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Abstract

Kernel methods are a powerful tool of modern learning. This article pro-
vides an introduction to kernel methods through a motivating example of
kernel ridge regression, defines reproducing kernel Hilbert spaces (RKHS),
and then sketches a proof of the fundamental existence theorem.

Some results that appear to be important in the context of learning are
also discussed.
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1 A Motivating Example: Kernel Ridge Regression

In this section we will introduce kernels in the context of ridge regression. The
reader may skip this section and proceed straight to the next session if he is only
interested in the formal theory of RKHSs.

A more detailed discussion of Ridge Regression and kernels can be found in
Section 3 of Steve Busuttil’s dissertation.

1.1 The Problem
Suppose we are given a set of T examples (x1, y1), (x2, y2), . . . , (xT , yT ), where xi ∈
Rn are signals and yi ∈ R are outcomes or labels. We want to find a dependency
between signals and outcomes and to be able to predict y given a new x. This
problem is often referred to as the regression problem1.

Let us start by restricting ourselves to linear dependencies of the form y =
〈w, x〉 = w′x, where w ∈ Rn, 〈·, ·〉 is the standard scalar product in Rn, and the
prime stands for transposition (by default all vectors are assumed to be column
vectors). The class of linear functions is not too reach, and we will need to progress
to more sophisticated classes later.

1.2 Least Squares and Ridge Regression
The least squares is a natural, popular, and time-honoured (apparently going back
to Legendre and Gauss) approach to finding w. Let us take an w minimising the
sum of squared discrepancies

LSQ(w) =
T∑

i=1

(w′xi − yi)
2
.

It is easy to find such a w; it can be interpreted as a projection of the vector
Y = (y1, y2, . . . , yT ) on the subspace of RT generated by n vectors v1, v2, . . . , vT ,
where vi consists of i-th coordinates of xs.

We will derive the exact formula, but for a more general problem. Let us take
a ≥ 0 and consider the expression

LRR(w) = a‖w‖2 +
T∑

i=1

(w′xi − yi)
2
.

A vector w minimising this is called a solution of the ridge regression problem (for
reasons that will become apparent later). The least squares approach is a special
case of the ridge regression approach, namely, that of a = 0.

Why would anyone want to use a > 0? There are two main reasons. First,
the term a‖w‖2 performs the regularisation function. It penalises the growth of
coefficients of w and urges us to look for ‘simpler’ solutions. Secondly, it makes the
problem easier computationally, as will be shown below.

1.3 Solution: Primary Form
Let us find the solution of the ridge regression problem with a > 0. It is convenient
to introduce a T ×n matrix X = (x1, x2, . . . , xt)′; the rows of X are vectors xi (and
the columns are vectors vi mentioned above). We get

LRR(w) = a‖w‖2 + ‖Xw − Y ‖2.
1As different, for example, to the classification problem, where ys belong to a finite set.
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By differentiating LRR(w) w.r.t. w and equating the result to 0 we get

2aw − 2X ′Y +X ′Xw = 0

and
w = (aI +X ′X)−1X ′Y,

where I is the identity matrix. This must be a solution; indeed, as coefficients of w
approach infinity, a‖w‖2 and therefore LRR(w) must go to infinity.

Let us analyse this expression. The matrices X ′X, I, and aI + X ′X have the
size n × n. The matrix X ′X is positive semi-definite, i.e., ξ′(X ′X)ξ ≥ 0 for all
ξ ∈ Rn (this follows from ξ′(X ′X)ξ = (Xξ)′(Xξ) = ‖Xξ‖2). By adding aI we
make the matrix positive definite, i.e., we have ξ′(aI + X ′X)ξ > 0 for all ξ 6= 0
(indeed, ξ′(aI + X ′X)ξ = ‖Xξ‖2 + a‖ξ‖2). Because every positive definite matrix
is non-singular 2, aI +X ′X must have the inverse. If a > 0, a solution to the ridge
regression problem always exists and it is unique.

If a = 0, the matrix may become singular. In fact, this will always happen in the
case T < n. The singularity simply means that the solution to least squares is not
unique. The ridge regression is thus theoretically simple and we will concentrate on
it below.

As a approach 0, the matrix aI + X ′X may become close to singular. The
numerical routines for finding w will then become less and less stable: they will
have to deal with very big or very small values and make large round-up errors.
Taking a larger a > 0 thus stabilises the computation as mentioned earlier.

Let us attempt a rough hypothetical analysis of the predictive performance of
ridge regression for different values of a. If a is very big, the term aI completely
overshadows X ′X and the predictive performance deteriorates. If a is very small,
we may encounter numerical problems. An optimal value should thus be neither
too big no too small. In some sense it must be comparable in size to elements of
X ′X. The exact choice of a depends on the particular dataset.

Finally, let us go back to the term ‘ridge regression’. One of the versions of
its etymology is that the diagonal of aI forms a ‘ridge’ added on top of the least
squares matrix X ′X.

1.4 Solution: Dual Form
Using the matrix identity A(aI+A′A)−1 = (aI+AA′)−1A we can rewrite the ridge
regression solution as follows. For an arbitrary x ∈ Rn the outcome suggested by
ridge regression is w′x and this can be rewritten as

w′x = ((aI +X ′X)−1X ′Y )′x,

= Y ′X(aI +X ′X)−1x,

= Y ′(aI +XX ′)−1Xx.

This formula is called the dual form of the ridge regression solution.
Similar arguments concerning non-singularity apply to aI + XX ′. The matrix

has the size T ×T . This might seem a disadvantage compared to the primary form:
it is natural to expect that in practice n would be fixed and not too big, while the
size of the sample T may be quite large. However this formula allows us to develop
important generalisations.

