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Abstract

Kernel Ridge Regression (KRR) and the Kernel Aggregating Algorithm for Regression
(KAAR) are existing regression methods based on Least Squares. KRR is a well established
regression technique, while KAAR is the result of relatively recent work. KAAR is similar
to KRR but with some extra regularisation that makes it predict better when the data is
heavily corrupted by noise. In the general case, however, this extra regularisation is excessive
and therefore KRR performs better. In this paper, two new methods for regression, Iterative
KAAR (IKAAR) and Controlled KAAR (CKAAR) are introduced. IKAAR and CKAAR
make it possible to control the amount of extra regularisation or to remove it completely,
which makes them generalisations of both KRR and KAAR. Some properties of these new
methods are proved and their predictive performance on both synthetic and real-world datasets
(including the well known Boston Housing dataset) is compared to that of KRR and that of
KAAR. Empirical results that have been checked for statistical significance suggest that in
general both IKAAR and CKAAR make predictions that are equivalent or better than those
of KRR and KAAR.
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1 Introduction

In regression we are interested in finding a mathematical relationship between a signal which can
be one or more independent variables and its outcome1. As an example, consider the case where
we are given a training set comprised of the height and weight of adult men as our signals and
outcomes respectively. Our task is to find the relationship between these two variables. In the
simplest of models the relationship is taken to be a linear one but nonlinear relationships are
common in nature. Once this relationship is established, it is possible to predict the outcomes of
unseen signals.

The first solution to this problem was that of Least Squares by Legendre and Gauss (independently)
in the beginning of the 19th century. Least Squares finds the line (or hyperplane) that fits the
data with minimum squared differences, known as square losses. This method however, has some
drawbacks including the fact that it fits the training set too well (known as overfitting) and may
not generalise well to unseen data. This is especially true if the data is corrupted with noise.
Ridge Regression (RR) [Hoerl, 1962] is an improvement on least squares in that it attempts to
balance the goodness of fit of the hyperplane with its complexity. This is known as regularisation
and results in a solution that is not necessarily the optimal one on the training data but usually
generalises better. Ridge Regression works very well on real-world data and is still very popular
among statisticians today. A new method, the Aggregating Algorithm for Regression (AAR) was
introduced in Vovk [1998] and was shown to be only a little worse than any linear predictor in
the online mode of learning. This method can be naturally applied to the batch (offline) case,
which is our main focus in this paper2. It happens that AAR is similar to RR but with some extra
regularisation added.

RR and AAR can be formulated in dual variables (see Saunders et al. [1998] and Gammerman et al.
[2004] respectively), where all the data appears in dot products which are then replaced by kernels.
By definition, kernels are dot products in some feature space. This means that a hyperplane is
found in feature space that corresponds to a nonlinear relationship in input space. We denote the
kernel versions of these methods by Kernel Ridge Regression (KRR) and the Kernel Aggregating
Algorithm for Regression (KAAR).

From our analyses, we found that in most cases the regularisation of KAAR is too strong and
results in performance that is not very good. On the other hand, sometimes KRR’s regularisation
is not strong enough and this results in KRR’s predictions fluctuating a lot. In Section 3 we
introduce two new methods, Iterative KAAR (IKAAR) and Controlled KAAR (CKAAR) which
are both generalisations of KRR and KAAR. Our methods combine KRR and KAAR in such a
way as to be able to dictate the amount of extra regularisation, the choice of which should depend
on the data at hand. In Section 3 we proceed to prove some of their theoretical properties, and in
Section 4 we report their empirical performance on synthetic and real-world datasets. From these
results we conclude that in general both our new methods give a statistically significant advantage
over KRR and KAAR.

2 Background

Regression can be defined by the following problem. Given a set of ` signal-outcome pairs (xi, yi) ∈
Rm×R, and a new signal x`+1, we are required to output a prediction γ`+1 ∈ R that approximates
the true outcome y`+1 of x`+1. Note that as per convention, all the vectors in this paper are column
vectors. The most commonly used measure of goodness of a prediction is the square loss (y− γ)2,
where a smaller value means a better prediction. Let us model the data by the linear (in the

1In other literature, outcomes are also called labels or targets, while signals are also called examples or instances.
In this paper we will be using the terms outcomes and signals to be consistent with Gammerman et al. [2004], which
inherited the terminology from prediction with expert advice.

2However, all the methods described in this paper can be used for both online and batch modes of learning.
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parameters) equation
yi = 〈w,xi〉+ ε, (1)

where w ∈ Rm and ε ∈ R is some noise. Our aim is to find a solution to (1) (i.e. a wL) that
minimises the overall sum of square losses of the predictions on the given data

LL =
∑̀
i=1

(yi − 〈wL,xi〉)2. (2)

A method to find wL, known as the method of Least Squares, was derived independently by
Legendre and Gauss in 1805 and 1809 respectively. It translates to solving the system of linear
equations

wL = (X′X)−1X′y, where X =

 x′1
...
x′`

 and y =

 y1

...
y`

 . (3)

2.1 Ridge Regression

Least Squares runs into problems when some features (columns) in X are highly correlated (either
naturally or coincidentally) because the matrix X′X becomes close to singular, resulting in unstable
solutions. Ridge Regression (RR), first introduced to statistics by Hoerl [1962], differs from least
squares in that its objective is to minimise

LR = α‖wR‖2 +
∑̀
i=1

(yi − 〈wR,xi〉)2, (4)

where α is a fixed positive real number. Finding the solution now involves calculating

wR = (αI + X′X)−1X′y, (5)

where I is the identity matrix. Apart from stabilising the solution (the matrix (αI + X′X) is
positive definite and therefore nonsingular, since α > 0), this technique also includes regularisation
in that it restricts the size of the parameters in wR. This reduces the complexity of the solution,
decreasing the risk of overfitting the training data, and consequently generalises better.

2.2 The Aggregating Algorithm for Regression

The Aggregating Algorithm (AA) [Vovk, 1990] is a technique that predicts using expert advice.
This means that AA observes the next signal in a sequence and also the predictions of a (possibly
infinite) pool of experts. It then merges the experts’ predictions and outputs its own prediction
which is in a sense optimal. In Vovk [1998] AA was applied to the problem of linear regression
resulting in the Aggregating Algorithm for Regression (AAR) which merges all the linear predictors
that map signals to outcomes. In this case AAR is optimal in the sense that the total loss it suffers
is only a little worse than that of any one particular linear function. It turns out that AAR is
similar to RR but with the signal-outcome pair (x`+1, 0) added to the training set, where x`+1 is
the new signal for which a prediction has to be made. This makes predictions shrink towards 0,
with the aim of making them even more resistant to overfitting3. AAR aims to find a solution wA

that minimises

LA = α‖wA‖2 + 〈wA,x`+1〉2 +
∑̀
i=1

(yi − 〈wA,xi〉)2. (6)

3It is assumed that the outcomes have a mean of 0.
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The AAR solution to the regression problem is therefore

wA = (αI + X̃
′
X̃)−1X̃

′
ỹ, (7)

where X̃ = (X′,x`+1)′ and ỹ = (y′, 0)′.

2.3 Kernel Methods

The use of RR and AAR in the real world is limited since they can only model simple linear
dependencies. One solution could be to change the underlying assumption that the data is modelled
by the linear function (1) and consider the possibility that it is modelled by some nonlinear function.
Finding the optimal solution in this case would be much more difficult and one could be prone to
getting caught in local minima. Another option could be to map the data to some high dimensional
feature space and finding a simple solution as in (1) there. This however, can lead to what is
known as the curse of dimensionality where both the computational and generalisation performance
degrades as the number of features grow [Cristianini and Shawe-Taylor, 2000]. The kernel trick
(first used in this context in Aizerman et al. [1964]) is now a widely used technique which can make
a linear algorithm operate in a (possibly high dimensional) feature space without the inherent
complexities.

