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Abstract

This article describes a financial intuition behind the aggregating al-
gorithm.
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The aggregating algorithm was proposed by V. Vovk in [Vov90] (see also
[VW98] and [Vov98]. This note aims to explain some intuition behind the
aggregating algorithm and to obtain it as an extension of a natural investment
strategy.

1 Sequential Investment

1.1 Sequential Investment: the Setup

Suppose that there are M shares (numbered 0, 1, . . . ,M−1) we can invest into.
The prices of shares change in discrete time. Let the vector xt represents the
proportional changes of the values of the shares between the moments t−1 and
t; namely, let xt,j be the ratio of the prices of share i at the moments t and t−1,
t = 1, 2, . . . We assume that all components of xt are non-negative, xt,j ≥ 0.

We have a sum of money to invest in the shares. An investment decision can
be represented by a vector showing how we split the capital among the shares.
On step t − 1 we spend the fraction γt,j ∈ [0, 1] of our capital to buy share j,
j = 1, 2, . . . ,M . Assume that we do not keep any money in cash (or that cash
is actually one of the shares) and therefore

∑M−1
j=0 γt,i = 1. Possible investment

decisions thus fill in the simplex.
Suppose that we have capital Wt−1 on step t− 1. We buy Wt−1γt,j worth1

of share j. As the price changes between times t − 1 and t, this sum becomes
Wt−1γt,jxt,j . The total amount of money at our disposal thus changes from
Wt−1 to Wt = Wt−1〈γt, xt〉. We can sell the shares, consolidate the capital, and
then make a new investment decision2. If the initial capital is W0 = 1, then
after T steps we get WT =

∏T
t=1〈γt, xt〉.

It is typical to make assumptions about the behaviour of the prices, i.e., price
changes xt. The Black-Scholes theory postulates that a share price follows a
geometric Brownian motion. The Capital Asset Price Model is less restrictive,
but it still assumes that prices are random variables with means and variances.
We will not be making any assumptions of this kind. Instead we are interested
in properties of investment strategies that hold in the worst case, i.e., for all
possible changes of stock prices.

1.2 Experts

Suppose that there are N experts E(1), E(2), . . . , E(N) that suggest investment
decisions to us. Before deciding on γt, we can observe decisions γ

(i)
t , i =

1, 2, . . . , N , output by experts. We make no assumptions as to how the ex-
perts arrive at their decisions. They may be algorithms of arbitrary nature and
complexity, rely on side information etc. We treat them as black boxes produc-
ing decisions. Our goal is to merge their decisions in such a way so that our

1We assume that we can buy an arbitrary fraction of a share; in real life one can only buy
multiples of some fixed amount, but we ignore this.

2In real life buying and selling shares incurs transaction costs, and shares should not be
bought or sold too often. We ignore this consideration in our analysis.
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capital Wt is not much less than the capital of any expert W (i)
t , i = 1, 2, . . . , N

(by W
(i)
t we mean the capital we would have earned by starting from 1 and

following the suggestions of expert i all the time); in other terms we want an
inequality of the type Wt & W

(i)
t to hold uniformly for all i and possibly for all

t.
We can think of a merging strategy in the following terms. At time t−1 we

split our capital into N parts and invest the ith part as suggested by expert i.
Let p(i)

t represent the share of the wealth invested according to the suggestions
of expert i.

We need to decide what share of the capital to entrust to expert i on step
t. If an expert is doing well, it is natural to increase its share, and if an
expert is doing badly then to decrease it. This can be achieved in the following
natural way. Let us give each expert a share of the capital at the start and
let it operate on what it has earned. This laissez-faire approach ensures that
successful experts will have a higher influence.

If expert i gets the share p(i) of the initial capital W0 = 1 and W
(i)
t is as

above, our capital at time t equals Wt =
∑N

i=1 p
(i)W

(i)
t . We thus get

Wt ≥ p(i)W
(i)
t

for all i = 1, 2, . . . , N . If we give each expert an equal share 1/N , then we get

Wt ≥
1
N
W

(i)
t .

Note that the bounds hold for all times t and all possible changes in stock
prices. We do not even need to know t in advance; the strategy is the same no
matter at what point in the future we are going to check its performance.

It is easy to get a formula for p(i)
t , the share of our wealth ‘in possession of’

expert i after time t. We have

p
(i)
t = p(i)W

(i)
t /Wt

= p(i)W
(i)
t /

N∑
i=1

p(i)W
(i)
t .

In fact giving a share of the wealth to an expert is a metaphor. We need to
produce one investment decision, γt, and the formula for it is γt =

∑N
i=1 p

(i)
t−1γ

(i)
t .