2Indeed, let A be positive definite. If A is singular, Av = 0 for some v 6= 0, but this implies
v′Av = 0.
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We can say that w = Y ′(aI + XX ′)−1X in the dual form. However there is a
more interesting way to interpret the dual form formula. We have

w′x = Y ′(aI +K)−1k,

where K is the matrix of mutual scalar products

K =


〈x1, x1〉 〈x1, x2〉 . . . 〈x1, xT 〉
〈x2, x1〉 〈x2, x2〉 . . . 〈x2, xT 〉

...
...

. . .
...

〈xT , x1〉 〈xT , x2〉 . . . 〈xT , xT 〉


and k = k(x) is the vector of scalar products of xi by x:

k =


〈x1, x〉
〈x2, x〉
. . .
〈xT , x〉

 .

Note that all xis and x appear in this formula only in mutual scalar product. This
observation has important consequences.

1.5 Non-linear Regression
Now let us try to extend the class of functions we use and consider a wider class.
Suppose that n = 1, i.e., all xs are numbers and we are interested in approximations
by polynomials of degree 3, i.e., functions of the form w0 +w1x+w2x

2 +w3x
3. Of

course we can write down L(w) for this case, perform the differentiation and find
the solution as we did before. However there is a simpler argument based on the
dual form.

Let us map x into R4 as follows: x→ (1, x, x2, x3). Once we have done this, we
can do linear regression on new ‘long’ signals. If we use the dual form, we do not
even have to perform the transformations explicitly. Because we only need scalar
products, we can compute all the necessary products 1 + x1x2 + x2

1x
2
2 + x3

1x
3
2 and

substitute them into the dual form formula.
Let us write down a formal generalisation. The signals x do not have to come

from Rn any longer. Let them be drawn from some arbitrary set3 X. Suppose that
we have a mapping Φ : X → S, where S is some vector space equipped with a
scalar product 〈·, ·〉 (dot-product space); the space S is sometimes referred to as the
feature space. We can use ridge regression in the feature space. The prediction of
ridge regression on a signal x can be written as

γRR = Y ′(aI +K)−1k,

where

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )


and

k =


K(x1, x)
K(x2, x)
. . .

K(xT , x)

 ;

3It is important that no particular structure is postulated on X; throughout the most of this
article it is just a set.
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the function K : X2 → R is given by K(x1, x2) = 〈Φ(x1),Φ(x2)〉.
The space S does not have to be finite-dimensional. However since every vector

space with a scalar product can be embedded into a Hilbert space (see below for a
definition) we can assume that it is Hilbert.

The transformation Φ is of no particular importance to us. Once we know the
K, we can perform regression with it.

1.6 Mappings and Kernels
It would be nice to have a characterisation of all K without a reference to Φ. A
characterisation of this kind can be given.

It is easy to see that K(x1, x2) = 〈Φ(x1),Φ(x2)〉 has the following properties:

� it is symmetric: K(x1, x2) = K(x2, x1) for all x1, x2 ∈ X; this follows from
the symmetry of the scalar product 〈·, ·〉;

� it is positive semi-definite: for every positive integer T and every
x1, x2, . . . , xT ∈ X the matrix

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )


is positive semi-definite4; indeed, K is the Gram matrix of the images
Φ(x1),Φ(x2), . . . ,Φ(xT )5.

Surprisingly these two simple properties are sufficient. Let us call a function
K : X2 → R satisfying these two properties a kernel. Then the following theorem
can be formulated.

Theorem 1. For any set X a function K : X2 → R is a kernel, i.e., it is symmetric
and positive semi-definite, if and only if there is a mapping Φ from X into a Hilbert
space H with a scalar product 〈·, ·〉 such that K(x1, x2) = 〈Φ(x1),Φ(x2)〉 for all
x1, x2 ∈ X.

We proved the ‘if’ part when we defined kernels. The ‘only if’ part follows from
the results of the next sections, where we will show that the class of kernels coincides
with the class of so called reproducing kernels.

2 Reproducing Kernel Hilbert Spaces

In this section we introduce reproducing kernel Hilbert spaces (RKHS) and show
some of their basic properties. The presentation is based mainly on [Aro43] and
[Aro50] and the reader may consult these papers for more details; note that the
former paper is in French.

2.1 Hilbert Space
A set of some elements H is a Hilbert space if

1. H is a vector space over R (Hilbert spaces over the complex plain C can also
be considered, but we shall restrict ourselves to R in this article);

4A definition and a discussion were given above.
5We have ξ′Kξ = ‖

PT
i=1 ξiΦ(xi)‖2 ≥ 0.
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2. H is equipped with a scalar product 〈·, ·〉 (i.e., with a symmetric positive
definite bilinear form);

3. H is complete w.r.t. the metric generated by the scalar product, i.e., every
fundamental sequence of elements of H converges.

Some authors require a Hilbert space to be separable, t.e., to have a countable
dense subset. For example, [Aro43] reserves the name ‘Hilbert’ for separable spaces
and calls general Hilbert spaces ‘generalised Euclidean’. We shall not impose this
requirement by default.

As a matter of fact all separable Hilbert spaces are isomorphic (the situation
is similar to that with finite-dimensional spaces; the separable Hilbert space is
‘countable-dimensional’).

Typical (though not particularly relevant to this article) examples of Hilbert
spaces are provided by L2(X,µ), which is the space of all real-valued functions f
on X such that f2 is Lebesgue-integrable w.r.t. the measure µ on X with the scalar
product 〈f, g〉 =

∫
X
fgdµ, and l2, which is the set of infinite sequences (x1, x2, . . .),

xi ∈ R, such that the sum
∑+∞

i=1 x
2
i converges. Both l2 and L2 on [0, 1] with the

standard Lebesgue measure are separable; therefore they are isomorphic.