A kernel function k takes two vectors and returns their dot product in some feature space,

k(xi,xj) = 〈φ(xi), φ(xj)〉, (8)

where φ is a (nonlinear) transformation to feature space. Usually the mapping φ is not performed
explicitly, in fact it is not even required to be known. For a function to be a kernel it has to be
symmetric, and for all ` and all x1, . . . ,x` ∈ Rm, the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , `

must be positive semi-definite (that is, have nonnegative eigenvalues). There are several standard
kernel functions however one could design one’s own according to the need. As an example of a
standard kernel consider the polynomial kernel, kp(xi,xj) = (〈xi,xj〉+ 1)d, which is equivalent to
mapping the vectors to a feature space which is spanned by the products of their features (known
as monomials) up to the dth degree and taking their dot product there.

Through kernel functions it is therefore possible to perform linear regression using an algorithm
like RR or AAR in feature space which would be equivalent to performing a nonlinear regression in
input space. To make the use of kernels possible, Ridge Regression and the Aggregating Algorithm
for Regression have been reduced into a formulation known as dual variables (see Saunders et al.
[1998] and Gammerman et al. [2004] respectively). In this formulation all the signals appear only
in dot products. This makes transforming the linear models into nonlinear ones simply a matter
of replacing the dot products with a kernel function. The new methods, which we shall call Kernel
Ridge Regression (KRR) and Kernel Aggregating Algorithm for Regression (KAAR), respectively
calculate the prediction γ for a new example x`+1 as follows:

γKRR = y′(αI + K)−1k, (9)

where K = (k(xi,xj))i,j , i, j = 1, . . . , `, and k = (k(xi,x`+1)), i = 1, . . . , `, and,

γKAAR = ỹ′(αI + K̃)−1k̃, (10)

where ỹ = (y′, 0)′, K̃ = (k(xi,xj))i,j , i, j = 1, . . . , ` + 1, and k̃ = (k(xi,x`+1)), i = 1, . . . , ` + 1.
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Figure 1 KRR and KAAR approximating a signal-outcome behaviour.

3 Methods

3.1 Motivation and Introduction

Figure 1 shows the predictions of KRR and KAAR on a test set containing 25 signals from a
particular permutation4 of the Boston Housing dataset (described in Section 4.3.4). Note that the
signals in the test set have been sorted by their target outcome and that the x-axis represents
the number of a signal and is not the signal itself (which is a vector with 13 features). This
was done exclusively to make the figure clearer. In this example the mean square loss of KRR
is approximately 26.64 while that of KAAR is approximately 29.33. This means that KRR’s
performance is better. However, analysis of the individual predictions reveals that 44% of KAAR’s
predictions are more accurate. In addition, as can be seen in the figure, sometimes a better
prediction would be somewhere in between those of KRR and KAAR. Is it possible therefore to
‘combine’ these two methods to give a new method that in general is more accurate than both?

Below we present two new methods that attempt to achieve this. The first method, which we
call Iterative KAAR (IKAAR), modifies the KAAR algorithm so that it outputs a sequence of
predictions for a particular signal. We show that this sequence starts from the KAAR prediction
and converges towards the prediction of KRR giving us a smooth transition from the former to the
latter. The second method that we propose uses the fact that in Figure 1 KRR seems to fluctuate
a lot with a variance of 78.74, while KAAR is overly rigid having a variance of 1.30 (the variance of
the real outcomes is 22.83). We therefore modify KAAR’s objective to give us a new method where
we can control the rigidness of the predictions. The new method, Controlled KAAR (CKAAR),
can be made to behave like KAAR, KRR or something in between them.

4For a different permutation of the dataset the figure will be different but the general idea of what we are trying
to show holds.
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3.2 Iterative KAAR

As we saw in Section 2.2, KAAR is equivalent to KRR with the signal-outcome pair (x, 0) added
to its training set, where x = x`+1 is the new signal. This outputs a prediction γKAAR. Having 0 as
the signal’s outcome added to the training set pushes the prediction towards 0 and is what makes
KAAR’s predictions so rigid. In order to alleviate this we propose a new method, the Iterative
Kernel Aggregating Algorithm for Regression (IKAAR). In its first iteration, IKAAR is equivalent
to KAAR, in that it adds the pair (x, 0) to its training set. This produces the prediction γKAAR.
However, in its second iteration, IKAAR replaces the extra pair in its training set with a new
pair (x, γKAAR). This produces another prediction that in turn is used to replace γKAAR and be
added to the training set to make a new prediction. This procedure can be repeated an arbitrary
number of times, resulting in several IKAAR predictions for the same signal. We will denote these
predictions by γ

(n)
IKAAR where the index (n) denotes the iteration number. For clarity of notation let

γ(n) = γ
(n)
IKAAR. We define IKAAR more formally as follows:

γ(n) = ỹ(n) ′(αI + K̃)−1k̃, (11)

where γ(0) = 0, n ≥ 1, and ỹ(n) =
(
y′, γ(n−1)

)′
. We will later give a formula that computes any γ(n)

directly, without the need to calculate all the previous predictions
(
γ(n−1), γ(n−2), . . . , γ(1)

)
.

Theorem 3.1. For any signal, IKAAR’s predictions start from the KAAR prediction and converge
towards that of KRR as the number of IKAAR iterations approaches infinity.

Proof. It follows from IKAAR’s definition that the first prediction γ(1) is equivalent to KAAR’s
prediction. We will now show that IKAAR’s predictions for any particular signal converge towards
that of KRR as n approaches infinity. We can open up (11) in the following way:

γ(n) =
[

y′ γ(n−1)
] [

K + αI k
k′ k(x,x) + α

]−1 [
k

k(x,x)

]
. (12)

From this equation it is clear that we are taking γ(n−1) and modifying it to get γ(n). We shall
show that this transformation of γ(n−1) can be characterised by the linear equation

γ(n) = sγ(n−1) + c, (13)

where s, c ∈ R, corresponding to a line. If we manage to show that 0 ≤ |s| < 1 then that would be
enough to prove that IKAAR’s predictions converge to a fixed point r, such that r = sr + c. This
follows from the Banach fixed-point theorem, and is also evident in Figure 2, where the dotted lines
show the behaviour of γ(n) per iteration5. For example, in the first iteration γ(n−1) = γ(0) = 0
therefore γ(n) = γ(1) = c. In the second iteration, γ(n−1) = γ(1) = c therefore γ(n) = γ(2) is equal
to the value on the line where the x-axis is equal to c. This process is repeated and as n → ∞,
then γ(n−1) → γ(n) and γ(n) → r.

In our proof we will be using the following two Lemmas.

Lemma 3.2 (See Press et al. [1994, Section 2.7]). Suppose we are given a matrix A of size n× n
partitioned in the following way

A =
[

P Q
R S

]
,

where P and S are square matrices of size p× p and s× s respectively (p + s = n), and Q and R
of size p× s and s× p respectively (not necessarily square). If its inverse is partitioned is a similar
manner,

A−1 =

[
P̃ Q̃
R̃ S̃

]
,

5In the figure only the cases where 0 ≤ s < 1 are shown, however the other cases are similar.
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Figure 2 This figure depicts the behaviour of IKAAR’s prediction γ(n) in relation to the previous
prediction γ(n−1). The solid line is γ(n) = sγ(n−1) + c and it is shown for 0 ≤ s < 1 and c > 0 (left)
and c < 0. The dashed line is the bisector. The dotted lines show the behaviour of γ(n) per
iteration, starting from c and converging to r.

then P̃, Q̃, R̃ and S̃ which have the same sizes as P, Q, R and S respectively, can be calculated
by the following formulae (provided all the inverses exist):

P̃ = P−1 + P−1Q(S−RP−1Q)−1RP−1,

Q̃ = −P−1Q(S−RP−1Q)−1,

R̃ = −(S−RP−1Q)−1RP−1,

S̃ = (S−RP−1Q)−1.

Lemma 3.3. Given a matrix A, a scalar α and I identity matrices of the appropriate size,

(AA′ + αI)−1A = A(A′A + αI)−1.

Proof.