One can update the weights in a simple way. To get the weights for step t

we multiply each p(i)
t−1 by 〈γ(i)

t , xt〉 and then normalise the vector to ensure the
weights sum up to 1.

1.3 Cover’s Universal Portfolios

The bound we have obtained is rather trivial. However it is possible to obtain
more involved results arguing in this way.

We can consider some class of investment strategies as experts and obtain
a universal strategy for this class. Interesting classes of strategies are infinite.
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One can easily expand the above argument to a countable class of experts.
The extension to uncountable classes is less straightforward. The sum will
be replaced by an integral and we will not be able to obtain a lower bound
by simply dropping all terms except for one from the sum. One will need to
estimate the integral instead.

Interesting results were obtained in this fashion in [CO96], where the class
of constant rebalanced portfolios is considered.

A constant rebalanced portfolio is a strategy that sticks to a fixed partition-
ing of capital among M shares, which is maintained all the time. Consider a
partitioning γ = (γ1, γ2, . . . , γM ),

∑M
j=1 γj = 1. The constant rebalanced port-

folio using this γ requires that on each step the share γi of our total wealth is
invested in share i. Suppose that we have invested the money accordingly at
time t− 1. By the time t the share prices will change and this requirement will
no longer hold, so we will need to buy and sell some shares to ensure that the
share γi of our total wealth is invested in share i for all i.

We thus need to rebalance the portfolio on each step, hence the word ‘rebal-
anced’. However the rebalancing seeks to achieve a fixed allocation of money
to shares, hence the word ‘constant’.

The constant rebalanced portfolios fill the simplex of dimension M − 1. In
[CO96] two distributions on the simplex are considered. If the distribution is
uniform, we get the bound

Wt ≥
1

(t+ 1)M−1
Wγ

and for the Dirichlet distribution with parameters (1/2, . . . , 1/2) we get

Wt ≥
1

2(t+ 1)(M−1)/2
Wγ

for all t and all constant rebalanced portfolios γ.
Note that the coefficient depends on t and decreases as t increases. This is

the price to pay for having a very large class of experts.

2 Bayesian Estimation

The investment scenario and our laissez-faire strategy turn out to have an im-
portant special case.

Let us consider a restricted version of the above scenario. Suppose that
there are two “shares” and that the vector of proportional changes can take
two values, (0, 1) and (1, 0). Within the investment metaphor this means that
one part of our investment always disappears and another part is returned to
us intact.

There is a different interpretation of this scenario though. Suppose we need
to output the probability of some event. The outcome xt = (0, 1) corresponds
to the event happening and xt = (1, 0) corresponds to it not happening. The
“investment” γt,1 can be thought of as the probability of it happening and γt,0
as the probability of it not happening (recall that γt,0 +γt,1 = 1). Our “capital”
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changes by the factor equal to the probability we assigned to the outcome that
actually occurs. We shall use the notation

kt =

{
1, if xt = (0, 1);
0, if xt = (1, 0).

This variable tells us whether the event has happened (kt = 1) or not (kt = 0).
We can think of experts E(1), E(2), . . . , E(N) as of N hypotheses. Each

hypothesis suggests a probability distribution: Pr(kt = 1 | Ei) = γ
(i)
t,1 and

Pr(kt = 0 | Ei) = γ
(i)
t,0 .

It is remarkable that the laissez-faire investment in this special case corre-
sponds to the Bayesian approach. Let us think of the weights p(1)

t−1, p
(2)
t−1, . . . , p

(N)
t−1

as of prior probabilities we have for the hypothesis before step t. The Bayes
rule gives us posterior probabilities

p
(i)
t = Pr(E(i) | xt) =

Pr(xt | E(i)) Pr(E(i))
Pr(xt)

∼ γt,ktp
(i)
t−1

= 〈γ(i)
t , xt〉p(i)

t−1

where kt is as above and ∼ denotes proportionality. To get pt one should
normalise the products 〈γ(i)

t , xt〉p(i)
t−1 to ensure the results sum up to 1. Note

that this is exactly the same procedure as described above for investments.
The distribution γt is obtained from γ

(i)
t be means of the product rule:

Pr(kt = k) =
N∑
i=1

Pr(kt = k | E(i)) Pr(E(i))

=
N∑
i=1

γt,kp
(i)
t−1 ,

where k = 0, 1, i.e., γt =
∑N

i=1 p
(i)
t−1γ

(i)
t .