2.2 Reproducing Kernel Hilbert Spaces: a Definition
Let F be a Hilbert space consisting of functions on a set X. A function K(x1, x2)
is a reproducing kernel (r.k.) for F if

� for every x ∈ X the function K(x, ·) (i.e., K(x, x2) as the function of the
second argument with x fixed) belongs to F

� the reproducing property holds: for every f ∈ F and every x ∈ X we have
f(x) = 〈f,K(x, ·)〉.

A space F admitting a reproducing kernel is called a reproducing kernel Hilbert
space (RKHS).

2.3 Reproducing Kernel Hilbert Spaces: Some Properties
Let us formulate and prove some basic properties of reproducing kernels.

Theorem 2. 1. If a r.k. for F exists, it is unique.

2. If K is a reproducing kernel for F , then for all x ∈ X and f ∈ F we have
|f(x)| ≤

√
K(x, x)‖f‖F .

3. If F is a RKHS, then convergence in F implies pointwise convergence of
corresponding functions.

Proof. In order to prove (1) suppose that there are two r.k. K1 and K2 for the
same space F . For every x ∈ X the function K1(x, ·) − K2(x, ·) belongs to F and,
applying linearity and the reproducing property, we get

‖K1(x, ·)−K2(x, ·)‖2F = 〈K1(x, ·)−K2(x, ·),K1(x, ·)−K2(x, ·)〉
= 〈K1(x, ·)−K2(x, ·),K1(x, ·)〉−

〈K1(x, ·)−K2(x, ·),K2(x, ·)〉
= (K1(x, x)−K2(x, x))− (K1(x, x)−K2(x, x))
= 0.
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The definition of a Hilbert space implies that K1(x, ·) coincides with K2(x, ·) and
therefore they are equal everywhere as functions.

Property (2) follows immediately from the reproducing property and the Cauchy
(-Schwarz-Bunyakovsky) inequality.

Property (3) follows from (2). Indeed, for all f1, f2 ∈ F and x ∈ X we have

|f1(x)− f2(x)| ≤
√
K(x, x)‖f1 − f2‖F .

We shall now give an important ‘internal’ characterisation of reproducing kernel
Hilbert spaces.

Let F consisting of real-valued functions on X be a Hilbert space. Take x ∈ X
and consider the functional F → R mapping f ∈ F into f(x). It is linear (in f)
and is called the evaluation functional.

Note that the evaluation functional is not defined on L2: the elements of L2

are in fact equivalence classes of functions that coincide everywhere up to a set of
measure 0, and thus they are not really defined at every point.

Theorem 3. A Hilbert space F consisting of real-valued functions on X is a RKHS
if and only if for every x ∈ X the corresponding evaluation functional is continuous.

Proof. The ‘only if’ part follows from (2) from the previous theorem.
In order to prove the ‘if’ part we need the Riess-Fischer Representation Theorem,

which states that every continuous linear functional on a Hilbert space can be
represented as the scalar product by some element of the space.

Take x ∈ X. Because the evaluation functional is continuous, there is a unique
kx ∈ F such that f(x) = 〈f, kx〉. We can define a mapping F : X → F by
F (x) = kx. Let K(x1, x2) = 〈F (x1), F (x2)〉.

We have

K(x1, x2) = 〈kx1 , kx2〉
= kx1(x2)

and thus K(x1, ·) = kx1(·) ∈ F . On the other hand for every f ∈ F and x ∈ X we
have

f(x) = 〈f, kx〉
= 〈f,K(x, ·)〉.

Therefore K is a r.k. for F .

This criterion is quite important. The continuity of the evaluation functional
means that it is consistent with the norm: functions f1 and f2 that are close with
respect to the norm evaluate to values f1(x) and f2(x) that are close. If we consider
functions from some space as hypotheses in machine learning and the norm on
the space as a measure of complexity, it is natural to require the continuity of
the evaluation functional. The theorem shows that all ‘natural’ Hilbert spaces of
functions are in fact reproducing kernel Hilbert spaces.

2.4 Existence Theorem
We have shown that a r.k. K(x1, x2) can be represented as 〈F (x1), F (x2)〉. This
implies that K is

� symmetric due to the symmetry of the scalar product;
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� positive semi-definite, i.e., for all x1, x2, . . . , xT ∈ X the matrix

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )


is positive semi-definite; this holds since K is the Gram matrix.

Thus K is a kernel according to the definition from the previous section. The
following theorem shows that the classes of kernels and reproducing kernels coincide.

Theorem 4. Let K : X2 → R is a real-valued function of two arguments on X.
Then K is a reproducing kernel for some Hilbert space of functions F on X if and
only if

� K is symmetric

� K is positive semi-definite.

If there is a space admitting K as its reproducing kernel, it is unique.

3 Proof of the Existence Theorem

In this section we will prove the existence theorem. Let K : X2 → R be a kernel.

3.1 Linear Combinations: A Dot Product Space
We start the proof by constructing a linear space of functions F1 consisting of linear
combinations

∑n
i=1 aiK(xi, ·), where n is a positive integer, ai ∈ R and xi ∈ X. The

linearity follows by construction.
The scalar product is defined after the following fashion. Let〈

n∑
i=1

aiK(xi, ·),
n∑

i=1

biK(xi, ·)

〉
=

n∑
i,j=1

aibjK(xi, xj)

(by adding terms with zero coefficients we can ensure that the linear combinations
have equal numbers of terms and that all xi in the combinations are the same).
We need to prove that the scalar product is well-defined, i.e., to show that it is
independent of particular representations of factors (recall that we are constructing
a space of functions rather than formal linear combinations).