(AA′ + αI)−1A = (AA′ + αI)−1AI

= (AA′ + αI)−1A(A′A + αI)(A′A + αI)−1

= (AA′ + αI)−1(AA′A + αA)(A′A + αI)−1

= (AA′ + αI)−1(AA′ + αI)A(A′A + αI)−1

= IA(A′A + αI)−1

= A(A′A + αI)−1

Using Lemma 3.2 we can rewrite (12) as follows

γ(n) =
[

y′ γ(n−1)
] [

K + αI k
k′ k(x,x) + α

]−1 [
k

k(x,x)

]
=

[
y′ γ(n−1)

] [
P Q
R S

]−1 [
Q

k(x,x)

]
=

[
y′ γ(n−1)

] [
P̃ Q̃
R̃ S̃

] [
Q

k(x,x)

]
, (14)



Methods 9

where P = K+ αI, Q = R′ = k, and S = k(x,x) + α (it will become clear that in this case all the
necessary inverses exist). If we now open (14) we get

γ(n) =
[

y′P̃ + γ(n−1)R̃ y′Q̃ + γ(n−1)S̃
] [

Q
k(x,x)

]
= y′P̃Q + γ(n−1)R̃Q + y′Q̃k(x,x) + γ(n−1)S̃k(x,x)

=
(
R̃Q + S̃k(x,x)

)
γ(n−1) +

(
y′P̃Q + y′Q̃k(x,x)

)
.

Therefore in (13),

s = R̃Q + S̃k(x,x), (15)

c = y′P̃Q + y′Q̃k(x,x). (16)

We have just found what s and c are. We will now proceed to show that s is always in the
interval [0, 1). First we will simplify slightly the definitions of R̃ and S̃ through the fact that in
our case R = Q′.

R̃ = −(S−RP−1Q)−1RP−1

= −(S−Q′P−1Q)−1Q′P−1,

S̃ = (S−RP−1Q)−1

= (S−Q′P−1Q)−1.

Now, we substitute R̃ and S̃ in (15) with these equations:

s = R̃Q + S̃k(x,x)
= −(S−Q′P−1Q)−1Q′P−1Q + (S−Q′P−1Q)−1k(x,x)
= (S−Q′P−1Q)−1(k(x,x)−Q′P−1Q)

=
k(x,x)− k′(K + αI)−1k

k(x,x)− k′(K + αI)−1k + α
. (17)

Since by definition α > 0, we only need to show that k(x,x) − k′(K + αI)−1k is nonnegative to
reach our goal. Equivalently, we need to show that k(x,x) ≥ k′(K + αI)−1k. We will first show
this for the linear kernel (that is, the normal dot product) and subsequently we will generalise the
result for the nonlinear kernel case. For the linear kernel we have

k′(K + αI)−1k = (Xx)′(XX′ + αI)−1Xx

= x′X′(XX′ + αI)−1Xx

= x′X′X(X′X + αI)−1x. (18)

Note that the last line follows by Lemma 3.3. We now have to show that for every x the following
holds:

x′x ≥ x′X′X(X′X + αI)−1x. (19)

In order to do this, we will first reduce (19) to a simpler form. Since X′X is symmetric it can be
diagonalised so that X′X = VΛV′, where the columns of the unitary matrix V are the eigenvectors
of X′X and Λ is the diagonal matrix made up of the corresponding eigenvalues λi. Recall that
since V is a unitary matrix, V−1 = V′, so V′V = VV′ = I.

Performing the substitution x = Vz in (19) is the same as considering it in the orthogonal basis
formed by the eigenvectors of X′X. Therefore, showing that (19) holds is equivalent to proving
that

(Vz)′Vz ≥ (Vz)′X′X(X′X + αI)−1Vz. (20)
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Clearly, the left hand side of (20) is equal to z′z since

x′x = (Vz)′Vz

= z′V′Vz

= z′z.

For the right hand side of (20) we have

x′X′X(X′X + αI)−1x = (Vz)′X′X(X′X + αI)−1Vz

= z′V′VΛV′(VΛV′ + αI)−1Vz

= z′ΛV′(VΛV′ + αI)−1Vz

= z′ΛV′(VΛV′ + αVV′)−1Vz

= z′ΛV′ (V(Λ + αI)V′)−1
Vz

= z′ΛV′(V′)−1(Λ + αI)−1(V)−1Vz

= z′ΛV′V(Λ + αI)−1V′Vz

= z′Λ(Λ + αI)−1z.

So now, showing that (19) holds is equivalent to proving that

z′z ≥ z′Λ(Λ + αI)−1z.

Since X′X is positive semi-definite all its eigenvalues are nonnegative. Therefore all the elements
in the diagonal matrix Λ(Λ + αI)−1 are 0 ≤ λi

λi+α < 1. It follows that

z′z > z′Λ(Λ + αI)−1z,

which means that
x′x > (Xx)′(XX′ + αI)−1Xx.

We have just proved the linear case. The nonlinear kernel case follows from the linear case in the
limit (because of a finite-dimensional approximation similar to Gammerman et al. [2004])

k(x,x) ≥ k′(K + αI)−1k,

which ends this first part of our proof.

We have just shown that 0 ≤ s < 1, therefore the line γ(n) = sγ(n−1) + c intercepts the bisector
at some point r. This means that γ(n) converges to this same point. We will now analyse the
last term of this equation (that is c) and consequently show that the point r coincides with the
prediction made by KRR for the same signal. We will first simplify the definitions of P̃ and Q̃.

P̃ = P−1 + P−1Q(S−RP−1Q)−1RP−1

= P−1 + P−1Q(S−Q′P−1Q)−1Q′P−1,

Q̃ = −P−1Q(S−RP−1Q)−1

= −P−1Q(S−Q′P−1Q)−1.

We now substitute these equations for P̃ and Q̃ in (16).

c = y′P̃Q + y′Q̃k(x,x)
= y′P−1Q + y′P−1Q(S−Q′P−1Q)−1Q′P−1Q− y′P−1Q(S−Q′P−1Q)−1k(x,x)
= y′P−1Q

(
1 + (S−Q′P−1Q)−1Q′P−1Q− (S−Q′P−1Q)−1k(x,x)

)
= y′P−1Q

(
1 + (S−Q′P−1Q)−1(Q′P−1Q− k(x,x))

)
= y′P−1Q (1 + (−s))
= y′(K + αI)−1k(1− s)



Methods 11

But y′(K + αI)−1k = γKRR, that is KRR’s prediction for the same signal, therefore

c = (1− s)γKRR. (21)

This means that (13) can be rewritten as

γ(n) = sγ(n−1) + (1− s)γKRR. (22)

At fixed point r,

r = sr + (1− s)γKRR

r − sr = (1− s)γKRR

(1− s)r = (1− s)γKRR

r =
(1− s)γKRR

(1− s)
= γKRR.

So the fixed point r is in fact the KRR prediction for the signal x.

In summary, we have shown that for any signal, IKAAR’s predictions start from KAAR’s prediction
and always converge towards KRR’s prediction.

Remark 3.4. As it currently stands, to compute the IKAAR prediction for an iteration n it is
necessary to compute all the previous ones. We will now show how any prediction can be computed
directly. Given (22) and the fact that γ(0) = 0, we will prove by induction that for all n such
that n ≥ 1,

γ(n) = γKRR − snγKRR (23)
= (1− sn)γKRR.

Recall that s is given by (17). Clearly, (23) holds for n = 1, since

γ(1) = sγ(1−1) + (1− s)γKRR

= sγ(0) + γKRR − sγKRR

= γKRR − sγKRR.

Let us assume that (23) holds for any n ≥ 1. We will now show that it also holds for n + 1.

γ(n+1) = sγ(n) + (1− s)γKRR

= s (γKRR − snγKRR) + (1− s)γKRR

= sγKRR − sn+1γKRR + γKRR − sγKRR

= γKRR − sn+1γKRR.

Since (23) holds for n = 1 and for n + 1, then by the inductive principle it follows that it holds for
any n ≥ 1.
Remark 3.5. The convergence of IKAAR’s predictions to those of KRR’s is exponential. This is
made clear in (23).
Remark 3.6. In Gammerman et al. [2004] a formula for KAAR’s predictions in terms of KRR’s pre-
dictions is given. We will now derive the same formula by starting from our formula for IKAAR (23)
and taking n = 1 (that is, when IKAAR is equivalent to KAAR). Note that this is the same as the
definition of c in (21) since from (13) it is clear that γ(1) = c.

