see that the lower limit

lim E H( (y0)  (  СΛ(().                                       (**)

Lemma 1.

If for some value y0 it is true, that С Λ(x0, y0, () (() < СΛ((), then one dimensional density g0 (y0) goes to zero by probability while l goes to infinity (for fixed x0 and random sequence (x1, x2,…, xl ). Really, as it was marked

g0 (y0) = V Λ(x0, y0, () (() / VΛ (xl+1, ()

Then
ln g0 (y0) = ln V Λ(x0, y0, () (() - ln VΛ (xl+1, () =                                           

=l (1/l ln V Λ(x0, y0, () (() – 1/l ln VΛ (xl+1, ()).

But the values 1/l ln V Λ(x0, y0, () (() and 1/l ln VΛ (xl+1, () go by probability to               С Λ(x0, y0, () (() и СΛ((). The difference С Λ(x0, y0, () (() - СΛ(() according to condition is a fixed negative value, and then ln g0(y0) goes by probability to minus infinity, and the density g0 (y0) goes to zero.  Lemma is proved.

Lemma 2.

One-dimensional density g0 (y0) is limited from above by the value 4/( (which does not depend on l).

For arbitrary value y0 the set YΛ0,ε (y0) consists of two parts:

YΛ*0,ε (y0)  ={ y1….yl : ∃ α є Λ(y0 - (/2 < Q(x0,α)< y0 and                                and ∀i= 1,..,l  |Q(xi,α) – yi| < ε /2)},

YΛ**0,ε (y0) ={ y1….yl : ∃ α є Λ(y0  ≤  Q(x0,α)< y0+ (/2 and                                 and ∀i= 1,..,l  |Q(xi,α) – yi| < ε /2)}

and the volumes of these two parts are correspondingly V* and V**.

Then the volume of YΛ0,ε (y0) is V Λ(x0, y0, () (l,() = V* + V**. That is why at least one of the values V* and V** is not less than 0.5 V Λ(x0, y0, () (l,().  Let us assume for instance that it is true for the left part, i.e. V*  ( 0.5 V Λ(x0, y0, () (l,().

Now for all values y, such that y0 - (/2 < y < y0, the set YΛ0,ε (y) includes the set YΛ*0,ε(y0).  Then

V Λ(x0, y, () (l,() (  V*  ( 0.5 V Λ(x0, y0, () (l,().

That is why for all y  (y0 - (/2 < y < y0) it is true that

g0 (y) ( 0.5 g0 (y0).

Now we have

1 ( ( (y0 - (/2 < y < y0) g0(y) dy ≥ (/4  g0 (y0)

and then g0 (y0) ≤ 4/(. The lemma is proved.

Now we return to the theorem proof. Let us denote A(x0, () (for fixed x0 and () the set of such  y values, for which

С Λ(x0, y, () (() < СΛ(().

As far as it is always true that С Λ(x0, y, () (()≤ СΛ((), the set A(x0, () is the addition in R1 to the set K Λ (ε, x0) of  y values, for which С Λ(x0, y, () (() = СΛ(().

Then from lemmas 1 and 2 it follows that the integral

( ( y∈ A(x0, ()) ln g0(y) g0(y)dy

goes to zero by probability while l goes to infinity (for random (x1,… xl)). Then expectation

E( ( y∈ A(x0, ()) ln g0(y) g0(y)dy → 0       by  l→ ∞.

Now the Shannon’s entropy is
H( (y0)=-( ln g0(y) g0(y)dy =-[( ( y∈ A(x0, ()) ln g0(y) g0(y)dy+( y∈K Λ (ε, x0)) ln g0(y) g0(y)dy]. 

But the value - ( y∈K Λ (ε, x0)) ln g0(y) g0(y)dy does not exceed ln DΛ (ε, x0), where DΛ(ε,x0) is the length of the set K Λ (ε, x0). Then

E H( (y0) ≤ -( ( y∈ A(x0, ()) ln g0(y) g0(y)dy + ln DΛ (ε, x0), 

where expectation is taken over random sequence (x1,… xl). Now we see that the upper limit by l→ ∞

lim E H( (y0) ≤  ln DΛ (ε, x0).