Let f(x) =
∑n

i=1 aiK(xi, x) and g(x) =
∑n

i=1 biK(xi, x). We have

〈f, g〉 =
n∑

i,j=1

aibjK(xi, xj)

=
n∑

i=1

ai

 n∑
j=1

bjK(xi, xj)


=

n∑
i=1

aig(xj).

We see that the scalar product can be expressed in terms of values of g and thus is
independent of a particular representation of g as a linear combination. A similar
argument can be applied to f . The independence follows.
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The function 〈·, ·〉 is symmetric because K is symmetric. For f from above we
have

〈f, f〉 =
n∑

i,j=1

aiajK(xi, xj) ≥ 0

because K is positive semi-definite. Therefore 〈·, ·〉 is positive semi-definite. We
have shown that it is a positive semi-definite symmetric bilinear form. One final
step is necessary to prove that it is positive definite and therefore a scalar product.

Let us evaluate 〈f(·),K(x, ·)〉, where f ∈ F1 and x is some element from X. We
get

〈f(·),K(x, ·)〉 = f(x).

The form 〈·, ·〉 and K thus satisfy the reproducing property.
Because the form 〈·, ·〉 is positive semi-definite, the Cauchy inequality holds for

it and
〈f, g〉 ≤ ‖f‖ · ‖g‖,

where ‖f‖ is defined as
√
〈f, f〉. Combining this with the reproducing property

yields

〈f(·),K(x, ·)〉 ≤ ‖f‖ · ‖K(x, ·)‖

= ‖f‖
√
K(x, x).

Therefore ‖f‖ = 0 implies that f(x) = 0 for an arbitrary x ∈ X. We have thus
shown that 〈·, ·〉 is actually positive definite and therefore a scalar product.

The construction is not finished yet because F1 is not necessarily complete.
It remains to construct a completion of F1. It is well known that every linear
space with a scalar product has a completion, which is a Hilbert space. However
this argument cannot be applied here6: we need a completion of a specific form,
namely, consisting of functions X → R. Note that, however, we have already
proved Theorem 1 from Section 1: we can map X into some Hilbert space H so
that the value of the kernel is given by the scalar product of images. The mapping
Φ : X → F1 is given by the obvious Φ(x) = K(x, ·).

3.2 Completion
In this subsection we will construct a completion of F1.

Let f1, f2, . . . ∈ F1 be a fundamental sequence. For every x ∈ X the inequalities

|fn(x)− fm(x)| = |〈fn − fm,K(x, ·)〉|

≤ ‖fn − fm‖
√
K(x, x),

which follow from the previous subsection, imply that the sequence f1(x), f2(x), . . .
is fundamental and therefore has a limit. We can define a function f : X → R by
f(x) = limn→∞ fn(x).

Let F consist of all functions thus obtained. Clearly, F1 ⊆ F since each f from
F1 is the pointwise limit of the sequence f, f, . . ..

The scalar product on F can be introduced as follows. If f is the pointwise limit
of f1, f2, . . . ∈ F1 and g is the pointwise limit of g1, g2, . . . ∈ F1, then 〈f, g〉F =
limn→∞〈fn, gn〉F1 .

6The book [SS02] uses this argument in Section 2.2.3, p. 35-36, in a rather misleading way.
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Let us show that this limit exists. For all positive integers n1, n2, m1 and m2

we have

|〈fn1 , gm1〉 − 〈fn2 , gm2〉| ≤
|〈fn1 , gm1〉 − 〈fn1 , gm2〉|+ |〈fn1 , gm2〉 − 〈fn2 , gm2〉| ≤

‖fn1‖ · ‖gm1 − gm2‖+ ‖gm2‖ · ‖fn1 − fn2‖.

Because the norms of elements of a fundamental sequence are uniformly bounded,
the difference can be made as close to 0 as necessary for sufficiently large n1, n2,
m1 and m2. Thus there even a double limit limn,m→∞〈fn, gm〉 = s in the sense
that for all sufficiently big n and m the difference |〈fn, gm〉− s| becomes arbitrarily
small.

Let us show that the scalar product is independent of a choice of fundamental
sequences converging to f and g. Consider two pairs of fundamental sequences,
f1, f2, . . . and f ′1, f

′
2, . . . converging to f and g1, g2, . . . and g′1, g

′
2, . . . converging to

g.
Consider the expression 〈fm − f ′m, gn〉. The sequence consisting of functions

fn − f ′n is clearly fundamental, therefore, as shown above, there must exist a
limit limn,m→∞〈fm − f ′m, gn〉. Let us evaluate this limit. There are coefficients
bm1 , b

m
2 , . . . , b

m
p and elements zm

1 , z
m
2 , . . . , z

m
p such that f(·) =

∑p
i=1 b

m
i K(zm

i , ·) (p =
p(m) may change as m varies). We have

〈fm − f ′m, gn〉 = 〈fm − f ′m,
p∑

i=1

bmi K(zm
i , ·)〉

=
m∑

i=1

bmi (fm(zi)− f ′m(zi)).

Since fm and f ′m converge pointwise to 0, this expression converges to zero as
m→∞. Thus

lim
n,m→∞

〈fm − f ′m, gn〉 = 0.

Similarly
lim

n,m→∞
〈f ′m, gn − g′n〉 = 0.

Therefore the difference

〈fm, gn〉 − 〈f ′m, g′n〉 = 〈fm − f ′m, gn〉+ 〈f ′m, gn − g′n〉

converges to 0 as n,m → ∞. Our definition is thus independent of a particular
choice of fundamental sequences.