γ(1) = γKRR − sγKRR

= γKRR −
(

k(x,x)− k′(K + αI)−1k
k(x,x)− k′(K + αI)−1k + α

)
γKRR

=

(
k(x,x)− k′(K + αI)−1k + α

)
γKRR −

(
k(x,x)− k′(K + αI)−1k

)
γKRR

k(x,x)− k′(K + αI)−1k + α

=
αγKRR

k(x,x)− k′(K + αI)−1k + α
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3.3 Controlled KAAR

In Figure 1 it can be seen that KRR’s predictions follow the general behaviour of the true outcomes,
however they fluctuate a lot around them. On the other hand KAAR’s predictions do not fluctuate
but are too rigid and end up not following the true outcome’s behaviour sufficiently well. While
the latter’s performance might be desirable in cases where the data is corrupted with a high level
of noise we conclude that in this case it is too drastic. The reason why KAAR is so rigid is that
it tries to minimise the value of the prediction itself (see the second term in (6)). In our new
method, the Controlled Kernel Aggregating Algorithm for Regression (CKAAR), we try to control
this behaviour by adding a coefficient to this second term such that our objective is to minimise

LC = α‖wC‖2 + β〈wC,x`+1〉2 +
∑̀
i=1

(yi − 〈wC,xi〉)2, (24)

where 0 ≤ β ≤ 1. It is immediately clear that when β = 0 CKAAR should behave exactly like
KRR and conversely like KAAR when β = 1. When β is somewhere in between it is hoped that
CKAAR will output predictions that are not as rigid as those of KAAR and do not fluctuate as
much as those of KRR. In a way, it can be said that we are using some previous knowledge about
the ‘noisiness’ of the data to (hopefully) predict better.

Letting w = wC, we can express (24) in matrix notation to give us

LC = α(w′w) + β(w′x`+1)2 + (y −Xw)2

= α(w′w) + (ỹ − X̂w)2

= α(w′w) + ỹ′ỹ − 2w′X̂
′
ỹ + w′X̂

′
X̂w, (25)

where X̂ = (X′,
√

β x`+1)′ and ỹ = (y′, 0)′. If we differentiate (25) with respect to w, divide
throughout by 2 and set it equal to 0 we get

1
2

∂LC

∂w
= αw − X̂

′
ỹ + X̂

′
X̂w = 0, (26)

which means that the CKAAR solution (wC) to the regression problem for a new example x`+1 is

wC = (αI + X̂
′
X̂)−1X̂

′
ỹ. (27)

The solution we have just derived is for the linear case only. To handle the nonlinear case we can
apply a transformation φ to all the signals such that they are mapped to a feature space where
we proceed to find a linear solution. Performing these transformations and finding the solution in
feature space could be very computationally expensive and sometimes not possible. Therefore, we
follow Gammerman et al. [2004] to formulate our solution in dual variables so that it can be used
with kernels. Let the new signal be x = x`+1, M = (φ(x1), . . . , φ(x`),

√
β φ(x))′, and ωC be the

CKAAR solution in feature space. From (27) we know that

γCKAAR = ω′
Cφ(x)

= ((αI + M′M)−1M′ỹ)′φ(x)
= φ(x)′(αI + M′M)−1M′ỹ.

By Lemma 3.3 we know that (αI + M′M)−1M′ = M′(αI + MM′)−1. Therefore,

γCKAAR = φ(x)′M′(αI + MM′)−1ỹ

= ((αI + MM′)−1ỹ)′Mφ(x)
= ỹ′(αI + MM′)−1Mφ(x).

As can be seen we have ended up with a formulation where all the signals appear in dot products,
that is, the dual formulation. We can now replace these dot products with kernel functions which
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Figure 3 KRR, KAAR, IKAAR and CKAAR approximating a signal-outcome behaviour.

by definition are dot products in some feature space (φ is the transformation performed by the
kernel). In this way we will effectively be doing linear regression in the feature space induced by
the chosen kernel. A prediction for a new signal x = x`+1 using the kernel version of CKAAR is

γCKAAR = ỹ′(αI + K̂)−1k̂, (28)

where

K̂ =


k(x1,x1) . . . k(x1,x`)

√
β k(x1,x)

...
. . .

...
...

k(x`,x1) . . . k(x`,x`)
√

β k(x`,x)√
β k(x,x1) . . .

√
β k(x,x`) β k(x,x)

 , and k̂ =


k(x1,x)

...
k(x`,x)√
β k(x,x)

 .

Clearly, (αI+ K̂) is still positive definite since K̂ is a Gram matrix of vectors in Hilbert space and
one of them happens to be multiplied by

√
β.

4 Experimental Results

In this section we will be presenting the performance of our new methods in relation to KRR
and KAAR on several datasets. However, before doing that we will revisit the motivation of our
research and show a new version of Figure 1 with IKAAR and CKAAR predictions included. For
these results, which are shown in Figure 3, the CKAAR control parameter β = 0.01 and IKAAR’s
chosen iteration n = 88. As can be seen, both IKAAR and CKAAR approximate the true outcomes
better than either KRR or KAAR, having a square loss of 7.44 and 7.51 respectively. In addition,
the variance of IKAAR’s predictions is 26.68, whereas that of CKAAR is 21.92. This means that
our new methods do not fluctuate as much as KRR and are not as rigid as KAAR. This behaviour
was indeed the objective of our research.

4.1 Method

Our experimentation method follows that of Drucker et al. [1997]:
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1. Split a random permutation of the dataset into three parts: a training set, a validation set,
and a testing set.

2. Train the regression technique on the training set using several combinations of parameters
(for example the kernel parameters). This gives us several regressors.

3. Test the performance of all the different regressors on the validation set.

4. Choose the regressor (more specifically, the set of parameters) that performs best on the
validation set. Let us call this the best regressor.

5. Train the best regressor on the training set (ignore the validation set) and measure the mean
loss it suffers on the testing set.

6. Repeat steps 1 to 5 a specified number of times.

7. Output the average of the mean losses of the regression technique over all the runs.

It is worth noting that in our experiments the actual value of α is calculated by multiplying the
specified parameter by the mean of the diagonal (i.e. the trace divided by the dimension) of the
kernel matrix. This is done so that the values added to the diagonal do not overshadow the rest
of the values in the kernel matrix or conversely, to be large enough to make a difference.

It is always a good idea to somehow normalise or standardise the data prior to applying an algorithm
to it. Features that are too big can cause computational problems and a feature that is consistently
much larger than another one may be given undue extra importance. Since the spline kernels
require that all the features in the signals be nonnegative we chose to normalise the features to the
interval [0,1]. Let X be the matrix containing all the training signals (` in total) in the dataset,
one per row. It follows that every column of X corresponds to all the values of a particular feature
in the training set. Let xij be the element at the ith row and the jth column of X. Given a
signal z of length n, the normalised version of its jth element zj which we shall denote with zj , is
calculated by

zj =
zj −mj

rj
,

where mj = min`
i=1(xij) and rj =

(
max`

i=1(xij)−min`
i=1(xij)

)
. Therefore, the normalised version

of z is z = (z1, z2, . . . , zn)′.

The translation of the outcomes vector y such that it has a mean of 0 is done by taking the
difference between each element and the mean of y. Let yi be the ith element of y and yi be its
corresponding translated value. We carry on the translation like so:

yi = yi −
∑`

j=1(yj)
`

.

4.2 Statistical Significance

It is not always obvious to decide whether a difference in some results is really an improvement or
not, especially if this difference is small. For instance, could this improvement be due to chance
alone? There exist several statistical tests that output the probability that the difference happens
by chance (known as a p-value) and therefore is not significant. These statistical significance tests
can be broadly split up into two: parametric tests and nonparametric tests. The first assume that
the differences follow a particular distribution (typically the normal distribution) while the latter
do not make such assumptions. Since we do not know what the distribution of the differences
between two methods is, we use nonparametric tests in this paper6. Specifically, we use the Fisher

6Preliminary tests using the Kolmogorov-Smirnov test for normality (see Hollander and Wolfe [1973]) show that
the distribution of the differences between the results of two methods in our experiments is in fact not normal.
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Sign Test (FST) and the Wilcoxon Signed Rank Test (WSRT) (see, for example, Hollander and
Wolfe [1973]). The FST answers the question of how often a method is better than another and
whether it is significant, while WSRT answer the question of how much it is better and once
again whether it is significant. More details on these two significance tests are given below. By
convention, a p-value of less than 0.05 (or 5%) is taken to mean that the difference is significant.