Up to now we averaged only over the random sequence (x1,… xl) for fixed x0. averaging also over x0 we have

lim E H( (y0) ≤ ( ln DΛ (ε, x0) dP(x0).

Combining this result with the proven inequality (*), we have 

( ln DΛ (ε, x0) dP(x0) ≥ СΛ(().

The theorem is proved.

                                             Existence of the wide corridor 

Theorem 3.

For any given ε >0 there exists a function K 0 (ε, x) mapping every x∈ X to a measurable set of real values from the segment [-ε /2, 1+ ε /2] so, that the following conditions are valid (assuming D 0 (ε, x) be the length of K 0 (ε, x))

1) D 0 (ε, x) ≥ (,

2) ( ln D0 (ε, x) dP(x) = СΛ((),

3) almost for all sequences xl = (x1,… xl) and almost for all sequences            yl = (y1,… yl), such that ∀i= 1,..,l (yi ∈ K 0 (ε, xi)),  there exists α є Λ  such that 
                            ∀i= 1,..,l  |Q(xi,α) – yi| < ε /2}.

Let us consider the following process A.. 

Given an infinite iid sequence x1,… xl, … under fixed distribution P(x) we define

Λ1= Λ   and   K1 (ε, x) = K Λ1 (ε, x) as a function mapping every x∈ X to a measurable set of y values, conserving asymptotic entropy per symbol, i.e.

С Λ(x, y, () (() = СΛ(().

Now we assume, that the set Λi and the function K i (ε, x) are already found and construct Λi+! and K i+1 (ε, x) given the sample xi  as follows:

Choose a random value yi under uniform distribution over K Λi (ε, xi).

Define

Λi+! = { α:  α ∈ Λ and  |Q(xi,α) – yi| < ε /2}}

K i +1(ε, x) = K Λi+1 (ε, x),

so that the function K i +1(ε, x) maps every x∈ X to a set of y values, conserving AES, i.e. С Λi+1(x, i, () (() = СΛ(().  

It is evident that due to the process the following conditions are valid:

1) Λ1 ⊇ Λ2 ⊇… Λi⊇…,

2) For all x  K1 (ε, x) ⊇ K2 (ε, x)⊇…. Ki (ε, x)⊇ …,
3) С Λi (() = СΛ((), as far as the value yi was chosen from the set of values conserving AES.

We denote as before Di (ε, x) the length of a set Ki (ε, x). 
According to theorems 1 and 2 we have:

D i (ε, x) ≥ (    and   ( ln D i (ε, x) dP(x) ≥  СΛ(().

Now we shall show, that the searched function K 0 (ε, x) can be obtained as

K 0 (ε, x) = ∩ (i =1, ∞) K i (ε, x).

It is evident that such a function satisfies conditions:

D 0 (ε, x) ≥ (    and   ( ln D 0 (ε, x) dP(x) ≥  СΛ((),

where D 0 (ε, x) is the length of the set K 0 (ε, x).

We shall show, that if condition 3) of the theorem is true, then

( ln D 0 (ε, x) dP(x) ≤  СΛ(()

Let xl be iid sequence x1,… xl gained  under fixed distribution P(x). In Euclidian space El we consider a set Tl formed by direct production of the sets K 0 (ε, xi). Condition 3) means that with probability 1 the set Y (xl, ε) includes Tl (under exception possibly of zero volume subset). Then

V (xl, ε) ≥  V (Tl) = ∏(i=1,l) D 0 (ε, x).

In logs we have

ln V (xl, ε) ≥  ∑(i=1,l) ln D 0 (ε, x).

Averaging over all sequences xl, we receive  

HΛ (l, ε) = E ln V (xl, ε) ≥  l E ln D 0 (ε, x). 