3 General Case

In this section we will generalise the laissez-faire investment to obtain the ag-
gregating algorithm.

3.1 Games and Losses

Let us introduce a general prediction scenario. Suppose that outcomes ωt occur
sequentially in discrete time: ω1, ω2, . . . We assume that outcomes are drawn
from an outcome space Ω. The learner outputs a prediction γt before seeing
ωt. Predictions may be taken from a prediction space Γ. The quality of the
predictions is measured by a loss function λ : Ω × Γ → [0,+∞). We want



General Case 6

to minimise the cumulative loss Loss(T ) =
∑T

i=1 λ(ωt, γt). The triple (Ω,Γ, λ)
describes a prediction environment; we will refer to it as a game.

One may think of prediction γt as of an action taken in a situation of un-
certainty. As the uncertainty is lifted, the learner confronts the reality ωt and
faces the consequences of its action represented by λ(ωt, γt). We will however
keep the prediction terminology.

The investment scenario withM shares can be interpreted in this framework.
Let the space of outcomes be Ω = [0,+∞)M , the space of predictions be the
simplex Γ = {γ = (γ0, γ1, . . . , γM ∈ RM |

∑M−1
i=0 γj = 1}, and the loss function

be λ(ω, γ) = − ln〈ω, γ〉. This game is called Cover’s game. The cumulative loss
is the negative logarithm of the wealth: Loss(T ) = − lnWt.

Simpler examples are provided by games with finite outcome spaces. In
binary games there are two possible outcomes, Ω = {0, 1}, and predictions can
be drawn from the unit interval [0, 1]. The square-loss game has the loss function
λ(ω, γ) = (ω − γ)2, the absolute-loss game has the loss function λ(ω, γ) =
|ω − γ|2, and the logarithmic-loss game has

λ(ω, γ) =

{
− ln γ, if ω = 1;
− ln(1− γ), if ω = 0.

The logarithmic-loss game corresponds to sequential estimation discussed above.
The outcome ωt can be interpreted at kt and the prediction γt as γt,1.

In the problem of prediction with expert advice we have access to predictions
of N experts E(1), E(2), . . . , E(N) and want to suffer loss not much greater than
the loss of each expert, i.e., to achieve Loss(T ) . LossEi(T ).

3.2 Extension of Laissez-Faire Investment

For the sequential investment scenario the laissez-faire strategy achieves the
wealth Wt ≥ p(i)W

(i)
t for all i = 1, 2, . . . , N and t = 1, 2, . . . Taking the loga-

rithm yields Loss(t) ≤ LossEi(t) + ln(1/p(i)).
Let us try and extend the algorithm to an arbitrary game (Ω,Γ, λ). We

need to consider notional ‘wealth’ instead of loss. It is natural to define it as
the exponent of −Loss. What shall be the basis of this exponent however?
Let us postpone this decision till later and consider a parameter η > 0. Take
W

(i)
t = e−η LossEi

(t) for expert Ei. After step t + 1 it changes by the factor

e−ηλ(ωt+1,γ
(i)
t+1).

Let the learner share its initial wealth of e−η·0 = 1 among the experts so that
expert Ei gets p(i). The ‘laissez-faire investment’ achieves Wt =

∑N
i=1 p

(i)W
(i)
t

(cf. the pseudo-aggregating algorithm from [VW98] and Lemma 1). Let us turn
this notional method into a real practical strategy by ‘translating’ its terms into
the ‘prediction’ language.

In laissez-faire investment we maintain a set of weights for the experts. The
weights before step t correspond to the share of our wealth currently possessed
by expert Ei and can be obtained by normalising p(i)W

(i)
t−1 so that they sum up
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to 1. This can be easily expressed in prediction terms: p(i)
t−1 are obtained by

normalising p(i)e−η LossEi
(t−1) so that

∑N
i=1 p

(i)
t−1 = 1.

In the sequential investment scenario we simply took our investment decision
to be the weighted sum of experts’ decisions: γt =

∑N
i=1 p

(i)
t−1γ

(i)
t . We do not

have this linearity here. Let us write down a suitable replacement.
What we really need is to achieve the ‘wealth’ greater than or equal to

Wt, i.e., e−η Loss(t) ≥ Wt. One way to ensure this is to maintain the inequal-
ity e−ηλ(ωt,γt) ≥ Wt/Wt−1 for all t. We have Wt−1 =

∑N
i=1 p

(i)
t−1Wt−1, where

p
(i)
t−1Wt−1 is the ‘money in possession of’ expert Ei; on the next step this share

of the money grows to p(i)
t−1Wt−1e

−ηλ(ωt,γ
(i)
t ) and therefore

Wt

Wt−1
=
∑N

i=1 p
(i)
t−1Wt−1e

−ηλ(ωt,γ
(i)
t )

Wt−1

=
N∑
i=1

p
(i)
t−1e

−ηλ(ωt,γ
(i)
t ) .