4.2.1 The Fisher Sign Test

The Fisher Sign Test (FST) is one of the simplest tests available. The only assumption it makes is
that the probability of observing a positive difference is equal to that of observing a negative one
and that the differences have median value 0. This assumption is the FST’s null hypothesis, and
therefore the probability that it holds for the given data is calculated.

The procedure for this test is as follows. Count the number of positive (c+) and negative differ-
ences (c−), ignoring all zero values. The null hypothesis states that approximately 50% of the
differences should be negative and the rest should be positive. So what is the probability that
m = min(c+, c−) out of t = c+ + c− trials turn out to be positive/negative just by chance? Since
c+ and c− are Binomially distributed, this is found with the following formula:

p-value ≤ 2×
m∑

i=0

(
t

i

)
× 1

2t
.

4.2.2 The Wilcoxon Signed Rank Test

The Wilcoxon Signed Rank Test (WSRT) is a significance test that is much more sensitive than
the Fisher Sign Test since in addition to the sign of the differences, it also considers their size. The
WSRT assumes that it is possible to sort the differences and that they are mutually independent
and come from a continuous population that is symmetric about zero. In our case both these
assumptions are true.

To carry out this test, the absolute values of the differences are ranked from smallest to greatest,
ignoring all zero differences. Ties are given the same rank by averaging the corresponding ranks.
To the ranks the original sign of the differences is then affixed (by multiplying them with −1 or
+1) and the sum of all positive ranks (r+) is taken. The total number of differences is counted (t)
keeping in mind that zero differences are ignored. With these two statistics, r+ and t it is possible
to get the corresponding p-value from an appropriate table.

4.3 Results

We conducted experiments on one artificial dataset called the Mexican Hat dataset and on several
real-world datasets. We used four kernels for most of our experiments: a polynomial kernel, a
spline kernel, an ANOVA spline kernel, and a Gaussian RBF kernel (for more information on
these kernels see, for example, Schölkopf and Smola [2002]). The results and more details on these
datasets and their respective experiments (including parameters used) are given in the sections
below. Note that for every dataset the average of the mean square losses per run (MSE) and the
corresponding variance (Var) of every regression method is reported. Moreover, p-values are given
for the result of every method as compared to KRR and KAAR, representing the probability that
the differences between them happen by chance (recall that by convention a p-value of less than
0.05 is taken to mean that the difference is significant).
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Abalone
Results by Kernel WSRT p-values FST p-values

Anova MSE Var KRR KAAR KRR KAAR
KRR 5.078 1.107 + 4.66× 10−4 + 2.10× 10−2

KAAR 4.806 0.117 + 4.66× 10−4 + 2.10× 10−2

IKAAR 4.793 0.121 + 3.59× 10−6 − 8.74× 10−1 + 4.61× 10−5 − 5.69× 10−2

CKAAR 4.990 0.960 − 4.54× 10−1 + 3.62× 10−2 − 9.20× 10−1 − 8.15× 10−1

Spline MSE Var KRR KAAR KRR KAAR
KRR 5.333 3.242 + 3.86× 10−6 + 3.52× 10−3

KAAR 4.868 0.101 + 3.86× 10−6 + 3.52× 10−3

IKAAR 4.868 0.099 + 9.24× 10−9 − 2.12× 10−1 + 1.12× 10−9 + 4.09× 10−4

CKAAR 4.989 0.278 + 3.05× 10−2 + 3.15× 10−2 − 8.86× 10−2 − 1.00× 100

Poly MSE Var KRR KAAR KRR KAAR
KRR 16928.731 2.387× 1010 + 8.12× 10−20 + 3.06× 10−17

KAAR 4.822 0.107 + 8.12× 10−20 + 3.06× 10−17

IKAAR 4.879 0.201 + 2.89× 10−21 + 8.73× 10−8 + 5.07× 10−20 + 4.83× 10−13

CKAAR 173.134 1.341× 106 + 7.94× 10−7 + 1.02× 10−4 + 8.74× 10−4 + 2.05× 10−2

RBF MSE Var KRR KAAR KRR KAAR
KRR 5.734 14.326 + 2.32× 10−9 + 5.51× 10−8

KAAR 4.720 0.110 + 2.32× 10−9 + 5.51× 10−8

IKAAR 4.855 0.312 + 7.47× 10−6 + 3.53× 10−7 + 1.83× 10−5 + 3.31× 10−5

CKAAR 5.538 14.143 + 6.62× 10−3 + 9.06× 10−6 − 8.86× 10−2 + 8.78× 10−4

Table 1 Results for the Abalone dataset. The statistical significance columns show whether the
difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

4.3.1 The Abalone Dataset

The age in years of an abalone is determined by counting the number of rings in a cross-section of
its shell through a microscope and adding 1.5. The goal of the Abalone dataset [Newman et al.,
1998] is to predict the ages of abalones from 8 features corresponding to physical measurements.
These measurements which include the length and weight are relatively easy to obtain. See the
results in Table 1.

Dataset size: 4177
Training set size: 1000
Validation set size: 100
Testing set size: 3077
Runs: 100
α: {2−16, 2−14, . . . , 2−4}
CKAAR’s β: {0, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 21, . . . , 201}
Polynomial kernel degree: {2, 4, . . . , 8}
ANOVA spline kernel order: {2, 4, . . . , 8}

4.3.2 The Auto-MPG Dataset

The Auto-MPG dataset [Newman et al., 1998] contains details of cars and their performance in
terms of their fuel consumption in miles per gallon (mpg). In our experiment the mpg of a car
given its attributes was predicted. 7 attributes were used, including features like the number of
cylinders in the car’s engine and its weight. Signals that have missing values were not included in
the experiment. The results are in Table 2.

Dataset size: 392
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Auto-MPG
Results by Kernel WSRT p-values FST p-values

Anova MSE Var KRR KAAR KRR KAAR
KRR 8.033 3.012 + 1.01× 10−27 + 6.45× 10−24

KAAR 12.719 92.291 + 1.01× 10−27 + 6.45× 10−24

IKAAR 8.053 2.627 − 5.53× 10−1 + 3.02× 10−26 − 1.42× 10−1 + 3.21× 10−19

CKAAR 8.047 2.521 − 1.30× 10−1 + 3.38× 10−27 − 1.33× 10−1 + 2.38× 10−23

Spline MSE Var KRR KAAR KRR KAAR
KRR 8.139 3.428 + 1.10× 10−28 + 7.97× 10−27

KAAR 13.515 74.498 + 1.10× 10−28 + 7.97× 10−27

IKAAR 8.274 4.062 − 9.25× 10−1 + 8.46× 10−28 + 3.96× 10−2 + 1.25× 10−22

CKAAR 8.170 2.861 − 6.75× 10−2 + 1.36× 10−28 − 1.33× 10−1 + 3.16× 10−28

Poly MSE Var KRR KAAR KRR KAAR
KRR 8.870 9.804 + 5.83× 10−24 + 1.25× 10−22

KAAR 13.565 33.258 + 5.83× 10−24 + 1.25× 10−22

IKAAR 8.826 6.971 − 8.60× 10−1 + 2.79× 10−25 − 1.75× 10−1 + 2.73× 10−20

CKAAR 8.838 8.647 − 9.65× 10−2 + 1.81× 10−25 − 5.69× 10−2 + 1.24× 10−23

RBF MSE Var KRR KAAR KRR KAAR
KRR 8.379 5.803 + 7.17× 10−25 + 2.73× 10−20

KAAR 13.593 71.111 + 7.17× 10−25 + 2.73× 10−20

IKAAR 8.361 4.717 − 1.73× 10−1 + 1.03× 10−24 − 2.41× 10−1 + 1.75× 10−19

CKAAR 8.370 5.466 + 2.03× 10−2 + 3.85× 10−25 + 2.10× 10−2 + 2.01× 10−21

Table 2 Results for the Auto-MPG dataset. The statistical significance columns show whether
the difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

Training set size: 200
Validation set size: 50
Testing set size: 142
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 11, . . . , 81}
Polynomial kernel degree: {2, 3, . . . , 6}
ANOVA spline kernel order: {2, 3, . . . , 7}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.3 The Auto-Price Dataset

The aim for the Auto-Price dataset [Newman et al., 1998] is to predict the price of a car from
15 features which include characteristics like length, weight, number of doors, engine type and
insurance risk rating. Those signals in the original dataset that had missing features and 10
nominal features were removed. The results are in Table 3.