Then

1/l HΛ (l, ε)  ≥  E ln D 0 (ε, x) = ( ln D 0 (ε, x) dP(x) .

Notice, that the right part does not depend on l. Now when l goes to infinity we obtain

( ln D 0 (ε, x) dP(x) ≤  СΛ(().

So for the function condition 1) is true, and condition 2) is true if condition 3) is proved. So it remains to prove condition 3).

Let  x1,… xl, xl+ 1,… xl+k  and y1,… yl, yl+ 1,… yl+k  be the sequences gained due to the process A.

We denote  Gl,k the set of k-dimensional vectors y = ( yl+ 1,… yl+k) such that for all       i = l+1, …, l+k     yi ∈ K l (ε, xi), i.e. direct production of the sets   

K l (ε, xi) (i = l+1, …, l+k).

We denote also   

Tl,k  = { yl+ 1,… yl+k:  yi ∈ K l (ε, xi) and ∃ α ∀i= l+1,..,l+k  |Q(xi,α) – yi| < ε /2 }.

Let VGl,k and VTl,k be the volumes of the sets Gl,k and Tl,k. As far as Gl,k ⊇ Tl,k it is true that VGl,k ≥ VTl,k  and ln VGl,k ≥  ln VTl,k.

Lemma 3.

E(ln VGl,k ≥  ln VTl,k) → 0

for any fixed k>0 and l→ ∞.

At first we remind, that Gl,k is the direct product of the sets K l (ε, xi) (i = l+1, …, l+k), and thus ln VGl,k = ∑  (i = l+1, …, l+k) ln D l (ε, xi). Then

E ln VGl,k = kE ln D l (ε, xi) = k E ( ln D l (ε, x) dP(x).

Now we assume at first, that are x1,… xl, xl+ 1,… xl+k  and y1,… yl fixed, but

 yl+ 1,… yl+k  are chosen according to the process A . (It is lawful, as far as xi are chosen independently and yi  are chosen depending on previous vales of x and y and present value yi.) We shall denote E* expectation in this case. Then Shannon entropy of  the process of   the distribution of the vector (yl+ 1,… yl+k) is

H(yl+ 1,… yl+k) = E* ∑ (i = l+1, …, l+k) ln D i (ε, xi).

On the other hand each vector (yl+ 1,… yl+k) gained by the process A  by definition satisfies the conditions yi ∈ K l (ε, xi) and ∃ α ∀i= l+1,..,l+k  |Q(xi,α) – yi| < ε /2 , i.e. all such vectors belong to Tl,k. That is why Shannon entropy of the process (yl+ 1,… yl+k) does not exceed the entropy of the uniform distribution over Tl,k, i.e. ln  VTl,k.

As the result we have

 ln VGl,k  ≥   ln VTl,k ≥ E* ∑ (i = l+1, …, l+k) ln D i (ε, xi).

Averaging this inequality over all realisations of the process A ,we have

E ln VGl,k  ≥  E ln VTl,k ≥  ∑ (i = l+1, …, l+k) E ln D i (ε, xi).

But E ln D i (ε, xi) is not increasing function of the argument i. Then

E ln VGl,k  ≥  E ln VTl,k ≥  k E ln D l+ k (ε, x) and

E |ln VGl,k  -  ln VTl,k | ≤  E ln VGl,k  -  k E ln D l+ k (ε, x) =

= k ( E ( ln D l (ε, x) dP(x) -  E ( ln D l+ k (ε, x) dP(x)).

But the values E ( ln D i (ε, x) dP(x) form not increasing sequence limited from below. Then 

k ( E ( ln D l (ε, x) dP(x) -  E ( ln D l+ k (ε, x) dP(x)) →0

for any fixed k>0 and l→ ∞. The same is true for E |ln VGl,k  -  ln VTl,k |.

Lemma is proved.

Now we return to the proof of the theorem.