The bilinearity of 〈·, ·〉 on F is easy to check. The number ‖f‖ = 〈f, f〉 is non-
negative as a limit of non-negative numbers. More precisely, let f1, f2, . . . ∈ F1 be
a fundamental sequence converging to f pointwise. Because

|f(x)| = lim
n→∞

|fn(x)|

≤ lim
n→∞

√
K(x, x)‖fn‖

=
√
K(x, x)‖f‖

the equality ‖f‖ implies that f(x) = 0 for all x ∈ X.
We have shown that F is indeed a linear space with a scalar product. Clearly,

F1 ⊆ F and the scalar product on F extends that on F1.
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Let us show that F is complete. First, let f1, f2 . . . be a fundamental sequence
of elements of F1 converging pointwise to f . We have

‖f − fn‖ =
√
〈f − fn, f − fn〉

=
√

lim
m→∞

〈fm − fn, fm − fn〉

=
√

lim
m→∞

‖fm − fn‖.

This converges to 0 as n→ 0 and thus f is the limit of fn in F . Secondly, consider
a fundamental sequence f1, f2 . . . of elements of F . For each n there is gn ∈ F1 such
that ‖fn − gn‖ ≤ 1/2n. The sequence g1, g2, . . . is fundamental in F1 and therefore
has a limit in F . It must be the limit of f1, f2 . . . too.

It remains to show that the reproducing property holds of F . It follows by
continuity. Let f1, f2 . . . be a fundamental sequence of elements of F1 converging
pointwise to f . We have

f(x) = lim
n→∞

fn(x)

= lim
n→∞

〈fn(·),K(x, ·)

= 〈f(·),K(x, ·)〉

We have constructed a RKHS for K. Note that F1 constructed in the previous
subsection is dense in it.

3.3 Uniqueness
Let us show that the RKHS for a particular kernel K is unique. Let F be the RKHS
constructed above and H be some other RKHS for the same kernel K.

The definition of an RKHS implies that all functions K(x, ·) must belong to H.
The same must be true of their linear combinations

∑n
i=1 aiK(xi, ·). Thus F1 ⊆ H

as a set.
Since the reproducing property holds on H, on elements of F1 the scalar prod-

uct 〈·, ·〉H must coincide with scalar product we constructed above. Thus F1 is a
subspace of H.

Because H is complete, all fundamental sequences from F1 should have limits
in H. In RKHSs convergence implies pointwise convergence and thus all pointwise
limits of fundamental sequences from F1 belong to H. Thus F ⊆ H as a set.
Because the scalar product is continuous w.r.t. itself, we have

lim
n→∞

〈fn, gn〉 = 〈f, g〉

for all sequences f1, f2, . . . and g1, g2, . . . such that fn → f and gn → g in H as
n→∞. Thus the scalar product on F coincides with that on H, or, in other terms,
F is a closed subspace of H.

Let h ∈ H. We can represent it as h = hF + h⊥, where hF ∈ F and h⊥ is
orthogonal to F and therefore to all functions K(x, ·), which belong to F1 ⊆ F .
Because the reproducing property holds on H, we get

h(x) = 〈h,K(x, ·)〉
= 〈hF ,K(x, ·)〉+ 〈h⊥,K(x, ·)〉
= 〈hF ,K(x, ·)〉
= hF (x).

Thus h coincides with hF everywhere on X and H = F .
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4 RKHSs and Prediction in Feature Spaces

We have shown that the three definitions of a kernel K : X2 → R are equivalent:

� a positive semi-definite symmetric function;

� a reproducing kernel;

� the scalar product in a feature space, i.e., 〈Φ(x1),Φ(x2)〉, where Φ maps X
into a Hilbert space H.

The RKHS for a particular kernel is unique. Note that uniqueness holds in a very
strong sense: it is a unique set of functions with a uniquely defined scalar product;
there are no isomorphisms or equivalences involved.

The mapping Φ in the third definition is by no means unique. Indeed, let
H = l2. Consider a right shift R : l2 → l2 defined by R(x1x2 . . .) = 0x1x2 . . .. The
composition R(Φ) will produce the same kernel as Φ.

However there is some degree of uniqueness. Let S ⊆ H be the closure of the
linear span of all images Φ(x), x ∈ X. It is isomorphic to the RKHS.

4.1 RKHS Inside a Feature Space
Theorem 5. For every mapping Φ : X → H, where H is a Hilbert space, the closure
of the linear span of the image of X, i.e., span(Φ(X)) ⊆ H, is isomorphic to the
RKHS of the kernel K(x1, x2) = 〈Φ(x1),Φ(x2)〉. There is a canonical isomorphism
mapping Φ(x) ∈ H onto K(x, ·) from the RKHS.

Proof. Let us denote the closure of the span by S and the RKHS by F . Let F1 ⊆ F
be the set of finite sums of the form

∑
i aiK(xi, ·), where xi ∈ X and ai are some

coefficients, as in the construction above.
We start by constructing the isomorphism L of span(Φ(X)) and F1. Put

L(Φ(x)) = K(x, ·) and, by linearity, L(
∑n

i=1 aiΦ(xi)) =
∑n

i=1 aiK(xi, ·). We need to
show that L is well-defined. Let

∑n
i=1 aiΦ(xi) =

∑m
j=1 bjΦ(zi) for some coefficients

ai and bi and elements xi, zi ∈ X. Then for every x ∈ X we have〈
n∑

i=1

aiΦ(xi), x

〉
=

〈
m∑

j=1

bjΦ(zi), x

〉
,

i.e.,
n∑

i=1

aiK(xi, x) =
m∑

j=1

bjK(zj , x)

by the definition of K. The functions
∑n

i=1 aiK(xi, ·) and
∑m

j=1 bjK(zj , ·) coincide
everywhere and thus L is well-defined.