Dataset size: 159
Training set size: 100
Validation set size: 30
Testing set size: 29
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 11, . . . , 101}
Polynomial kernel degree: {2, 3, . . . , 6}
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Auto-Price
Results by Kernel WSRT p-values FST p-values

Anova MSE×106 Var×1013 KRR KAAR KRR KAAR
KRR 8.116 18.482 + 8.97× 10−16 + 2.54× 10−16

KAAR 10.922 4.771 + 8.88× 10−16 + 2.54× 10−16

IKAAR 7.264 3.722 + 1.21× 10−3 + 3.25× 10−14 + 1.32× 10−4 + 4.22× 10−13

CKAAR 8.810 19.522 + 3.45× 10−2 + 5.30× 10−14 − 1.93× 10−1 + 4.83× 10−13

Spline MSE×106 Var×1013 KRR KAAR KRR KAAR
KRR 11.184 34.103 + 1.13× 10−17 + 2.01× 10−21

KAAR 21.888 16.523 + 1.13× 10−17 + 2.01× 10−21

IKAAR 10.031 6.888 − 1.29× 10−1 + 3.00× 10−29 + 2.80× 10−2 + 1.59× 10−28

CKAAR 11.657 32.250 + 2.38× 10−2 + 1.93× 10−20 − 6.17× 10−1 + 2.63× 10−25

Poly MSE×106 Var×1013 KRR KAAR KRR KAAR
KRR 7.478 7.821 + 1.81× 10−19 + 3.06× 10−17

KAAR 13.515 6.984 + 1.81× 10−19 + 3.06× 10−17

IKAAR 7.873 3.931 + 5.56× 10−3 + 1.11× 10−17 + 5.09× 10−4 + 2.46× 10−13

CKAAR 8.052 8.525 + 1.84× 10−4 + 1.71× 10−19 + 8.74× 10−4 + 2.54× 10−16

RBF MSE×106 Var×1013 KRR KAAR KRR KAAR
KRR 7.126 1.773 + 6.36× 10−11 + 5.64× 10−7

KAAR 9.550 3.095 + 6.36× 10−11 + 5.64× 10−7

IKAAR 7.751 3.166 + 1.91× 10−3 + 1.74× 10−8 + 4.04× 10−3 + 3.48× 10−7

CKAAR 7.630 2.558 − 5.77× 10−2 + 6.34× 10−8 − 4.84× 10−1 + 1.92× 10−6

Table 3 Results for the Auto-Price dataset. The statistical significance columns show whether
the difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

ANOVA spline kernel order: {2, 4, 6, 8, 10, 12, 15}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.4 The Boston Housing Dataset

The Boston Housing dataset [Newman et al., 1998] concerns the prices of houses in the suburbs of
Boston. A signal corresponds to a particular suburb and contains 13 attributes, including features
like the amount of air pollution and the average number of rooms. An outcome is simply the
median price of the houses in thousands of dollars. We used the same partitioning of the dataset
as in Saunders et al. [1998] so our results are directly comparable to those reported there. The
results are in Table 4.

Dataset size: 506
Training set size: 401
Validation set size: 80
Testing set size: 25
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 11, . . . , 151}
Polynomial kernel degree: {4, 5}
ANOVA spline kernel order: {2, 4, 6, 8, 10, 13}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.5 The Gaze Dataset

The outcomes in the Gaze dataset [Quiñonero-Candela et al., to appear in 2006] are the horizontal
positions of targets displayed on a computer monitor measured in pixels. The corresponding
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Boston Housing
Results by Kernel WSRT p-values FST p-values

Anova MSE Var KRR KAAR KRR KAAR
KRR 7.307 8.523 + 1.43× 10−27 + 1.25× 10−22

KAAR 21.818 209.934 + 1.43× 10−27 + 1.25× 10−22

IKAAR 7.207 11.404 + 7.13× 10−3 + 1.01× 10−27 + 1.79× 10−3 + 1.25× 10−22

CKAAR 7.230 12.965 − 6.70× 10−2 + 5.85× 10−28 − 5.69× 10−2 + 6.45× 10−24

Spline MSE Var KRR KAAR KRR KAAR
KRR 7.331 8.786 + 1.74× 10−28 + 6.45× 10−24

KAAR 23.967 229.143 + 1.74× 10−28 + 6.45× 10−24

IKAAR 7.123 10.854 + 1.34× 10−2 + 2.67× 10−28 + 1.20× 10−2 + 6.45× 10−24

CKAAR 7.102 12.793 + 5.05× 10−4 + 6.78× 10−29 + 3.52× 10−3 + 2.63× 10−25

Poly MSE Var KRR KAAR KRR KAAR
KRR 7.924 9.916 + 1.37× 10−26 + 2.01× 10−21

KAAR 20.870 190.051 + 1.37× 10−26 + 2.01× 10−21

IKAAR 8.260 22.133 − 8.20× 10−1 + 3.02× 10−26 − 2.71× 10−1 + 2.73× 10−20

CKAAR 7.862 11.995 − 9.59× 10−2 + 4.36× 10−27 − 1.33× 10−1 + 1.25× 10−22

RBF MSE Var KRR KAAR KRR KAAR
KRR 8.375 18.111 + 1.40× 10−16 + 2.61× 10−12

KAAR 12.507 32.751 + 1.40× 10−16 + 2.61× 10−12

IKAAR 8.298 18.402 + 2.95× 10−2 + 3.23× 10−17 + 1.60× 10−2 + 8.28× 10−14

CKAAR 8.297 18.818 − 8.95× 10−1 + 6.18× 10−17 − 7.64× 10−1 + 8.28× 10−14

Table 4 Results for the Boston Housing dataset. The statistical significance columns show whether
the difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

12 features are measurements from head mounted cameras that focus on markers on the monitor
and estimate the positions of the eyes of the subject looking at the monitor. Since the cameras
occasionally lose their calibration, the dataset contains several severe outliers. Note that only the
training and validation sets were used from the original dataset, since the outcomes of the testing
set were not accessible. We did not remove any of the signals for our experiments (not even the
outliers). See Table 5 for the results.

Dataset size: 450
Training set size: 350
Validation set size: 70
Testing set size: 30
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {2−15, 2−14, 20}
IKAAR’s iteration: {1, 11, . . . , 101}
Polynomial kernel degree: {2, 4, . . . , 8}
ANOVA spline kernel order: {2, 4, . . . , 12}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.6 The Mexican Hat Dataset

The artificial Mexican Hat dataset is generated by the following function

y =
sin(|x|)
|x|

+ ε, (29)

taking x from the interval [−10, 10] and ε being some noise. Plotting this x against y gives a graph
that somewhat resembles the cross section of a tradition Mexican hat, hence the name. In our
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Gaze
Results by Kernel WSRT p-values FST p-values

Anova MSE×103 Var×106 KRR KAAR KRR KAAR
KRR 2.259 7.429 + 3.16× 10−30 + 3.16× 10−30

KAAR 9.000 23.376 + 3.16× 10−30 + 3.16× 10−30

IKAAR 2.030 0.752 − 1.14× 10−1 + 1.58× 10−30 − 3.20× 10−1 + 1.58× 10−30

CKAAR 2.227 7.432 + 6.20× 10−4 + 3.16× 10−30 + 2.55× 10−4 + 3.16× 10−30

Spline MSE×103 Var×106 KRR KAAR KRR KAAR
KRR 2.447 10.051 + 3.16× 10−30 + 3.16× 10−30