Let us fix a sample sequence (x1*,… xk*) and consider  a set of vectors y= (y1*,… yk*)

G*l,k ={ y: ∀i  yi* ∈ K l (ε, xi*)},

where the function K l (ε, x) is gained at the l-th step of the process A.

If we add additional restriction that for any y there exists α ∈ Λ that for all i (i=1,k)  |Q(xi* ,α) – yi*| < ε /2:

T*l,k ={ y: ∀i  yi* ∈ K l (ε, xi*) and ∃α ∈ Λ ∀(i=1,k)|Q(xi* ,α) – yi*| < ε /2}.

Then the set

G 0,k = ∩(l = 1,∞) G*l,k

consists only of those vectors y, for which for all i (i=1,k)   yi* ∈ K l (ε, xi*) is true. And the set

T 0,k = ∩(l = 1,∞) T*l,k

Consists of those vectors y, for which  in addition the following condition is true:

∃α ∈ Λ ∀(i=1,k)|Q(xi* ,α) – yi*| < ε /2.

Now we shall estimate expectation of the volumes logs of these sets, assuming that the function K l (ε, x) is gained at the l-th step of the process A, and (x1*,… xk*) is an iid sequence gained under distribution P(x).  As far as the set G*l,k includes the set T*l,k, the volume VG*l,k of the set G*l,k  is not less than the volume VT*l,k of the set T*l,k, and so

ln VG*l,k  - ln VT*l,k  ≥ 0.

Then we see, that expectations of the volume logs ln VG*l,k  and ln VT*l,k co inside with expectations of the volume logs ln VGl,k  and ln VTl,k  from lemma 3, as far as in both cases the sequences (x1*,… xk*) and (xl+1,… xl+k) are gained independently under distribution P(x). Now expectations of volume logs for the sets G* 0,k and T* 0,k are

E ln VG* 0,k = lim(l→∞) E ln VG*l,k = lim(l→∞) E ln VGl,k,

E ln VT* 0,k = lim(l→∞) E ln VT*l,k  = lim(l→∞) E ln VTl,k,

and according to lemma 3

E (ln VG* 0,k - ln VT* 0,k) = 0.

But expectation of the nonnegative value (ln VG* 0,k - ln VT* 0,k) may be equal zero only if almost for all realisations of the process A and almost for all sequences (x1*,… xk*) the value (ln VG* 0,k - ln VT* 0,k) is equal zero, i.e. the volumes of inserted sets G* 0,k  and T* 0,k co inside.  The last means that almost all sequences (y1*,… yk*) satisfying  for all i (i=1,k) the condition yi ∈ K 0 (ε, xi) satisfy also the condition       ∃α ∈ Λ ∀(i=1,k)|Q(xi ,α) – yi| < ε /2.

The theorem  is proved.

Note 1

The condition 3) may be changed to a more strict:

for any n > 0 ∃α ∈ Λn ∀(i=1,k)|Q(xi ,α) – yi| < ε /2.,  where Λn is an arbitrary subset of Λ gained in the process A.

Really, we can conceder that the process starts from Λn (taking in account that        CΛn (ε) = CΛ (ε)).

Note 2

There are examples where ∩(n = 1,∞)  Λn is empty, though the corridor of course is not empty.

Existence of a narrow corridor

Given a fixed point x0 ∈ X  and a measurable by Lebesque set M within the interval  [-ε /2, 1+ ε /2], we consider the subset Λ (x0, M) ⊆Λ:

Λ(x0, M) ={ α: α ∈ Λ  and Q(x0 ,α) ∈ M}

Lemma 4.

Let it be true that  CΛ(x0, M)  (ε) < CΛ (ε),  Λl   be the subsets of Λ gained in the process A at the step l, P(l) the probability of the event, that intersection of Λ(x0, M) and Λl  is not empty, then

P(l) → 0, while l goes to infinity.