The mapping L preserves the scalar product:〈
n∑

i=1

aiK(xi, ·),
m∑

j=1

bjK(zi, ·)

〉
=
∑
i,j

aibjK(xi, zj)

=

〈
n∑

i=1

aiΦ(xi),
m∑

j=1

bjΦ(zj)

〉
.

The mapping L : span(Φ(X)) → F1 is surjective. Indeed, each
∑n

i=1 aiK(xi, ·)
has an inverse image. The mapping is also injective. Assume the converse. Then
there is a point z =

∑n
i=1 aiΦ(xi) ∈ span(Φ(X)) such that z 6= 0 but L(z) = 0
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in the RKHS. This is a contradiction because L preserves the scalar product and
therefore the norm. Thus L is a bijection.

Let us extend L to the isomorphism of S and F . Let h1, h2, . . . ∈ span(Φ(X))
converge to h ∈ S. The sequence h1, h2, . . . is fundamental in span(Φ(X)). Since
L preserves the scalar product on span(Φ(X)), the images L(h1), L(h2), . . . form a
fundamental sequence in F . It should converge. Put L(h) = limi→∞ L(hi).

Suppose that there are two sequences h1, h2, . . . ∈ span(Φ(X)) and g1, g2, . . . ∈
span(Φ(X)) converging to h. Let us mix the sequences into ui (e.g., by letting
u2i = hi and u2i−1 = gi, i = 1, 2, . . .). The sequence u1, u2, . . . converges to h and
is therefore fundamental. The images of ui must form a fundamental sequence in
F and must have a limit. All its subsequences should converge to the same limit.
Thus limi→∞ L(hi) = limi→∞ L(gi) and L is well-defined.

The scalar product is preserved by continuity. The surjectivity can be shown as
follows. Let f ∈ F and let f1, f2, . . . ∈ F1 converge to f . The inverse images of
fi must form a fundamental sequence in span(Φ(X)) and must have a limit h. It
follows from the definition that L(h) = f . The injectivity on span(Φ(X)) follows
from the same argument as on span(Φ(X)).

The theorem follows.

The mapping L can be extended to the mapping of the whole H by letting
LH(h) = L(prS(h)), where prS : H → S is the projection operator. The mapping
LH is no longer injective (unless H coincides with S) and no longer preserves the
scalar product. However we have ‖L(h)‖ = ming∈H:L(g)=L(h) ‖L(g)‖, where the
minimum is attained on the projection prS(h).

4.2 Another Definition of RKHS
The above construction allows us to construct an interpretation of RKHS important
for machine learning.

In competitive prediction we prove consistency results of the following type.
We do not assume the existence of a ‘correct’ hypothesis but rather show that
our method competes well with a class of some other predictors, such as all linear
regressors. Therefore identifying and describing such natural classes is an important
task.

In Hilbert spaces we have a natural equivalent of linear regressors. Those are
linear functionals, or, as the Riess-Fischer Representation Theorem shows, scalar
products by an element h ∈ H. After we have mapped X into a Hilbert space H,
we can consider predictors f : X → R of the form f(x) = 〈h,Φ(x)〉.

Theorem 5 immediately implies that the class of such functions coincides with
the RKHS. Indeed, there is a unique decomposition h = h0 +h⊥, where h0 = prS(h)
is the projection of h on S = span(Φ(X)) and h⊥ is orthogonal to S. We have

f(x) = 〈h,Φ(x)〉
= 〈h0,Φ(x)〉
= 〈L(h0), L(Φ(x))〉F
= 〈L(h0),K(x, ·)〉F
= g(x),

where g = L(h0) ∈ F belongs to the RKHS.
We may want to assign the norm ‖h‖ to the predictor f(x) = 〈h,Φ(x)〉; clearly

‖h‖ ≥ ‖h0‖ = ‖g‖F . The space of predictors thus obtained does not exceed the
RKHS and the norms of predictors are equal to or greater than those of the ele-
ments of the RKHS. Thus regressors in the feature space have no more power than
functions from the RKHS.
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We get the following theorem as a bonus.

Theorem 6. Let Φ : X → H be a mapping into a Hilbert space H. The space of
functions f : X → R defined by f(x) = 〈h,Φ(x)〉, where h ∈ H, equipped with the
norm ‖f‖ = minh∈H:f(·)=〈h,Φ(·)〉 ‖h‖ coincides with the reproducing kernel Hilbert
space for the kernel defined by K(x1, x2) = 〈Φ(x1),Φ(x2)〉.

4.3 Ridge Regression in Feature Spaces
In this section we revisit the ridge regression problem from Section 1 and present
one argument of great importance for competitive prediction.

Suppose that we have a sequence of signals and outcomes as in Section 1. On
top of that suppose that we have a mapping Φ : X → H from the set of signals X
into a Hilbert feature space H. Take h ∈ H; as we said before, it can be considered
as a regressor yielding the dependency y = 〈h,Φ(x)〉. We may ask if there is h
minimising the expression

LRR(h) = a‖h‖2 +
T∑

i=1

(〈h,Φ(xi)〉 − yi)
2
.

with a > 0.
Consider the predictor

γRR = Y ′(aI +K)−1k,

where

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )


and

k =


K(x1, x)
K(x2, x)
. . .

K(xT , x)

 ;

It qualifies as a regressor of the above type. Indeed, it is a linear combination of
K(xi, ·) = 〈Φ(xi),Φ(·)〉. Let us show that it minimises LRR.