KAAR 12.676 25.380 + 3.16× 10−30 + 3.16× 10−30

IKAAR 33.019 95646.442 − 1.01× 10−1 + 8.32× 10−24 − 1.46× 10−1 + 1.59× 10−28

CKAAR 2.989 81.617 + 7.29× 10−3 + 8.32× 10−24 + 3.52× 10−3 + 1.59× 10−28

Poly MSE×103 Var×106 KRR KAAR KRR KAAR
KRR 12.786 10968.248 + 5.08× 10−20 + 1.25× 10−22

KAAR 5.748 6.569 + 5.08× 10−20 + 1.25× 10−22

IKAAR 2.057 0.595 + 1.34× 10−2 + 8.68× 10−29 + 2.95× 10−2 + 7.97× 10−27

CKAAR 11.905 9718.385 + 9.39× 10−4 + 1.28× 10−23 + 3.22× 10−5 + 7.97× 10−27

RBF MSE×103 Var×106 KRR KAAR KRR KAAR
KRR 2.744 17.087 + 8.12× 10−20 + 2.01× 10−21

KAAR 9.694 22.091 + 8.12× 10−20 + 2.01× 10−21

IKAAR 2.386 7.301 − 1.10× 10−1 + 8.92× 10−22 − 3.20× 10−1 + 6.45× 10−24

CKAAR 2.548 12.845 + 3.57× 10−2 + 1.04× 10−20 + 3.52× 10−2 + 6.45× 10−24

Table 5 Results for the Gaze dataset. The statistical significance columns show whether the
difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

experiments we took 100 signals from the interval (and their corresponding outcomes) starting from
-10 and going up to 10 with a step of 0.2, skipping 0. Two separate experiments were performed
using noise (ε) taken from normal distributions with standard deviations 0.2 and 0.5. The results
are in Table 6. Note that the testing outcomes are not corrupted by noise, therefore the losses
reported are due to the model error only.

Dataset size: 100
Training set size: 50
Validation set size: 30
Testing set size: 20
Runs: 1000
α: 0.1
CKAAR’s β: {0, 0.01, 0.02, . . . , 1}
IKAAR’s iteration: {1, 2, . . . , 5}
Polynomial kernel degree: 6

4.3.7 The Relative CPU Performance Dataset

The Relative CPU Performance dataset [Newman et al., 1998] concerns itself with the problem of
predicting the relative performance of a CPU given 6 features which include the size of its cache
memory and its cycles per second. Two nominal features were removed. See Table 7 for the results.

Dataset size: 209
Training set size: 150
Validation set size: 34
Testing set size: 25
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
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Mexican Hat with noise from N (0, 0.2)
Results by Kernel WSRT p-values FST p-values

Spline MSE×10−2 Var×10−4 KRR KAAR KRR KAAR
KRR 7.555 4.359 + 6.96× 10−71 + 1.42× 10−67

KAAR 7.651 4.727 + 6.96× 10−71 + 1.42× 10−67

IKAAR 7.552 4.453 + 4.89× 10−4 + 1.05× 10−101 + 3.02× 10−9 + 4.59× 10−49

CKAAR 7.526 4.413 + 1.70× 10−53 + 4.20× 10−134 + 7.67× 10−105 + 1.56× 10−119

Poly MSE×10−2 Var×10−4 KRR KAAR KRR KAAR
KRR 9.472 5.827 + 2.06× 10−26 + 5.63× 10−13

KAAR 9.376 6.099 + 2.06× 10−26 + 5.63× 10−13

IKAAR 9.376 5.931 + 1.37× 10−58 − 8.53× 10−1 + 1.48× 10−59 + 1.77× 10−2

CKAAR 9.374 5.912 + 7.98× 10−78 − 1.16× 10−1 + 1.27× 10−79 − 1.45× 10−1

Mexican Hat with noise from N (0, 0.5)
Results by Kernel WSRT p-values FST p-values

Spline MSE×10−2 Var×10−4 KRR KAAR KRR KAAR
KRR 9.182 8.548 + 7.50× 10−3 + 9.52× 10−9

KAAR 9.163 8.831 + 7.50× 10−3 + 9.52× 10−9

IKAAR 9.127 8.738 + 3.50× 10−4 + 2.15× 10−32 − 6.35× 10−1 + 6.89× 10−15

CKAAR 9.116 8.727 + 4.87× 10−25 + 1.67× 10−47 + 4.98× 10−53 + 9.14× 10−42

Poly MSE×10−2 Var×10−4 KRR KAAR KRR KAAR
KRR 11.362 11.785 + 9.08× 10−109 + 5.42× 10−64

KAAR 11.037 11.232 + 9.08× 10−109 + 5.42× 10−64

IKAAR 11.039 11.164 + 2.88× 10−115 + 2.26× 10−11 + 1.27× 10−79 + 3.51× 10−13

CKAAR 11.047 11.169 + 4.36× 10−125 + 3.38× 10−3 + 8.71× 10−115 − 2.09× 10−1

Table 6 Results for the Mexican Hat dataset. The statistical significance columns show whether
the difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.

IKAAR’s iteration: {1, 11, . . . , 101}
Polynomial kernel degree: {2, 3, . . . , 6}
ANOVA spline kernel order: {1, 2, . . . , 6}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.8 The Servo Dataset

For the Servo dataset [Newman et al., 1998] the problem is to predict the rise time of a servomech-
anism in terms of 4 features: two continuous gain settings and two discrete choices of mechanical
linkages. See the results in Table 8.

Dataset size: 167
Training set size: 100
Validation set size: 40
Testing set size: 27
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 11, . . . , 101}
Polynomial kernel degree: {2, 3, . . . , 6}
ANOVA spline kernel order: {1, 2, . . . , 4}
RBF kernel σ: {2−10, 2−8, . . . , 22}

4.3.9 The Wisconsin Prognostic Breast Cancer Dataset

In the Wisconsin Prognostic Breast Cancer dataset [Newman et al., 1998] the problem is to predict
the time for a patient to recur (or her disease free time). 32 features are given, including charac-
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Relative CPU Performance
Results by Kernel WSRT p-values FST p-values

Anova MSE×103 Var×108 KRR KAAR KRR KAAR
KRR 3.768 0.250 + 4.60× 10−10 + 1.67× 10−6

KAAR 11.080 2.514 + 4.60× 10−10 + 1.67× 10−6

IKAAR 6.871 1.573 − 5.77× 10−1 + 7.67× 10−8 − 5.58× 10−2 + 2.53× 10−5

CKAAR 5.472 1.011 − 8.74× 10−1 + 1.37× 10−10 − 1.00× 100 + 5.51× 10−8

Spline MSE×103 Var×108 KRR KAAR KRR KAAR
KRR 4.337 0.366 + 1.34× 10−12 + 1.12× 10−9

KAAR 15.050 4.031 + 1.34× 10−12 + 1.12× 10−9

IKAAR 7.699 1.960 − 2.87× 10−1 + 5.68× 10−14 − 7.41× 10−1 + 1.86× 10−9

CKAAR 6.004 1.379 − 3.57× 10−1 + 5.50× 10−14 − 1.33× 10−1 + 1.12× 10−9

Poly MSE×103 Var×108 KRR KAAR KRR KAAR
KRR 14.986 22.142 + 5.93× 10−5 + 3.22× 10−5

KAAR 13.596 3.452 + 5.93× 10−5 + 3.22× 10−5

IKAAR 9.101 2.554 − 3.44× 10−1 + 1.93× 10−7 − 3.48× 10−1 + 1.92× 10−6

CKAAR 15.005 21.856 − 4.75× 10−1 + 3.09× 10−6 − 2.71× 10−1 + 4.69× 10−6

RBF MSE×103 Var×108 KRR KAAR KRR KAAR
KRR 5.835 0.884 + 1.26× 10−10 + 4.34× 10−9

KAAR 9.986 1.957 + 1.26× 10−10 + 4.34× 10−9

IKAAR 7.124 1.558 − 7.13× 10−1 + 9.28× 10−7 − 7.49× 10−1 + 6.34× 10−6

CKAAR 6.571 1.243 − 6.80× 10−1 + 3.33× 10−11 − 4.84× 10−1 + 1.79× 10−9

Table 7 Results for the Relative CPU Performance dataset. The statistical significance columns
show whether the difference in results between a method and KRR or KAAR is significant (+) or
not (−). The corresponding p-values are also given.