Let us assume at first that the sequence xl is fixed and the values yl =(y1,…yl) are chosen according to the process A. As before, we shall denote expectations for fixed xl as E*. The Shannon entropy of yl distribution is defined then as H(yl)= - E* ln p(yl), where p(yl) is the distribution density. It is easy to see that

H(yl) = E* ∑ (i = 1, …, l) ln D i (ε, xi).

Really the value H(yl) is the function of the sequence xl. 

Now considering xl as an iid sequence gained under distribution P, we shall show that the value 1/l H(yl) goes by probability P to CΛ(ε), while l goes to infinity. According to definition of the process A all realizations of the process belong to the set YΛ (xl, ε). Then the Shannon entropy H(yl) does not exceed the entropy of the uniform distribution over the set YΛ (xl, ε). The latter is equal to ln VΛ (xl, ε), where VΛ (xl, ε) is the volume of the set YΛ (xl, ε). So

1/l (ln VΛ (xl, ε) - H(yl)) ≥ 0.

Now expectation E 1/l ln VΛ (xl, ε) goes to CΛ(ε) by definition and the very value     1/l ln VΛ (xl, ε) goes to CΛ(ε) by probability. Expectation E 1/l H(yl) goes to CΛ(ε) according to Note 1. Then  E 1/l (ln VΛ (xl, ε) - H(yl)) goes to zero while l goes to infinity.

But if expectation of a non-negative value goes to zero then the very value goes to zero by probability. Then 1/l (ln VΛ (xl, ε) - H(yl)) goes to zero by probability and the value 1/l H(yl) goes to CΛ(ε) by probability P while l goes to infinity. Assertion is proved.

Now we return to Lemma 4.

It is easy to see that the following equality is true:

H(yl) =  -[P*(l)ln P*(l) + (1- P*(l))ln P*(l) ] +

+ (1- P*(l)) H1(yl) + P*(l)H2(yl),

where P*(l) is the probability of the event, that intersection of Λ(x0, M) and Λl  is not empty (for fixed xl), H1(yl) is conditional entropy in the case, when this condition is not valid, H2(yl) is conditional entropy, when this condition is valid.

Now H1 (yl) does not exceed the entropy of the uniform distribution over the set 

YΛ (xl, ε), and H2 (yl) does not exceed the entropy of the uniform distribution over the set Λ(x0, M). So

H1 (yl) ≤ ln  VΛ (xl, ε),    H2 (yl) ≤ ln  V Λ(x0, M) (xl, ε).

The term -[P*(l)ln P*(l) + (1- P*(l))ln P*(l) ] does not exceed ln(0.5). Then

H(yl) ≤  ln(0.5) + (1- P*(l)) ln VΛ (xl, ε) + P*(l) ln  V Λ(x0, M) (xl, ε).

And dividing by l we have:

1/l (H(yl) - ln VΛ (xl, ε)) ≤ 1/l ln(0.5) + P*(l)  1/l (ln  V Λ(x0, M)  - ln VΛ (xl, ε)). 

Now considering xl as a random sequence, we see that when l goes to infinity

1/l (H(yl) - ln VΛ (xl, ε)) goes by probability to zero, 1/l (ln  V Λ(x0, M)  - ln VΛ (xl, ε)) goes by probability to CΛ(x0, M)  (ε) - CΛ (ε), which is strictly negative value, and the inequality may hold only if P*(l) goes by probability to zero.

Then, as far as P(l) = E P*(l),  we see that P(l) → 0, while l goes to infinity.

Lemma 4 is proved.

Corollary 1.

If for a fixed x0 and arbitrary δ (0 < δ < ε/2) we take as M the set

M ={y: 1+ ε/2 >  y  >sup KΛ(x0, ε)- ε/2 + δ },

then probability of the event, that intersection of the sets Λ (x0, M) and Λl  is not empty, goes to zero while l goes to infinity.

(Here sup KΛ(x0, ε) means the upper bound of the set KΛ(x0, ε) of y values, conserving AES.) 

According to Lemma 4 it is enough to show, that  CΛ(x0, M) (ε) <  CΛ(ε). 