The inequality e−ηλ(ωt,γt) ≥Wt/Wt−1 thus transforms into

e−ηλ(ωt,γt) ≥
N∑
i=1

p
(i)
t−1e

−ηλ(ωt,γ
(i)
t )

or, equivalently, into

λ(ωt, γt) ≤ −
1
η

ln
N∑
i=1

p
(i)
t−1e

−ηλ(ωt,γ
(i)
t ) .

Note that we do not know ωt when we choose γt so we must ensure that the
inequality holds for all ωt ∈ Ω.

Depending on the game and particular values of the variables, this may be
possible or not. One can easily formulate a sufficient condition for the existence
of γt.

Consider [0,+∞]Ω, the linear space of all functions from Ω to [0,+∞] (if Ω
is finite, it is finite-dimensional). The game (Ω,Γ, λ) defines subsets P = {f :
Ω → [0,+∞] | ∃γ ∈ Γ : f(·) = λ(ω, ·)} and S = {f : Ω → [0,+∞] | ∃g ∈
P∀ω ∈ Ω : f(ω) ≥ g(ω)}. The elements of P may be identified with predictions
γ: each element of P may be thought as possible losses of a prediction. The
elements of S are called superpredictions: they majorise elements of P . Now
consider the set e−ηS ; it consists of functions e−ηf , where f ∈ S. If this set is
convex, the game is called η-mixable.

Suppose that our game is η-mixable. One can easily check that for every
array of non-negative weights p(1), p(2), . . . , p(N) summing to 1 and every array
of experts’ predictions γ(1), γ(2), . . . , γ(N) there is γ ∈ Γ such that

λ(ω, γ) ≤ −1
η

ln
N∑
i=1

p(i)e−ηλ(ω,γ(i)) .
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for all ω ∈ Ω.
We can now formulate the aggregating algorithm for η-mixable games. As-

sign to the experts initial weights p(i). On step t calculate the weights p(i)
t−1 for

the experts and find any γt satisfying

λ(ω, γt) ≤ −
1
η

ln
N∑
i=1

p
(i)
t−1e

−ηλ(ω,γ
(i)
t )

for all ω ∈ Ω. By reverting the above calculations one can easily check that the
loss of this algorithm satisfies

e−η Loss(t) ≥
N∑
i=1

p(i)e−η LossEi
(t)

≥ p(i)e−η LossEi
(t)

and
Loss(t) ≤ LossEi(t) +

1
η

ln
1
p(i)

for all i = 1, 2, . . . , N .
Suppose that the game is not η-mixable, i.e., the convex hull H(e−ηS) is not

a subset of e−ηS , or, equivalently, that − 1
η lnH(e−ηS) is not a subset of S.

The set S is defined in such a way that for every c > 1 we have cS ⊆ S. The
set 1

cS includes S and may be larger than S. It may even include − 1
η lnH(e−ηS).

Let as assume that S is closed and we can take the minimum of all c ≥ 1
such that −c 1

ηH(e−ηS) ⊆ S. This minimum is denoted by c(η). Now for every
array of non-negative weights p(1), p(2), . . . , p(N) summing to 1 and every array
of experts’ predictions γ(1), γ(2), . . . , γ(N) there is γ ∈ Γ such that

λ(ω, γ) ≤ −c(η)
1
η

ln
N∑
i=1

p(i)e−ηλ(ω,γ(i)) .

for all ω ∈ Ω and the aggregating algorithm with a natural modification achieves
the loss

Loss(t) ≤ c(η) LossEi(t) + c(η)
1
η

ln
1
p(i)

for all i = 1, 2, . . . , N .
One can show (cf. [Vov98]) that for the square-loss game c(η) = 1, i.e., the

game is η-mixable, for 0 < η ≤ 2. The absolute-loss game is not mixable for
any η > 0; we have

c(η) = η/

(
2 ln

2
1 + e−η

)
> 1 .

The logarithmic-loss and Cover’s game are mixable for 0 < η ≤ 1 and the
laissez-faire bound cannot be improved by the aggregating algorithm.

3.3 Optimality

We have constructed some algorithms so far and obtained performance bounds
for them. We have not explained why those bounds and the algorithms are
good in any sense. In [Vov98] an optimality result is obtained.
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