Servo
Results by Kernel WSRT p-values FST p-values

Anova MSE Var KRR KAAR KRR KAAR
KRR 0.443 0.122 + 5.12× 10−18 + 3.06× 10−17

KAAR 0.625 0.190 + 5.12× 10−18 + 3.06× 10−17

IKAAR 0.452 0.122 − 2.37× 10−1 + 1.52× 10−16 − 1.51× 10−1 + 3.30× 10−15

CKAAR 0.445 0.124 − 6.62× 10−1 + 3.17× 10−19 − 1.33× 10−1 + 3.21× 10−19

Spline MSE Var KRR KAAR KRR KAAR
KRR 0.447 0.117 + 1.16× 10−18 + 1.91× 10−15

KAAR 0.651 0.206 + 1.16× 10−18 + 1.91× 10−15

IKAAR 0.452 0.118 + 3.19× 10−2 + 1.45× 10−17 − 6.42× 10−2 + 9.83× 10−14

CKAAR 0.445 0.121 − 6.20× 10−2 + 1.33× 10−20 + 3.52× 10−2 + 3.21× 10−19

Poly MSE Var KRR KAAR KRR KAAR
KRR 0.530 0.140 + 8.30× 10−15 + 2.61× 10−12

KAAR 0.693 0.211 + 8.44× 10−15 + 2.61× 10−12

IKAAR 0.545 0.148 − 6.32× 10−1 + 2.35× 10−13 − 5.94× 10−1 + 1.29× 10−12

CKAAR 0.538 0.160 − 4.30× 10−1 + 4.17× 10−19 + 3.52× 10−2 + 3.06× 10−17

RBF MSE Var KRR KAAR KRR KAAR
KRR 0.507 0.168 + 6.60× 10−14 + 4.83× 10−13

KAAR 0.673 0.226 + 6.59× 10−14 + 4.83× 10−13

IKAAR 0.514 0.168 − 9.07× 10−1 + 7.27× 10−13 − 2.84× 10−1 + 5.78× 10−11

CKAAR 0.505 0.153 − 1.00× 100 + 2.05× 10−15 − 9.20× 10−1 + 1.91× 10−15

Table 8 Results for the Servo dataset. The statistical significance columns show whether the
difference in results between a method and KRR or KAAR is significant (+) or not (−). The
corresponding p-values are also given.
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Wisconsin Prognostic Breast Cancer
Results by Kernel WSRT p-values FST p-values

Anova MSE×103 Var×104 KRR KAAR KRR KAAR
KRR 214708.449 4.610× 1014 + 4.14× 10−13 + 4.34× 10−9

KAAR 1.153 3.424 + 4.14× 10−13 + 4.34× 10−9

IKAAR 238277.130 5.674× 1014 + 6.25× 10−7 + 1.59× 10−4 + 1.26× 10−5 + 2.88× 10−2

CKAAR 1.377 379.018 + 4.03× 10−9 + 4.92× 10−5 + 3.22× 10−5 + 3.66× 10−4

Spline MSE×103 Var×104 KRR KAAR KRR KAAR
KRR 13.623 200501.264 + 2.94× 10−13 + 1.81× 10−7

KAAR 1.140 3.441 + 2.94× 10−13 + 1.81× 10−7

IKAAR 1.169 4.645 + 4.73× 10−12 + 1.38× 10−2 + 5.64× 10−7 − 5.41× 10−2

CKAAR 1.172 5.148 + 1.37× 10−10 + 1.50× 10−3 + 3.22× 10−5 + 4.09× 10−4

Poly MSE×103 Var×104 KRR KAAR KRR KAAR
KRR 1.529 82.730 + 5.18× 10−19 + 1.31× 10−14

KAAR 1.147 3.251 + 5.18× 10−19 + 1.31× 10−14

IKAAR 1.188 5.266 + 7.43× 10−15 + 1.64× 10−4 + 4.39× 10−12 + 1.92× 10−2

CKAAR 1.196 7.602 + 1.09× 10−14 + 3.44× 10−4 + 2.70× 10−10 − 8.86× 10−2

RBF MSE×103 Var×104 KRR KAAR KRR KAAR
KRR 1.159 3.678 + 2.26× 10−8 + 1.67× 10−6

KAAR 1.112 3.446 + 2.26× 10−8 + 1.67× 10−6

IKAAR 1.140 4.148 + 4.39× 10−3 + 1.56× 10−6 + 2.31× 10−3 + 3.88× 10−4

CKAAR 1.139 3.775 + 2.42× 10−2 + 1.84× 10−7 − 9.20× 10−1 + 3.37× 10−4

Table 9 Results for the Wisconsin Prognostic Breast Cancer dataset. The statistical significance
columns show whether the difference in results between a method and KRR or KAAR is significant
(+) or not (−). The corresponding p-values are also given.

teristics of the cell nuclei and the tumour size. Four signals that had missing values and 2 features
were removed. The results are in Table 9.

Dataset size: 194
Training set size: 100
Validation set size: 50
Testing set size: 44
Runs: 100
α: {2−10, 2−9, . . . , 2−5}
CKAAR’s β: {0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1}
IKAAR’s iteration: {1, 11, . . . , 101}
Polynomial kernel degree: {2, 3, . . . , 6}
ANOVA spline kernel order: {8, 16, . . . , 32}
RBF kernel σ: {2−10, 2−8, . . . , 22}

5 Conclusion

Below is a quick overview of the general performance of the four different regression methods
we have analysed per dataset. To determine the relative performance of methods we took in
consideration their mean square losses and whether the differences are statistically significant or
not.

Abalone: KAAR and IKAAR are clearly the best methods for this dataset, being slightly better
than CKAAR and much better than KRR.

Auto-MPG: KRR, IKAAR and CKAAR are the best methods for this dataset as there is no
significant difference between them, while KAAR’s strong regularisation seems to be overkill
in this instance.
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Auto-Price: For this dataset IKAAR and KRR perform equally well and are slightly better than
CKAAR and KAAR.

Boston Housing: CKAAR and IKAAR are clearly the best methods for this dataset, with KRR
and KAAR coming second and third respectively.

Gaze: IKAAR and CKAAR perform best for this dataset, with KRR close behind and KAAR
last.

Mexican Hat: In both experiments (corrupted with different levels of noise), CKAAR is the best
method, while IKAAR is the second best. KAAR comes in third, while KRR is the worst.

Relative CPU Performance: KRR, IKAAR and CKAAR are the best methods for this dataset
as there is no significant difference between them. KAAR is the worst.

Servo: KRR, IKAAR and CKAAR perform equally well for this dataset and KAAR is worse.

Wisconsin Prognostic Breast Cancer: KAAR is clearly the best method for this dataset, with
CKAAR and IKAAR coming in second and KRR last.

In the 10 experiments we carried out7, CKAAR and IKAAR were the best in 7 of them. KRR and
KAAR were the best in 4 and 2 cases respectively. This suggests that our new methods IKAAR
and CKAAR are, in general, equivalent or better than KRR and KAAR. This follows from the fact
that both our methods are generalisations of KRR and KAAR and can behave as any one of them
or something in between that may give better performance. It is worth noting that in most of the
experiments, the difference between our two methods was not statistically significant. Therefore, it
can be said that CKAAR and IKAAR are more or less equivalent. This is understandable because
they were both motivated by a common idea and they try to achieve the same thing, albeit in
different ways.

One disadvantage of our methods is that an extra parameter has to be chosen for each of them:
the iteration number for IKAAR and the control parameter β for CKAAR. So we are getting
better performance at the expense of having to find good values for an extra parameter. In
our experiments we chose these values by using validation, as we did for all the other parameters.
Future work may concentrate on finding good iterations or β’s beforehand by using some heuristics
on the data.
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