Let us suppose the opposite, i.e. CΛ(x0, M) (ε) = CΛ(ε). We can construct a finite sequence of real numbers bk (k=1,n), such that

b1 = sup KΛ(x0, ε)- ε/2 + 2δ,    bk +1 - bk  < δ  and  bn  > 1+ ε/2,

and assign to every value bk an interval   Mk = (bk  - δ, bk + δ).

Then M belongs to the conjunction of the intervals Mk.  Now, if we define as

Λk = {α: Q(x0, α) ∈ Mk },

we have   Λ (x0, M) ⊆ ∪Λk.

As it was shown before, in this case  CΛ(x0, M) (ε) = max CΛk (ε), and then there exists k*, such that CΛk* (ε) = CΛ(ε). Let us put  y* = bk* + ε/2  - δ. Then

y*- ε/2 =  bk*  - δ  and  y* + ε/2 = bk* + ε  - δ > bk*  + δ. So the interval 

(y*- ε/2, y*+ε/2) includes Mk. Then the set Λ (x0, y*,ε), defined as

Λ (x0, y*,ε) = {α:  |Q(x0, α)- y*| < ε/2},

includes Λk  and thus, C Λ(x0, y*,ε) = CΛ(ε). Then, according to definition, y*∈ KΛ(x0, ε).

On the other hand y* >( b1 + ε/2  - δ ) = sup KΛ(x0, ε) + δ and thus y* is above the upper bound of KΛ(x0, ε). So,  y*∉ KΛ(x0, ε). Contradiction. The corollary is proved.

Corollary 2.

The same can be proved about the lower bound:

If for a fixed x0 and arbitrary δ (0 < δ < ε/2) we take as M the set

M ={y: - ε/2 <  y  < inf KΛ(x0, ε) + ε/2 - δ },

then probability of the event, that intersection of the sets Λ (x0, M) and Λl  is not empty, goes to zero while l goes to infinity.

(Here inf KΛ(x0, ε) means the lower bound of the set KΛ(x0, ε) of y values, conserving AES.) 

Corollary 3.

In Lemma 4 and corollaries instead of the set Λ (x0, M) the sets

Λk (x0, M) = {α: α ∈ Λk  and Q(x0 ,α) ∈ M}

may be used, where Λk is a subset of Λ, gained according to the process A at an arbitrary step k.

It is true, because for all Λk  the asymptotic entropy per symbol equal to CΛ(ε) is conserved. 

Now, we define functions:

ϕ0k (x) = inf  KΛk((, x) + (/2,

ϕ 1k (x) = sup  KΛk((, x) -  (/2,

ϕ00 (x) = inf  K0((, x) + (/2,

ϕ 10 (x) = sup  K0((, x) -  (/2,
(Here K0((, x)= ∩(i=1, () KΛi ((, x)).

u 0k (x) = inf (α ( Λk)  Q(x, α) ,

u 1k (x) = sup(α ( Λk)  Q(x, α) .

Theorem 5.

For any fixed  x ∈ X  the functions u 0k (x) and u 1k (x) go by probability (in the sense  of the process A) correspondingly to ϕ00 (x) and ϕ10 (x), while k goes to infinity.

We shall prove the assertion for u 1k (x) and ϕ 10 (x). The proof for u 0k (x) and ϕ10(x) is similar.

Firstly we mark, that the values ϕ 1k (x) converge from above to ϕ 10 (x) by definition. Then it is always true that u 1k (x)  ≥ ϕ 1k (x). It is so, because for all values y∈KΛk((,x) there exists such a value α ( Λk, that | Q(x, α)  - y| <  (/2, and so

sup(α ( Λk)  Q(x, α) ≥ sup KΛk((, x) -  (/2.

That is why it is enough to show, that for any δ > 0 and fixed positive l the probability

P{ u 1k (x)  > ϕ 1l (x) + δ } goes to zero, while k goes to infinity. But this is the assertion of Corollary 3 to Lemma 4. The theorem is proved.