Let H0 ⊂ H be a subspace of H consisting of all linear combinations of Φ(xi) (it
is closed because it is finite-dimensional). Take h ∈ H. It can be decomposed into
a sum h = h0 + h⊥, where h⊥ is orthogonal to H. For all i = 1, 2, . . . , T we have
〈h,Φ(xi)〉 = 〈h0,Φ(xi)〉; we also have ‖h0‖ ≤ ‖h‖. Therefore LRR(h0) ≤ LRR(h0).
When minimising LRR we can restrict ourselves to predictors from H0, i.e., linear
combinations of Φ(xi)!

Because H0 is finite-dimensional, the arguments from Section 1 apply and the
ridge regression turns out to provide the minimum.

This argument essentially repeats the representer theorem.

5 Subspaces of RKHSs and Hierarchies of Kernels

Consider an RKHS F corresponding to a kernel K. Let F ′ ⊆ F be a subspace of
F . Clearly, F ′ is a RKHS. This can be shown as follows. The evaluation functional
is continuous on F . Its restriction on F ′ should remain continuous and therefore
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F ′ is a RKHS. This does not contradict the uniqueness theorem. If F ′ is a proper
subspace of F , it is an RKHS for a different kernel K′.

Suppose that F itself is a subspace of some Hilbert space of functions F ′′. As we
discussed above, in applications such as machine learning it does not make much
sense to consider spaces where the evaluation functional is not continuous, and
therefore F ′′ should be an RKHS with its own kernel too.

One can say that RKHSs form hierarchies: larger spaces have more power than
smaller spaces. However each of them has its own kernel. In competitive prediction
the natural competitors of a kernel method are the functions from the corresponding
RKHS. Other RKHSs require the use of a different kernel.

The rest of this section contains some results clarifying the structure of this
hierarchy.

Theorem 7. Let a space F of real-valued functions on X be the RKHS corre-
sponding to a kernel K : X2 → R. If F ′ ⊆ F is a subspace of F , then F ′ is
an RKHS and has a kernel K′ : X2 → R. If F ′′ is the orthogonal complement
of F ′, then it is also an RKHS and it has the kernel K′′ : X2 → R such that
K′(x1, x2) +K′′(x1, x2) = K(x1, x2) for all x1, x2 ∈ X.

Proof. Let pr′ and pr′ be the projection operators from F to F ′ and F ′′, respectively.
Take a point x ∈ X. The evaluation functional on F equals the scalar product

by K(x, ·). It is easy to see that pr′(K(x, ·)) plays the same role in F ′. Indeed,
pr′(K(x, ·)) ∈ F ′ and for every function f ∈ F ′ we have

f(x) = 〈K(x, ·), f(·)〉
= 〈pr′(K(x, ·)), f(·)〉.

Put K′(x1, x2) = 〈pr′(K(x1, ·)),pr′(K(x2, ·))〉. Let us prove that it is the kernel for
F ′

We do this by showing that K′(x1, x2) as a function of x2 coincides with the
projection pr′(K(x1, ·)). Fix x1 and denote the function pr′(K(x1, ·)) by f(·). We
have f ∈ F ′. The above argument implies that 〈f(·),pr′(K(x2, ·))〉 = f(x2) for
every x2 ∈ X and thus K′(x1, ·) = f(·) ∈ F . The reproducing property follows.

Similarly K′′(x1, x2) = 〈pr′′(K(x1, ·)),pr′′(K(x2, ·))〉 is the kernel for F ′′.
Let f, g ∈ F . We have f = pr′(f) + pr′′(f) and g = pr′(g) + pr′′(g); therefore

〈f, g〉 = 〈pr′(f) + pr′′(f),pr′(g) + pr′′(g)〉
= 〈pr′(f),pr′(g)〉+ 〈pr′′(f),pr′′(g)〉 .

By taking f = K(x1, ·) and g = K(x2, ·) we get K′(x1, x2) +K′′(x1, x2) = K(x1, x2).

Theorem 8. Let K,K′,K′′ : X2 → R be three kernels on X such that K(x1, x2) =
K′(x1, x2) + K′′(x1, x2) for all x1, x2 ∈ X. Then the RKHSs F ′ and F ′′ corre-
sponding to the kernels K′ and K′′ are subsets (but not necessarily subspaces) of
the RKHS F corresponding to the kernel K. For each f ∈ F there are functions
f1 ∈ F ′ and f2 ∈ F ′′ such that f = f1 + f2 and for its norm we have the equality

‖f‖2F = minf1∈F1,f2∈F2:f=f1+f2

(
‖f1‖2F ′ + ‖f2‖2F ′′

)
.

If F ′ and F ′′ have only the identical zero function in common (i.e., F ′∩F ′′ = {0}),
then they are subspaces of F and each one is the orthogonal complement of the other.

It is easy to see that F ′ does not have to be a subspace of F . Indeed, let K′ = K′′
and K = 2K′. Clearly if we take the set of functions constituting F and equip it
with the scalar product 〈·, ·〉F/2, we get the RKHS for F ′. It is a subset but not a
subspace of F .
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Proof. Let Φ′ and Φ′′ mapping X into Hilbert spaces H ′ and H ′′, respectively, be
feature maps giving rise to the kernels K′ and K′′, i.e.,

K′(x1, x2) = 〈Φ′(x1),Φ′(x2)〉
K′′(x1, x2) = 〈Φ′′(x1),Φ′′(x2)〉.

Let H be the Hilbert space consisting of pairs (h′, h′′) such that h′ ∈ H ′ and
h′′ ∈ H ′′ with the scalar product given by

〈(h′1, h′′1), (h′2, h
′′
2)〉H = 〈h′1, h′2〉H1 + 〈h′′1 , h′′2〉H2 .

Take Φ : X → H defined by

Φ(x) = (Φ′(x),Φ′′(x)).

It is easy to see that
K(x1, x2) = 〈Φ(x1),Φ(x2)〉.