Corollary.

For any fixed sequence x1, x2,…, xn  (xi ∈ X) and given (  > 0 the probability P(k, ()  (according to the process A) of the event, that for all i (i =1,n)
|u 1k (xi) - ϕ10 (xi)| < ( and |u 0k (xi) - ϕ00 (xi)| < (,

goes to 1, while k goes to infinity. 

Theorem 6.
Considering as random the result of the process A and independent sample sequence x1, x2,…, xn, and fixed ( > 0, we denote as R(k,() an event that

for all xi (i =1, n)   ϕ00 (xi) - u 0k (xi) < (   and   u 1k (xi) – ϕ10 (xi) < (.

Then P(R(k,()) goes to 1, while k goes to infinity.

This statement immediately follows from the previous result, if we prove the following lemma:

Lemma 5.
Let Z =X x Y  be a direct product of probability spaces X and Y . A probability measure Pz is defined over Z, Px is the corresponding marginal distribution over X and Py(x) is the corresponding conditional distribution over Y for fixed x. Let An be a sequence of events in Z. For arbitrary real value C we define Bn (C) as an event in the space X:

 Bn (C) = {x: Py(An /x) >C}.

If Py(An /x) goes to zero for any x ∈ X and all C > 0 while n goes to infinity, then Px(Bn) goes to zero for all C > 0 and Pz(An) also goes to zero.

We define Dn (C) as

Dn (C) = {x: ∃ k≥n  Py(Ak /x) >C}.

Then the sets Dn (C) are imbedded and Bn (C)⊆ Dn (C) and thus Px (Bn (C)) ≤ Px (Dn (C)). So if we show that Px(Dn(C)) goes to zero, then also Px (Bn (C)) goes to zero. 

Let us assume the contrary. We denote

D∞ (C) = ∩(n=1,∞) Dn (C).

Then Px (D∞ (C)) > 0 and thus D∞ (C) is not empty. But in this case for any                 x ∈ D∞ (C)  and  C > 0 the sequence Py(An /x) does not go to zero in contradiction with the condition of the lemma. So Px (Bn (C)) goes to zero for any C>0.

Now

Pz(An) = ∫ Py(An /x) dPx = ∫ (x ∈ Bn (C)) Py(An /x) dPx  + ∫  (x ∉ Bn (C)) Py(An /x) dPx .

As far as 0≤ Py(An /x)≤ 1 and for x ∉ Bn (C)    0≤  Py(An /x)≤ C we have 

Pz(An) ≤  Px (Bn (C)) + C.

Then as far as Px(Bn (C)) goes to zero for any C> 0, and C may be chosen arbitrarily close to zero, we see that Pz(An) also goes to zero. Lemma is proved and so the theorem 6 is also proved. 

Theorem 7.

Let СΛ (() = ln (  + η,  (η > 0). Then there exist two functions ψ0 (x) and ψ1 (x), defined in X, such that

1) ψ1 (x)  (  ψ0 (x);

2) ( (ψ1 (x)  - ψ0 (x)) dP   ( ( (eη  -  1) 

3) For any integer n > 0, 

almost  for all sequences x1, x2,…, xn  (xi ∈ X), for any binary sequence ω1, ω2,…, ωn (ωi = 0, 1) and any ( > 0  there exists α (Λ such, that

(i  (i =1, n) | Q(xi, α) - ψωi (x)| < (
(the order of quantors here is sufficient ).

The process A  with probability 1 leads to this result, if we take as the functions ψ0(x)  and ψ1 (x), correspondingly, the above defined functions ϕ00 (x) and ϕ10 (x).

First of all we shall show, that for functions ϕ00 (x) and ϕ10 (x) the conditions 1 and 2 are true. Really, the distance between upper and lower bounds of K0((, x) is not less than its length:

      ϕ10 (x) - ϕ00 (x) = (sup  K0((, x) -  (/2) – (inf  K0((, x) + (/2 ) ( DΛ((, x) - ( ( 0.

That is why

((ϕ10 (x) - ϕ00 (x)) dP ( ( DΛ((, x) dP - (.

But according to the theorem 2 

( ln DΛ((, x) dP(x)  ( СΛ(().

Due to convex property of  ln function we have
ln ( DΛ((, x) dP(x) ( ( ln DΛ((, x) dP(x)  (  СΛ(()

and then

(DΛ((, x) dP - (  (  exp(СΛ(()) - ( = ( (eη  -  1).

Now we shall fix  n > 0  и ( > 0 assuming ( < (/2. Considering as random the result of the process A and independent  sample sequence x1, x2,…, xn, we denote as T(n,() an event defined as follows: for any binary sequence ω1, ω2,…, ωn    (ωi = 0, 1) there exists such a value α* (Λ, that

(i  (i =1, n) | Q(xi, α*) - ψωi (x)| < (.
Then we consider a system of events Tk (() such, that

a) almost for all sequences y1, y 2,…, yn  (yi ( K0((, xi) there exists such a value α (Λk, that

(i (i=1,i) | Q(xi, α) – yi | < (/2,

b) for all xi (i =1, n)   ϕ00 (xi) - u 0k (xi) < (   and   u 1k (xi) – ϕ10 (xi) < (.

If Tk  is true, then for any binary seqence ω1, ω2,…, ωn we can find the necessary value α*(Λ in the following way.

Choose at random for all  i =1, n such values yi, that
inf  K0((, xi) < yi < inf  K0((, xi)  +  (,   if ωi=0  and

sup K0((, xi) > yi > sup K0((, xi)  -  (,    if ωi=1.

All these yi belong to K0((, xi), as far as this set is formed by a non empty array of open,  closed or half closed intervals with length not less than ( and  ( < (. Then according to condition with probability 1 there exists α* (Λk such that     

(i (i=1,i) | Q(xi, α*) – yi | < (/2.  

Then
Q(xi, α*) < inf  K0((, xi) + (/2 + ( = ϕ00 (xi) + (, if ωi=0  and

Q(xi, α*) > sup  K0((, xi) - (/2-  ( = ϕ10 (xi) - (, if ωi=1.

At the same time, as far as α* (Λk, then

inf (α ( Λk)  Q(xi, α)  (  Q(xi, α*) ( sup (α ( Λk)  Q(xi, α) or

u 0k (xi)  (  Q(xi, α*) ( u 1k (xi).

Then, according to condition b),  we have for all  i
Q(xi, α*) >  ϕ00 (xi) - (   и    Q(xi, α*) < ϕ10 (xi).

So, if the event Tk happens, we can find such a value α(Λ, that

(i  (i =1, n) | Q(xi, α) - ψωi (x)| < (.

Then, an event Tk implies the event T(n,(), и P(T(n,()) ( P(Tk) for all k.

But the condition а) according to note 1 to the Theorem 3 (existence of a wide corridor) is true with probability 1, and condition b) according to the theorem 6 is true with probability, going to 1, while   k( (. That is why P(T(n,()) = 1. 

So, we have shown, for all n and  ( > 0  almost for all sequences  x1, x2,…, xn the process A  with probability 1leads to the necessary result. It remains to transpose the quantors  “for all” and “almost for all”. The following Lemma will help us:

Lemma.

If for a sequence of events Ak probabilities P(Ak) = 1 for all k ( in other words for all k the events Ak happen almost for certain), then almost for certain happens all events Ak. simultaneously. Really, the set of elementary events, corresponding to the fact that all Ak happen simultaneously, is the intersection of all Ak. But intersection of numerable class of events, having probability 1, also has probability1.  (Numerability here is sufficient).

Let us apply the Lemma in our case. The set of values of n values is numerable. The set of ( values is innumerable. But, as it can be easily seen, if the assertion is true for a fixed going to zero sequence of positive ( values, then it is true for all ( > 0. Thus transposition of quantors is lawful and the theorem is proved.
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