The results of Subsect. 4.2 imply that the RKHS for K coincides with the set of
functions 〈h,Φ(·)〉, where h ∈ H. Similarly, the RKHSs for K′ and K′′ consist of all
functions 〈h′,Φ′(·)〉 and 〈h′′,Φ′′(·)〉, respectively, where h′ ∈ H ′ and h′′ ∈ H ′′.

For every h′ ∈ H ′ the element (h′, 0) belongs to H (0 is the zero element of H ′′

here). We have
〈(h′, 0),Φ(·)〉H = 〈(h′,Φ′(·))〉H1

and therefore F ′ ⊆ F as a set; the same argument applies to F ′′. The decomposition

〈(h′, h′′),Φ(·)〉 = 〈h′,Φ′(·)〉+ 〈h′′,Φ′′(·)〉

implies that each f ∈ F can be decomposed into the sum of f1 ∈ F ′ and f2 ∈ F ′′.
We have

‖f‖2F = minh∈H:f(·)=〈h,Φ(·)〉 ‖h‖2H
= minh′∈H,h′′∈H′′:f(·)=〈h′,Φ′(·)〉+〈h′′,Φ′′(·)〉

(
‖h′‖2H1

+ ‖h′′‖2H2

)
The minimum is taken over pairs of (h′, h′′); clearly, we can take the minimum

over all pairs of f1 ∈ F ′ and f2 ∈ F ′′ such that f = f1 + f2; indeed, ‖f1‖F ′ =
minh′∈H1:f1(·)=〈h′,K′(·)〉H1

‖h′‖H1 .
Now let F ′ ∩ F ′′ = {0}. Under this assumption every f ∈ F has a unique

decomposition f = f1 + f2, where f1 ∈ F ′ and f2 ∈ F ′′. Indeed, if f = f1 + f2 =
g1 + g2, then f1 − g1 = f2 − g2. The function of the left-hand side belongs to F ′
and the function on the right-hand side belongs to F ′′ and therefore they are both
equal to zero. Thus for every pair f1 ∈ F ′ and f2 ∈ F ′′ we have ‖f1 + f2‖2F =
‖f1‖2F ′ + ‖f2‖2F ′′ .

Take f2 = 0. Then this equality implies that ‖f1‖F = ‖f1‖F ′ . Taking f1 = 0
leads to ‖f2‖F = ‖f2‖F ′′ . The norms on F ′ and F ′′ coincide with the norm on
F ; the same should apply to the scalar product and thus F ′ and F ′′ are subspaces
rather than just subsets of F .

Picking arbitrary f1 and f2 and applying Pythagoras theorem yields ‖f1+f2‖2F =
‖f1‖2F + ‖f2‖2F + 2〈f1, f2〉F . Comparing this with the above equality implies that
〈f1, f2〉F = 0, i.e., F ′ and F ′′ are orthogonal subspaces.

Let us introduce a relation on kernels on a set X. We will write K′ � K if the
difference K′′(x1, x2) = K(x1, x2)−K′(x1, x2) is a kernel.

If this relation holds, then K′(x, x) ≤ K(x, x) for all x ∈ X. Indeed, since
K′′ is a kernel, the 1 × 1 matrix K′′(x, x) is positive semi-definite, i.e., K′′(x, x) ≥
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0. This observation justifies the notation to some extent and implies that � is
antisymmetric. Indeed, if K′ � K and K � K′ then for K′′ = K − K′ we get
K′′(x, x) = 0 for all x ∈ X. Theorem 2 implies that for every f from the RKHS of
K′′ and every x ∈ X we have f(x) = 0 and thus f is identically zero. This implies
that K′′ = 0.

Clearly, � is transitive: if K′ � K′′ � K′′, then K′ � K′′′.
The theorems above imply that� for kernels is closely linked with the relation ⊆

on their RKHSs. However no direct correspondence has been shown. The following
results close the gap.

Theorem 9. Let K and K′ be two kernels on the same set and let F and F ′ be
their RKHSs. If K′ � K, then F ′ ⊆ F as a set and for every f1 ∈ F ′ we have

‖f1‖F ≤ ‖f1‖F ′ .

This theorem follows from our previous results. Indeed, the square ‖f‖2F is given
by the minimum of ‖f1‖2F ′ + ‖f2‖2F ′′ taken over all decompositions f = f1 + f2,
where F ′′ is the RKHS corresponding to the difference K −K′. Every f1 ∈ F ′ can
be represented as f1 + 0, which implies the inequality in the theorem.

The opposite result holds.

Theorem 10. Let K and F be its RKHSs. If F ′ ⊆ F as a set and F ′ forms a
Hilbert space w.r.t. a norm ‖ · ‖F1 such that

‖f1‖F ≤ ‖f1‖F ′

for every f1 ∈ F ′, then F ′ is an RKHS and its reproducing kernel K′ satisfies
K′ � K.

It is easy to see that the inequality on the norms cannot be omitted. Consider
some kernel K′ on X and let K = K′ + K′ = 2K. Let F ′ be the RKHS for K′. For
every f ∈ F ′ we have

f(x) = 〈f(·),K′(x, ·)〉F ′

=
1
2
〈f(·), 2K′(x, ·)〉F ′

and therefore F that coincides with F ′ as a set and has the scalar product 〈·, ·〉F =
1
2 〈·, ·〉F ′ is the RKHS for K. We have ‖f‖F ′ =

√
2‖f‖F ≥ ‖f‖F . However let us

consider F as a subset of F ′. It satisfies the conditions of the theorem apart from
the norm clause but K 6� K′.

The proof of the theorem is beyond the scope of this article and can be found
in [Aro50], pp.355-356.
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